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Friedel oscillations due to Fermi arcs in Weyl semimetals
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Weyl semimetals harbor unusual surface states known as Fermi arcs, which are essentially disjoint segments
of a two-dimensional Fermi surface. We describe a prescription for obtaining Fermi arcs of arbitrary shape
and connectivity by stacking alternate two-dimensional electron and hole Fermi surfaces and adding suitable
interlayer coupling. Using this prescription, we compute the local density of states—a quantity directly relevant
to scanning tunneling microscopy—on a Weyl semimetal surface in the presence of a point scatterer and present
results for a particular model that is expected to apply to pyrochlore iridate Weyl semimetals. For thin samples,
Fermi arcs on opposite surfaces conspire to allow nested backscattering, resulting in strong Friedel oscillations
on the surface. These oscillations die out as the sample thickness is increased and Fermi arcs from the opposite
surface retreat and weak oscillations, due to scattering between the top surface Fermi arcs alone, survive. The
surface spectral function, accessible to photoemission experiments, is also computed. In the thermodynamic
limit, this calculation can be done analytically and separate contributions from the Fermi arcs and the bulk states
can be seen.
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I. INTRODUCTION

Weyl semimetals (WSMs) are rapidly gaining popularity1–3

as a new, gapless topological phase of matter, as opposed to
topological insulators, which are gapped. A WSM is defined
as a phase that has a pair of nondegenerate bands touching at a
certain number of points in its Brillouin zone. Each such point
or Weyl node has a chirality or a handedness; very general con-
ditions constrain the right- and the left-handed Weyl nodes to
be equal in number.4,5 Near the nodes, the Hamiltonian resem-
bles that of Weyl fermions, well known in high-energy physics.
These nodes are topologically stable as long as translational
symmetry is conserved, and can only be destroyed by annihi-
lating them in pairs. Several theoretical proposals for realizing
WSMs now exist in the literature.2,3,6–12 WSMs have already
been predicted to exhibit several interesting bulk properties,
ranging from unusual quantum Hall effects13,14 to various
effects that rely on a three-dimensional (3D) chiral anomaly
present in this phase.13,15–20 Preliminary bulk transport studies
of WSMs have been performed both theoretically6,21,22 as well
as experimentally in some candidate materials.23,24

A remarkable feature of WSMs is the existence of uncon-
ventional surface states known as Fermi arcs (FAs). These
FAs are of a different origin from the FAs that exist in cuprate
superconductors. A FA on a WSM is essentially a segment
of a 2D Fermi surface (FS) that connects the projections of a
pair of bulk Weyl nodes of opposite chiralities onto the surface
Brillouin zone.2 Although FAs always connect Weyl nodes
of opposite chiralities, their exact shapes and connectivities
depend strongly on the local boundary conditions. Such
disconnected segments of zero-energy states cannot exist in
isolated 2D systems, which must necessarily have a well-
defined FS. A WSM in a slab geometry, however, is an
isolated 2D system and indeed, FAs on opposite surfaces
together do form a well-defined 2D FS. A natural question
to therefore ask is: What signatures does this unusual Fermi
surface have in scanning tunneling microscopy (STM) and
angle-resolved photoemission spectroscopy (ARPES), two
common techniques that can probe surface states directly?

In this work, we answer this question by computing the local
density of states (LDOS) on the surface of WSM, ρsurf(r,E),
in the presence of a point scatterer on the surface as well as the
surface spectral function for a clean system, A0

surf(k,E). We
apply our results to the iridates, A2Ir2O7, A = Y, Eu, which
are predicted to be WSMs.2,3 Both ρsurf and A0

surf evolve as the
sample thickness is increased, and the evolution is explained in
terms of the amplitude of the FAs on the far surface diminishing
on the near surface. The calculation is done using a prescription
that can give FAs of arbitrary shape and connectivity and
simultaneously generate the corresponding Weyl nodes in the
bulk. The procedure, in a nutshell, entails stacking electron
and hole FSs alternately, and gapping them out pairwise via
interlayer couplings that are designed to leave the desired
FAs on the end layers. The resulting Hamiltonian is of a
simple tight-binding form, which allows us to calculate A0

surf
analytically in the clean, thermodynamic limit. A0

surf can be
directly measured by ARPES.

FAs appear in two qualitatively distinct ways: (a) either FAs
on opposite surfaces overlap, resulting in a gapless semimetal,
or, (b) FAs on opposite surface do not overlap, resulting in a
2D metal with a FS. The 2D particle density in this metal is
proportional to the FS area according to Luttinger’s theorem,
and lives predominantly on the surface. In general, however,
some particles will leak into the bulk, but the bulk filling will
typically be O(1/L), where L is the slab thickness, and will
thus vanish in the thermodynamic limit: L → ∞. In the model
presented here, (a) results when equal numbers of electron
and hole FSs are stacked while (b) is obtained when the
total number of 2D FSs is odd. This is consistent with the
statement made earlier that the FA structure depends strongly
on the boundary conditions, since peeling off a single layer
interchanges (a) and (b).

FAs, in principle, can be generated by: (i) starting with
a bulk model with the desired number of Weyl nodes, (ii)
discretizing it in real space in the finite direction, and (iii)
applying suitable boundary conditions to obtain FAs of the
desired structure. While this approach works in principle, it has
several associated complications. For example, determining
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the boundary conditions that result in the desired connectivity
of the FAs is nontrivial. For instance, a WSM with four Weyl
nodes W

χ

1,2 at momenta χ Q1,2, where χ = ± denotes the
chirality of the Weyl node, has two pairs of FAs on any surface
on which the projections of the Weyl points are distinct. These
FAs can pair up the Weyl points in two qualitatively different
ways: as (W+

1 W−
1 ) and (W+

2 W−
2 ) on each surface, which is

an (a)-type connectivity, or as (W+
1 W−

1 ) and (W+
2 W−

2 ) on the
top surface and as (W+

1 W−
2 ) and (W−

1 W+
2 ) on the bottom

surface, which falls in the (b) category. However, there is
currently no general prescription for determining the boundary
conditions that give one or the other connectivity. Moreover,
to our knowledge there is also no general prescription for
deriving lattice models with arbitrary numbers and locations
of Weyl nodes. These gaps in working methods are filled
by our top-down approach for generating FAs directly. Our
approach should be useful to model FAs in real systems, where
surface effects can bend the FAs and change their connectivity
unpredictably. Note, however, that the approach focuses on the
surface states, and caution must be exercised while trying to
study bulk properties of WSMs using our model.

II. LAYERING PRESCRIPTION

We describe the prescription by considering the simplest
WSM, which has just two Weyl nodes, at (kx,ky,kz) ≡
(k,kz) = (K 1,2,0) and the FAs connect K 1 and K 2 along a
segment S (S ′) on the z = 1 (z = L) surface in the surface
Brillouin zone, as shown in Fig 1. S = S ′ and S �= S ′
correspond to the two qualitatively different situations (a)
and (b) mentioned earlier, and will be obtained by distinct

FIG. 1. (Color online) Top: Layering prescription for obtaining
FAs of arbitrary shape. Dotted (dashed) ellipses represent electron
(hole) FSs, and solid red segments are the residual FAs on adding
interlayer hoppings tk and �k. The horizontal black dashed line on
the topmost layer separates regions with �k > tk and �k < tk. An
even (odd) number of total layers gives identical (nonidentical) FAs
on the two surfaces, as shown on the left (right). Bottom: 1D systems
at fixed k ∈ C under the influence of � and t in the extreme cases
where the smaller hopping vanishes, for even (left) and odd (right)
L. Filled (empty) circles denote a state on an electron (a hole) Fermi
surface in the limit of decoupled layers. The ellipses enclose the states
that get mutually gapped out by the hoppings.

boundary conditions. Generalization to more Weyl points and
Weyl points away from the kz = 0 plane is straightforward.

We claim that this WSM is generated by the following
Bloch Hamiltonian:

Hk =
L∑

z=1

ψ
†
z,k(−1)zEkψz,k +

L−1∑
z=1

ψ
†
z,khz,kψz+1,k + H.c., (1)

where even (odd) L generates S = S ′ (S �= S ′), Ek is a
phenomenological function that vanishes along a contour C

given by

C

{⊃ S S = S ′
= S ∪ S ′ S �= S ′, (2)

and the interlayer coupling hz,k = −tk(�k) if z is even (odd).
If S = S ′, C can be chosen arbitrarily as long as it contains
the entire segment S. The functions tk and �k are real, non-
negative phenomenological functions that satisfy

tk

{
> �k k ∈ S

< �k k ∈ C/S(= S ′ if C = S ∪ S ′). (3)

Equation (3) dictates that tk = �k exactly at k = K 1,2. The k
dependence of t and � away from C is unimportant for our
purposes, and will be assumed to be negligible henceforth. We
now justify the above claim by studying the bulk as well as
the surface of our model, and verifying that it has the right
symmetry properties as expected for a WSM.

A. Bulk

If the interlayer couplings tk = �k = 0, then H = ∑
k Hk

describes a stack of alternate non-degenerate electron and hole
FSs. When tk and �k are turned on, these FSs get gapped out
in pairs in the bulk. Indeed, the bulk Hamiltonian is

H bulk
k,kz

= Ekσz + (�k − tk cos kz) σx + tk sin kzσy, (4)

where z is the layering direction, and is gapped everywhere
except at the desired Weyl points: (k,kz) = (K 1,2,0), due to
(3). Allowing tk and �k to be negative or complex simply
moves the Weyl points off the kz = 0 plane, but this does not
affect the shape of the FAs. Near the gapless points, H bulk

realizes the Weyl Hamiltonian

H bulk
K i+ p,0+pz

≈ [ p · ∇kEK i
]σz + [

p · ∇k
(
�K i

− tK i

)]
σx + [

tK i
pz

]
σy

≡ p⊥vF (K i)σz + p‖viσx + �0pzσy, (5)

where p⊥ = p · êr (K i) and p‖ = p · êt (K i) are momenta
perpendicular and parallel to C [êr (k) and êt (k) are 2D unit
vectors normal and tangential to C], vF is the Fermi velocity
of the 2D FSs, and vi = ∇k(�K i

− tK i
) · êt (K i). In going to

the second line, the variation of tk and �k perpendicular to C

has been assumed to be negligible, since it does not affect the
shape of the FAs. vi has opposite signs at K 1 and K 2, ensuring
that the Weyl nodes have opposite chirality. Hbulk is obviously
unaffected by the boundary conditions at z = 1 and z = L for
large L.

B. Surface

The surface, however, strongly depends on the boundary
conditions; in particular, it is qualitatively different for odd and
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even L. If L is odd, at each k ∈ C, a state remains unpaired and
hence, gapless, at z = 1 (z = L) whenever �k < tk (�k > tk).
The gapless states at z = 1 (z = L) thus trace out S (S ′). On
the other hand, when L is even, both ends of a the chain at
fixed k carry a gapless state when �k < tk and neither end has
gapless states when �k > tk. In this case, the gapless states on
both surfaces of the slab trace out S.

Viewed differently, the 1D system at fixed k ∈ C and |�| �=
|t | is an insulator in the CII symmetry class, which is known to
have a Z topological classification.25,26 While |�| > |t | gives
a trivial phase, |�| < |t | is topologically nontrivial with a zero
mode at each end protected by a chiral symmetry, if the 1D
lattice has a whole number of unit cells. These end states are
nothing but the FA states at that k when L is even. As k is
varied along C, the 1D system undergoes a topological phase
transition at K 1 and K 2. For odd L, there is always a state
at one end of the chain, as show in Fig 1. This prescription
is similar in spirit to the node-pairing picture of Ref. 27 for
chiral topological insulators in three dimensions. Note that it
is necessary to start with two sets of FSs, since a single FS
cannot be destroyed perturbatively.

C. Symmetry analysis

WSMs can only exist in systems in which at least one
symmetry out of time-reversal symmetry (T ) and inversion
symmetry (I) is broken; the presence of both would make each
band doubly degenerate and give Dirac semimetals instead
with four-component fermions near each node. Moreover,
I-symmetric, T -breaking (T -symmetric, I-breaking) WSMs
have an odd (even) number of pairs of Weyl nodes. In
the current picture, the breaking of these symmetries can

be understood as follows. Let us assume Ek = E−k; if this
weren’t true, both symmetries would broken from the outset.
In general, tk and �k are unrelated to t−k and �−k, in which
case both symmetries would again be broken. However, T is
preserved if tk = t−k and �k = �−k, which can only happen
if the number of points on C at which tk = �k, and thus the
number of Weyl nodes, is an integer multiple of four. On the
other hand, inversion about a particular layer interchanges t

and �; thus, tk = �−k preserves this inversion symmetry. This
condition requires tk − �k to change sign twice an odd number
of times along C, giving an odd number of Weyl node pairs.

III. LDOS RESULTS

Having described the procedure for obtaining FAs from a
2D limit, we demonstrate its utility by calculating the surface
spectral function for a clean system and the surface LDOS in
the presence of a point surface scatterer within a model that
should be relevant to the pyrochlore iridates A2Ir2O7, A = Y,
Eu, which are purported WSMs with 24 Weyl nodes.2 The
lattice in the WSM phase has inversion symmetry as well as a
threefold rotation symmetry R3 about the cubic 111 axis, and
there are six Weyl nodes related by these symmetries near each
of the four L points in the FCC Brillouin zone. Additionally,
the lattice also has a D6 symmetry (i.e., π/3 rotation about
[111] followed by reflection in the perpendicular plane). This
symmetry has an important implication for the FAs: if it is
preserved in a slab geometry, then the FAs will be as shown
in Fig. 2(a). In particular, the six FAs near the center of the
surface Brillouin zone enclose an area, while the remaining
eighteen overlap in pairs on the opposite surfaces. We note
that Ref. 3 also predicted Weyl semimetallic behavior in the
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FIG. 2. (Color online) (a) FAs in the surface Brillouin zone on the 111 surface of iridate WSMs. Solid (dashed) lines denote FAs on the
near (far) surface. Filled (empty) circles denote projections of Weyl nodes of positive (negative) chirality in all the figures above. (b) and (c)
Surface LDOS in arbitrary units due to the six FAs near the L point in the presence of a point scatterer on the surface (brown cross) for a thin
sample (b) and a thick sample (c). Insets show the numerically computed surface spectral function at E = 0 for the clean system, with darker
colors representing larger values. The computation is done for the model, described in the text, which generates the six FAs near the L point
but not the remaining eighteen FAs near the Brillouin zone edges.
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above iridates, but with only eight Weyl nodes. In this case, the
hexagonal figure around the L point would collapse to a point.
As we argue below, LDOS oscillations on the surface stem
predominantly from the hexagonal figure; hence, the proposal
of Ref. 3, if true, would imply no strong LDOS oscillations.

We compute the surface LDOS for a model that has six
FAs like the ones around the L point, as a function of the the
sample thickness. The remaining eighteen FAs in the iridates
are expected to be destroyed by finite-size effects for thin
samples, while for thick samples backscattering occurs across
the Brillouin zone and hence can give rise to LDOS oscillations
only on the lattice scale. These oscillations are unlikely to be
distinguishable from the electron density variations on this
scale already present.

The LDOS is calculated via the standard T -matrix for-
malism. Given the time-ordered Green’s function for the
clean system: G0(k,E) = (E − Hk)−1 and a scattering poten-
tial: Uz,z′ (x,y) = uδ(x)δ(y)δz,1δz′,1, the T -matrix is given by
T (ω) = [1 − U

∑
k G0(k,E)]−1U , independent of momen-

tum, since the scattering potential in momentum independent.
Here, G0, U , and T are all L × L matrices indexed by z.
The full Green’s function in the presence of the impurity
is G(k,k′,E) = δk,k′G0(k,E) + G0(k,E)T (ω)G0(k′,E), and
the LDOS on the z = 1 surface is related to the (1,1) element
of its retarded cousin: ρsurf(r,E) = − 1

π
ImG11(r,r,E + iδ),

where G(r,r ′,E) = ∫
k,k′ ei(k·r−k′·r ′)G(k,k′,E). For the calcu-

lation, we use E(k) =
√

k2 + 2k6 cos2 3θk − 1 to generate the
hexagonal figure and tk ≡ t0 = 0.5, �k = t0(1 − cos 3θk) to
obtain the FAs. Here, (k,θk) are the polar coordinates of k.

The results are presented in Figs. 2(b) and 2(c) for E = 0.
For thin samples, clear LDOS oscillations are seen in the
horizontal direction as well as along the two equivalent direc-
tions related by π/3 rotation. The origin of these oscillations
becomes clear if one looks at A0

surf(k,E = 0), displayed in
the inset. Since the sample is thin, FA wave functions from
the far surface have significant amplitude on the near surface,
which allows backscattering to occur diametrically across the
hexagon. The dominant backscattering processes are the ones
involving the midpoints of the FAs, since the Fermi surface
is nested here. On the other hand, as the sample thickness is
increased, three of the six FAs retreat to the far surface and
backscattering is exponentially suppressed. The result is small
variations in the LDOS arising from scattering between FAs
solely on the top surface. Thus, the STM map has a distinct
evolution with sample thickness, which is characteristic of the
FA structure in the iridate WSMs.

IV. SURFACE SPECTRAL FUNCTION IN CLEAN
THERMODYNAMIC LIMIT

A0
surf(k,E) was computed numerically in order to generate

the insets of Fig. 2. In the thermodynamic limit, however,
this calculation can be done analytically. Denoting the (1,1)
element of the clean Green’s function for a L-layer slab by
G11

0(L), it is straightforward to show, by explicitly evaluating
the (1,1) cofactor of E − Hk and using

det

(
A B

C D

)
= det(A)det(D − CA−1B),

that

(E − Ek)G11
0(L)(k,E)

= 1 + �2
k

E2 − E2
k − �2

k − t2
k (E − Ek)G11

0(L−2)(k,E)
. (6)

In the thermodynamic limit: L → ∞, G11
0(L)(k,E) ≈

G11
0(L−2)(k,E) ≡ g(k,E). Thus,

g(k,E) = 1

2t2
k (E − Ek)

[(
E2 − E2

k + t2
k − �2

k

)

±
√(

E2 − E2
k + t2

k − �2
k

)2 − 4t2
k

(
E2 − E2

k

)]
. (7)

The physical condition A0
surf(k,E) = − 1

π
Im [g(k,E + iδ)] �

0 fixes the sign in front of the square root. Clearly,

A0
surf(k,E) = δ(E − Ek)

t2
k − �2

k + ∣∣t2
k − �2

k

∣∣
2t2

k

+ 1

2t2
k (E − Ek)

× Im
√(

E2 − E2
k + t2

k − �2
k

)2− 4t2
k

(
E2 − E2

k

)
.

(8)

The first line is nonzero only when t2
k > �2

k and has a sharp
peak at E = Ek. Clearly, this represents the contribution to
A0

surf from the FA. Whereas, the second line is nonvan-

ishing when |E| > |Ek| and |tk −
√

E2 − E2
k | < |�k| < |tk +√

E2 − E2
k |. These inequalities are satisfied in the region near

the projection of the Weyl points onto the surface. Moreover,
this contribution to A0

surf has no δ-function peak. Thus, it
represents contributions from the bulk states near the Weyl
nodes. The quantity A0

surf can be directly measured by ARPES
experiments.

V. CONCLUSION

In conclusion, we have studied impurity-induced Friedel
oscillations due to FAs in WSMs, focusing on the FA structure
of the purported iridate WSMs, and observed their dependence
on sample thickness. For thin samples, FAs on both surfaces
collude to allow nested backscattering and hence produce
strong LDOS oscillations, whereas for thick samples, the
FAs on the far surface do not reach the near surface and
such backscattering and the consequent LDOS oscillations are
suppressed. The calculation is done by building the desired
WSM and FA structure by stacking electron and hole Fermi
surfaces and adding suitable interlayer hopping. Within this
prescription, the surface spectral function for a clean system
can be calculated analytically in the thermodynamic limit.
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