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We present a study of various aspects of proximity effects in F/S (ferromagnet/superconductor) bilayers,
where F has a spiral magnetic texture such as that found in holmium, erbium, and other materials, and S

is a conventional s-wave superconductor. We numerically solve the Bogoliubov–de Gennes (BdG) equations
self-consistently and use the solutions to compute physical quantities relevant to the proximity effects in these
bilayers. We obtain the relation between the superconducting transition temperature Tc and the thicknesses dF

of the magnetic layer by solving the linearized BdG equations. We find that the Tc(dF ) curves include multiple
oscillations. Moreover, the system may be reentrant not only with dF , as is the case when the magnet is uniform,
but also with temperature T : the superconductivity disappears in certain ranges of dF or T . The T reentrance
reported here occurs when dF is larger than the spatial period of the conical exchange field. We compute the
condensation free energies and entropies from the full BdG equations and find the results are in agreement with
Tc values obtained by linearization. The inhomogeneous nature of the magnet makes it possible for all odd triplet
pairing components to be induced. We have investigated their properties and found that, as compared to the singlet
amplitude, both the m = 0 and ±1 triplet components exhibit long-range penetration. For nanoscale bilayers,
the proximity lengths for both layers are also obtained. These lengths oscillate with dF and they are found to be
long range on both sides. These results are shown to be consistent with recent experiments. We also calculate the
reverse proximity effect described by the three-dimensional local magnetization, and the local density of states,
which reveals important energy-resolved signatures associated with the proximity effects.
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I. INTRODUCTION

The emerging field of spintronics has stimulated interest
in fabricating solid-state devices that make use of the intrinsic
spins as a degree of freedom.1 Strides have been made recently
towards exploiting the spin variable in hybrid ferromag-
net/superconductor (F/S) systems. Such systems have shown
promise for a number of practical applications, including
nonvolatile information storage. The simplest of such potential
devices usually involve layered F/S heterostructures. Owing
to these potentially important spintronic applications, research
on the fundamental physics of these systems has received
great attention in the last decade.2,3 The most important basic
physics elucidated by these studies is probably that of the
superconducting proximity effects in F/S nanostructures,3

which describe the interplay between ferromagnetic and
superconducting order parameters. Although these two order
parameters are rarely found to coexist naturally in bulk
materials, such coexistence can be and has been achieved near
the interfaces of artificially created F/S composites. Thus, the
subject has become important not only for its technological
applications, but also because of the underlying fundamental
physics.

In elementary treatments, ferromagnetism is often deemed
strictly incompatible with s-wave superconductivity due to
their mutually exclusive order parameters. In ferromagnets,
the exchange field tends to cause the electronic spins to align
in the same direction, while in singlet s-wave superconductors,
the Cooper pairs are composed of both spin-up and -down
electrons. These two order parameters seem to naturally
oppose each other. In fact, in F/S heterostructures this
competition leads to a strong modification of the behavior of
the superconducting Cooper-pair amplitudes. When a Cooper

pair in S encounters an F/S interface and enters the F region,
the momenta of spin-up and -down electrons that make up
the Cooper pair are changed because of the exchange field
in the F region. This leads to a nonzero center-of-mass
momentum of the Cooper pair4,5 and an overall damped
oscillating Cooper-pair amplitude in the F side. It is because
of these two competing order parameters that the oscillations
decay over a relatively short length scale which decreases as
the exchange field increases.

These oscillations of the superconducting wave functions
are one of the most salient features governing proximity effects
in F/S systems and form the basis for switching applications
that require the manipulation of the superconducting tran-
sition temperature Tc through variation of the experimental
parameters. Due to the oscillatory nature of the Cooper-pair
amplitudes, the dependence of Tc on the thickness of the
ferromagnetic layer dF in F/S bilayers is oscillatory too.
Furthermore, the interference between the transmitted pairing
wave function through the F/S interface and the reflected
one from the boundary can become fully destructive: the
superconductivity disappears for a certain dF range. This
superconducting reentrant behavior with dF has been found
experimentally in Nb/Cu1−xNix and Fe/V/Fe trilayers6–8 and
it is well understood theoretically.3,9–14

Another important fact about F/S proximity effects is the
generation of induced triplet pairing correlations. These can
be generated by the presence of spin active interfaces,15–17

or (and this is the case we will focus on here) in systems
with clean interfaces and inhomogeneous F structure.18–22 The
simplest such cases are F1/S/F2 or F1/F2/S layers in which
the magnetizations of the two F layers are misaligned. For
s-wave superconductors, where the orbital part of the pair
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wave function is even, the Pauli principle requires the spin
part to be odd and this would appear to forbid the existence of
triplet correlations. However, triplet correlations that are odd23

in frequency (or equivalently in time21) can be induced in F/S

systems, with S being s-wave pairing, without violating the
Pauli exclusion principle.

The importance of odd triplet correlations lies in their
long-range nature in the magnet, i.e., their proximity lengths
can be in principle comparable to those found in the usual
superconducting proximity effects involving nonmagnetic
metals. Since the exchange fields tend to align the electronic
spins of the Cooper-pair electrons, the proximity length for
singlet pairing is very short (and dependent on the magnitude
of exchange field). However, the triplet pairing correlations
can involve electron pairs with both spins aligned along
the local magnetization direction, and thus be much less
sensitive to the mechanism of exchange fields, penetrating
much deeper in F than their singlet counterparts. The possible
appearance of both m = 0 and ±1 (m denoting the usual spin
quantum number) components of induced triplet correlations is
controlled by the symmetry of the system and by conservation
laws.22 In multilayer F/S systems, when the F layers are
magnetically homogeneous (all exchange fields are along the
same direction, the quantization axis), only the total spin
projection corresponding to the m = 0 component can be
induced. On the contrary, all three components (m = 0 and
±1) can arise if the direction of exchange fields differs in
the ferromagnets, e.g., the exchange fields of F1 and F2 are
not aligned in22 F1/S/F2 or F1/F2/S types of trilayers.24

These long-range characteristics of triplet correlations have
been experimentally detected in ferromagnetic multilayers by
taking advantage of their magnetic inhomogeneity.25–27

Aside from ferromagnet misalignment, another possibility
to generate long-range triplet correlations is to use a ferromag-
net with an intrinsic inhomogeneous magnetic texture.28 Such
structures are inherent to either known elements or chemical
compounds. Examples of this kind of ferromagnets include
most prominently Ho,29 which has a spiral magnetic structure
at low temperatures. A similar spiral magnetic structure is
found in metallic erbium,30 MnSi thin films,31 and Fe(Se,Te)
compounds.32 Indeed, it has been experimentally confirmed
that long-range triplet correlations are induced in Nb/Ho/Co
multilayers33 with the periodicity of Ho playing an important
role in triplet supercurrents. Superconducting phase-periodic
conductance oscillations have also been observed in Al/Ho
bilayers29 where the thickness of Ho is much larger than
the penetration length of singlet amplitudes. This finding
can be explained in the framework of the triplet proximity
effects. Theoretically, the spin-polarized Josephson current in
S/Ho/S junctions has been studied34 via quasiclassical Green’s
function techniques. The triplet supercurrent in Ho/Co/Ho
trilayers was also investigated in the diffusive35 and clean36

regimes. The long-range effects can, however, be limited by
interface quality and impurities.37 These earlier works show
that ferromagnets with an intrinsic spiral magnetic structure
are of particular interest when studying superconducting
proximity effects in F/S nanostructures. Generation of all
triplet components in F/S systems where the F magnetic
structure is inhomogeneous requires only a single F layer,

an obvious advantage from the fabrication point of view.
These components can also be induced in misaligned F/S

structures with multiple uniform F layers, but the situation is
different. Thus, in Ref. 24 we studied the switching effects
and associated physics that occur in F1/F2/S trilayers when
the angle between exchange fields is varied. Here, motivated
by the recent experiments mentioned above, we explore the
importance of the geometry and the inherent spiral magnetism
in a single-F -layer system.

It was also recently predicted38 that superconductivity in
conical-ferromagnet/superconductor bilayers can be reentrant
with temperature, in addition to the standard reentrance with
dF mentioned above. It was shown via numerical solution of
the Bogoliubov–de Gennes (BdG) equations that in certain
cases superconductivity can exist in a range Tc1 < T < Tc2,
where Tc1 is nonzero. This reentrance with temperature is quite
different from that found in ternary rare-earth compounds such
as ErRh4B4 and HoMo6S8,39–43 where the disappearance of su-
perconductivity below Tc1 results from the onset of long-range
ferromagnetism. In the bilayers considered in Ref. 38, the
high-T phase and the low-T phase are the same. The physical
reasons that account for the reentrance there are attributed
to the proximity effects associated with the interference of
Cooper-pair amplitudes and the generation of triplet pairing
correlations, resulting in nontrivial competition between the
entropies and condensation energies. This explains why we
do not find24 this reentrance in F1/F2/S trilayers where
the additional oscillatory mechanism associated with spiral
ferromagnets is absent.

In this paper, we present results for various properties of
the proximity effects in F/S bilayers, where the F layer has
a helical magnetic structure. We numerically find the self-
consistent solutions to the BdG equations44 and use them to
compute important physical quantities. By linearizing the BdG
equations, we calculate the critical temperature as a function
of magnet thickness, exchange-field strength and periodicity,
and other parameters. We then discuss the effects of varying
the superconductor thickness to coherence length ratio. We
show that depending on the width of the superconductor, and
for a broad range of magnetic strengths, reentrant behavior
as a function of magnet thickness can arise. We find that
under certain conditions, the superconductivity can also be
reentrant with temperature, and for larger dF values than
previously reported.38 To clarify these reentrant phenomena,
we investigate the thermodynamic functions associated with
the various ways reentrance can arise. We find that all
components of the odd triplet correlations can be induced
and we discuss their long-range nature. We then characterize
the important triplet long-range behavior by introducing the
corresponding proximity lengths. We find that these lengths
oscillate as a function of dF , and depend on details of the
magnetic texture. Reverse proximity effects are also studied
to determine the magnetic influence on the superconductor:
we calculate the local magnetization vector revealing greater
penetration into S for weaker exchange fields. Lastly, the
spectroscopic information is presented by means of the local
density of states to demonstrate consistency with the Tc

results.
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FIG. 1. (Color online) Diagram of the conical-
ferromagnet/superconductor bilayer studied. The spiral magnetic
structure is described by an exchange field h [see Eq. (1)]. The
system is infinite in the x-z plane and finite in y. The relevant widths
are labeled.

II. METHODS

The procedures we employ to self-consistently solve the
BdG equations and to extract the relevant quantities are
very similar to those already described in the literature (see
Refs. 17 and 38 and references therein). It is unnecessary
to repeat details here. We consider F/S bilayers that consist
of one ferromagnetic layer with spiral exchange fields and a
superconducting layer with s-wave pairing. The geometry is
depicted in Fig. 1. Our systems are infinite in the x-z plane and
finite along the y axis. Their total thickness is denoted by d: the
F layer has width dF and the S layer has width dS = d − dF .
The left end of the bilayers is the y = 0 plane. We assume
that the interface lies in the x-z plane and the exchange field
h, which is present only in F , has a component that rotates
in this plane plus a constant component in the y direction,
perpendicular to the interface:

h = h0

{
cos αŷ + sin α

[
sin

(
βy

a

)
x̂ + cos

(
βy

a

)
ẑ
]}

,

(1)

where the helical magnetic structure has a turning angle β and
opening angle α. We will take a, the lattice constant, as our
unit of length and vary the strength h0. The spatial period of
the helix is λ = 2πa/β.

The effective Hamiltonian of our system is

Heff =
∫

d3r

⎧⎨
⎩

∑
ρ

ψ†
ρ(r)

(
− ∇2

2m∗ − EF

)
ψρ(r)

+ 1

2

⎡
⎣∑

ρ,ρ ′
(iσy)ρρ ′	(r)ψ†

ρ(r)ψ†
ρ ′ (r) + H.c.

⎤
⎦

−
∑
ρ,ρ ′

ψ†
ρ(r)(h · σ )ψρ ′ (r)

⎫⎬
⎭, (2)

where ρ and ρ ′ are spin indices, ψρ(r) is the field operator,
and σ are the Pauli matrices. 	(r) in the above equation
is the pair potential. To apply the BdG formalism to
spatially inhomogeneous systems, we first invoke the

generalized Bogoliubov45 transformation ψρ(r) =∑
n[unρ(r)γn + v∗

nρ(r)γ †
n ], where unρ(r) and vnρ(r) are

quasiparticle and quasihole wave functions and the creation
operator γ

†
n and annihilation operator γn obey the usual

fermionic anticommutation relations. By recasting the
effective Hamiltonian into a diagonalized form, via the
commutation relations between Heff and field operators,
and making use of the quasi-one-dimensional nature of the
problem, one arrives at the BdG equations⎛

⎜⎜⎜⎝
H0 − hz −hx + ihy 0 	(y)

−hx − ihy H0 + hz −	(y) 0

0 −	(y)∗ −(H0 + hz) hx + ihy

	(y)∗ 0 hx − ihy −(H0 − hz)

⎞
⎟⎟⎟⎠

×

⎛
⎜⎝

un↑(y)
un↓(y)
vn↑(y)
vn↓(y)

⎞
⎟⎠ = εn

⎛
⎜⎝

un↑(y)
un↓(y)
vn↑(y)
vn↓(y)

⎞
⎟⎠, (3)

where H0 ≡ − 1
2m∗

∂2

∂y2 + ε⊥ − EF is the usual single-particle
Hamiltonian for the quasi-one-dimensional problem, with ε⊥
denoting the kinetic energy associated with the transverse
direction. The self-consistency relation can be rewritten as

	(y) = g(y)

2

∑
n

′
[un↑(y)v∗

n↓(y) − un↓(y)v∗
n↑(y)] tanh

(
εn

2T

)
,

(4)

where g(y) is the usual BCS superconducting coupling con-
stant in the S region, and zero in the F material. The prime sign
indicates summing over all eigenstates with eigenenergies less
than or equal to a cutoff “Debye” frequency ωD . The solutions
to the BdG equations must be determined self-consistently.
This self-consistency condition is extremely important in
studying proximity effects.

The singlet pair amplitude, i.e., the amplitude for finding
a Cooper pair F (y), is given by F (y) ≡ 	(y)/g(y). One can
determine the superconducting transition temperatures Tc by
looking for the temperatures at which the pair amplitudes
becomes vanishingly small. However, it is much more efficient
to find Tc by linearizing the self-consistency relation (4)
and using a perturbation expansion. This technique has been
discussed in other papers38,46 and the details are not repeated
here.

Once a full set of self-consistent solutions is obtained, all the
additional quantities of interest can be computed. For example,
the triplet correlations corresponding to m = 0 and m = ±1,
respectively,21,22 can be written, with our geometry and phase
conventions, in terms of the quasiparticle and quasihole wave
functions as

f0(y,t) = 1

2

∑
n

[un↑(y)v∗
n↓(y) + un↓(y)v∗

n↑(y)]ζn(t), (5a)

f1(y,t) = 1

2

∑
n

[un↑(y)v∗
n↑(y) − un↓(y)v∗

n↓(y)]ζn(t), (5b)

where ζn(t) ≡ cos(εnt) − i sin(εnt) tanh[εn/(2T )]. As dis-
cussed in Sec. I, both f0 and f1 have to vanish at t = 0 to
comply with the Pauli principle. However, in general both of
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them can be induced when t �= 0 and the magnetic structure is
inhomogeneous.

One is also able to evaluate the thermodynamic quantities
from the free energy F (T ). For an inhomogeneous system, it
is computationally most convenient to use the expression47

F (T ) = −2T
∑

n

ln

[
2 cosh

(
εn

2T

)]
+

〈
	2(y)

g(y)

〉
s

, (6)

where 〈. . .〉s denotes spatial average. The condensation free
energy 	F is the difference between the free energies of the
superconducting state FS and the normal states FN , 	F =
FS − FN .

Another important physical quantity, which can be de-
termined experimentally by tunneling spectroscopy, is the
local density of states (LDOS). This quantity often reveals
important information about the superconducting features of
the sample studied. In our quasi-one-dimensional model, the
LDOS N (y,ε) depends spatially only on y. It can be easily
rewritten, as shown, e.g., in Refs. 5 and 46, in terms of the
wave functions.

Just as the superconducting order parameter is changed
by the presence of ferromagnets, also, near the interface,
the ferromagnetism can be modified by the presence of the
superconductor,5,48–53 a phenomenon known as the reverse
proximity effect. It is best described by considering the local
magnetization m, which is in our case three dimensional.
In terms of the wave functions, its components can be
written as

mx(y) = −μB

∑
n

{[u∗
n↑(y)un↓(y) + u∗

n↓(y)un↑(y)]fn

+ [vn↑(y)v∗
n↓(y) + vn↓(y)v∗

n↑(y)](1 − fn)}, (7a)

my(y) = iμB

∑
n

{[u∗
n↑(y)un↓(y) − u∗

n↓(y)un↑(y)]fn

+ [vn↑(y)v∗
n↓(y) − vn↓(y)v∗

n↑(y)](1 − fn)}, (7b)

mz(y) = −μB

∑
n

{[|un↑(y)|2 − |un↓(y)|2]fn

+ [|vn↑(y)|2 − |vn↓(y)|2](1 − fn)}, (7c)

where fn is the Fermi function of εn and μB is the Bohr
magneton.

III. RESULTS

In the results shown here, capital letters will always denote
the dimensionless lengths denoted by the corresponding small
letter. For example, the dimensionless thickness of the ferro-
magnet is written as DF ≡ dF /a and that of superconductors
is DS ≡ dS/a, where a is the lattice constant in Eq. (1). For
the helical magnetic structure, we take angular values [see
Eq. (1)] α = 4π/9 and β = π/6 which are29,54 appropriate
to Ho, in which case DF = 12 contains one full period of the
spiral exchange field. We will denote this dimensionless spatial
period by � in the following sections. For materials other than
Ho, many of the results can be read off by rescaling � to the
appropriate value. Throughout this paper, the dimensionless
superconducting coherence length is fixed to be �0 = 100. In
the same spirit, the dimensionless exchange field I is measured
in terms of the Fermi energy: I ≡ h0/EF . We choose the
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FIG. 2. (Color online) Calculated transition temperatures Tc,
normalized to T 0

c , vs DF for several values of the dimensionless
exchange field I (see text). In this figure, DS is fixed for all values
of I to be 1.5�0. The lines connecting data points are guides to the
eye.

Fermi wave vector in S to equal 1/a. We take the “Debye”
cutoff value to be ωD = 0.04EF . As usual, this value is
irrelevant except for setting the overall transition temperature.
Temperatures are given in dimensionless form in terms of T 0

c ,
the transition temperature of bulk S material. When discussing
the triplet amplitudes, which are time dependent, we use the
dimensionless time τ ≡ tωD . Vertical dashed lines shown in
figures, when present, denote the F/S interface.

A. Transition temperatures

To investigate the details of the predicted oscillatory nature
of the dF dependence of Tc as discussed in Sec. I, we
calculated Tc as a function of DF for several I and DS

values. These results are shown in Figs. 2 and 3. The DF
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FIG. 3. (Color online) Transition temperatures Tc vs DF at I =
0.1 and several DS . The lines are guides to the eye.
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range in both figures includes three complete periods of the
spiral magnetic order. This is reflected in the results shown:
indeed, the presence of multiple oscillations in the included
range of DF is the most prominent feature in Figs. 2 and
3. The oscillations in Tc arise (as we discuss below) from a
combination of the periodicity of the spiral magnetic structure
and the usual Tc oscillations which arise, even when the magnet
is uniform, from the difference3,4 in the wave vectors of the
up and down spins. In Fig. 2, one can also see that with
stronger exchange fields, the oscillation amplitudes are larger.
Despite this increase of the amplitudes with the exchange
field (they are approximately proportional to I ), the overall Tc

decreases when the exchange field increases. This is consistent
with expectations: a stronger exchange field destroys the
superconductivity more efficiently. As mentioned in Sec. I,
when the exchange field is strong enough, the systems can
become normal in some range DF1 < DF < DF2. Indeed,
reentrance with dF can be seen to occur in Fig. 2 near DF = 4
at I = 0.2. Another feature seen in this figure is the decrease
of the amplitude oscillations with increasing DF . This arises
simply because the singlet Cooper-pair amplitudes in S near
the F/S boundary decay more strongly at larger dF and
therefore the effect of the pair-amplitude oscillations in F is
weaker.55

In a F/S bilayer where the ferromagnet is homogeneous,
the periodicity of the Tc oscillations is governed by the
exchange field, or equivalently, by the magnetic coherence
length5 �F = 1/I . Here, where a bilayer with a conical
inhomogeneous ferromagnet is considered, the intrinsic spiral
magnetic order with spatial period � plays an equally
important and competing role in the Tc oscillations. In other
words, both the strength and the periodicity of exchange
fields influence the overall decay and the oscillatory nature
of the superconducting transition temperatures. The existence
of two different spatial periodicities leads to the obvious
consequence that the Tc(DF ) curves are not describable in
terms of one single period. However, when I is not very
strong (I � 0.1), the minima of Tc are near the locations
where DF = �/2, 3�/2, and 5�/2 and similarly, the Tc

maxima occur near DF = �, 2�, and 3�. This indicates
that the magnetic periodicity is dominant. Roughly speaking,
the maxima and the minima are correlated with the strongest
and weakest spatial average of the exchange field compo-
nents in F . As I increases and �F decreases, deviations
become obvious. Figure 2 shows that the distances between
two successive maxima decrease when the exchange fields
increase.

The existence of the multiple oscillations discussed above
has been confirmed experimentally. In Ref. 56, Tc in Nb/Ho
bilayers was measured as a function of dF . The results
exhibit an overall decay with Ho thickness, on which there
are superimposed oscillations which are correlated with, but
not simply described by, the spatial wavelength λ of the Ho
structure. Comparison with the theory discussed here was
made, using I as an adjustable parameter. Values near I = 0.1
were found to provide the best fit. The other parameters were
extracted from other known properties of Ho and Nb or (e.g.,
dS) from the experimental sample geometry. The results of
the comparison were extremely satisfactory, showing clear

agreement in all the features of the rather intricate Tc(dF )
experimental curves. It was found also that one of the samples
was close to being reentrant with dF at a value very close to
that predicted by theory.

In Fig. 3, we present Tc results for several values of DS

ranging from 1.2�0 to 1.5�0, with a fixed exchange field
I = 0.1. One can see that the distance between successive
maxima is an extremely weak function of DS . This agrees
with our previous discussion: the oscillatory nature in Tc is
chiefly dependent on the exchange fields and magnet structure.
Since superconductivity is more robust for larger DS , the
ferromagnet lowers the overall Tc for thinner superconductors
as evidenced in Fig. 3. Figure 3 also demonstrates that not only
a strong I can lead to DF reentrances, but also a thinner DS .
Interestingly, at the smallest value of DS considered, there are
two DF reentrance regions, one near DF = 5 and the other
near DF = 27. As discussed above, these DF reentrances in
both Figs. 1 and 2 are mainly due to the interference between
the transmitted and reflected Cooper-pair condensates that are
oscillatory in the F region.

In previous work,38 we reported one specific case where
superconductivity in Ho/S bilayers exhibits not only the usual
reentrance with dF but also, at some fixed values of dS , h0, and
dF , reentrance with T , that is, superconductivity exists only
in a temperature range Tc1 < T < Tc2, where Tc1 is finite.
In the example reported in Ref. 38, temperature reentrance
occurred near the first minimum of the Tc(DF ) curve. We
have investigated here whether this kind of reentrance can
occur near some of the other minima of Tc(DF ). These
locations appear favorable for such an occurrence since
superconductivity is relatively weak near these minima. Also,
reentrance with DF is after all an extreme case of a minimum
Tc(DF ). We have found that other T -reentrant examples can
indeed be found, although by no means universally. Here, we
report another example of reentrance occurring near the second
minimum of Tc(DF ). At this larger value of DF , it should be
much easier to grow Ho in the spiral structure. In Fig. 4, the
main plot shows Tc(DF ) for the parameter values specified
in the caption. The first minimum of Tc(DF ) drops to zero
and is an example of DF reentrance. In the region near the
second minimum (green symbols) reentrance with T occurs.
The region of interest is enlarged in the inset. There, the upper
(green) symbols represent Tc2 and the small dome of lower
(blue) circles represent Tc1. In the dome region, but not outside
it, the superconductivity is reentrant in T . When one lowers the
temperature from the normal region, the F/S bilayers become
superconducting at Tc2. With further cooling, the bilayers
return to normal state. Reentrance in this case occurs at the
second minimum rather than the first because there is no upper
transition associated with the first minimum: the system is
normal. Near the second minimum, the oscillatory effects are
not as strong, and as as a result, the system becomes reentrant
in T . This can be viewed as a “compromise”: near the second
minimum, as opposed to the first, superconductivity is not
completely destroyed but it becomes “fragile” and can disap-
pear upon lowering T . The physics involved from the ther-
modynamic point of view will be discussed in the following
section.
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FIG. 4. (Color online) Calculated transition temperatures Tc vs
DF for DS = 148 and I = 0.2. The main plot shows (red symbols) the
overall Tc behavior from DF = 0 to 1.5�. Reentrance with DF near
DF = 4 is seen. In this case, there is also reentrance with temperature
in the region indicated by (green) symbols near DF = 16. The inset
is a blowup of this region: superconductivity exists only in the region
Tc1 < T < Tc2, where Tc2 is depicted by the upper (green) squares
and Tc1 by the (blue) circles.

B. Thermodynamics of reentrance phenomena

To understand the reentrance phenomena in T it is most
useful to examine the thermodynamics of the two transitions,
and in the region between them. From the condensation free
energy 	F , which can be evaluated as explained in connection
with Eq. (6), other quantities such as the condensation energy
and entropy are easily obtained. For reentrance with DF , it is
sufficient to look at the free energy at constant low T .

Considering the reentrance with T , it is illuminating to
consider first the T dependence of the singlet pair amplitude
F (Y ) well inside the S material. Thus, we focus on F (Y )
one coherence length from the interface: Y = DF + �0. This
quantity, normalized to its value in bulk S material, is plotted in
Fig. 5 as a function of T for two contrasting values of DF , one
at DF = 16 where reentrance occurs (see Fig. 4) and at a very
nearby value DF = 17, which lies just outside the reentrance
region and exhibits typical behavior. Figure 5 (green circles)
demonstrates that in the latter case the amplitude behaves
qualitatively as the order parameter does in a conventional
BCS superconductor: it decreases very slowly near T = 0 and
eventually drops to zero very quickly but continuously near Tc,
indicating the occurrence of a second-order phase transition.
This transition occurs at Tc/T 0

c = 0.32 in agreement with
Fig. 4. However, the behavior of the pair amplitude in the
reentrant region (red squares in Fig. 5) is quite different.
There are two transition temperatures: below a very low but
finite temperature Tc1/T 0

c = 0.02, the singlet pair amplitude
vanishes and the system is in its normal state. F (Y ) then
begins to rise continuously, has a maximum at a temperature
Tm (where Tm/T 0

c ≈ 0.1) and eventually drops to zero, again
continuously, at an upper transition Tc2/T 0

c ≈ 0.22. In the
region Tc1 < T < Tc2, the system is in the superconducting
state. Both transitions are of second order. The values of Tc1

and Tc2 from the vanishing of the amplitude, seen in Fig. 5,
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FIG. 5. (Color online) The singlet pair amplitude, normalized to
its value for bulk S material, at a location one coherence length inside
S from the Ho/S interface, plotted as a function of T . The (red)
squares are for DF = 16 and the (green) circles are for DF = 17. All
other parameters are as in Fig. 4.

agree with those calculated directly from linearization of the
self-consistent equation plotted in Fig. 4.

We now turn to the condensation free energy 	F and
entropy 	S for the same T reentrant case. 	F is shown in the
top panel of Fig. 6 as calculated from Eq. (6) and normalized
by 2E0, where E0 is the condensation energy of bulk S material
at T = 0. The lower panel shows the normalized condensation
entropy, defined as the 	S ≡ −d	F/d(T/T 0

c ). The meaning
of the symbols in this figure is the same as in the previous one.
When the system is near (but outside) the reentrant region, the
behavior of both quantities plotted is qualitatively the same
as that found in textbooks for bulk BCS superconductors.
Quantitatively, the magnitude of 	F for our systems is much
smaller than that for bulk S where we would have 	F = −0.5
at T = 0 in our units. The value of Tc in the nonreentrant
case can also be identified from where the free energies of the
normal and superconducting states are the same [	F (T ) ≡ 0],
and it agrees with both Figs. 4 and 5. Moreover, the vanishing
of the entropy difference at a finite Tc confirms the occurrence
of a second-order phase transition. The value of this transition
temperature is consistent with all above results.

The story for the reentrant case is quite different. There,
although the values of 	F are much smaller compared to those
in the standard case, one can still find that the minimum of 	F

occurs at approximately the same value Tm where the singlet
pair amplitudes have a maximum. Thus, the superconductivity
is most robust at T = Tm. The two transition temperatures
Tc1 and Tc2 can also be determined from the top panel of
Fig. 6 and match with those found in Figs. 4 and 5. In
the two T ranges T < Tc1 and T > Tc2, the normal state is
the only self-consistent solution to the basic equations, as is
evident from Fig. 5. The vanishing 	F when T < Tc1 means
that the electrons do not then condensate into Cooper pairs.
This is exactly what happens for pure superconductors when
T > Tc.

There are some remarkable facts about the behavior of 	S

in the reentrant case. First, the vanishing of 	S (along with

184517-6



PROXIMITY EFFECTS IN CONICAL- . . . PHYSICAL REVIEW B 86, 184517 (2012)

-4

-3

-2

-1

0

-0.9

-0.6

-0.3

0

ΔF
(1

0-3
)

DF=16

DF=17

-20

-15

-10

-5

0

0  0.05  0.1  0.15  0.2  0.25  0.3

ΔS
(1

0-3
)

T/Tc
0

DF=16

DF=17

FIG. 6. (Color online) The normalized condensation free energies
	F = FS − FN vs T/T 0

c are shown in the top panel for the same cases
presented in Fig. 5. The (red) squares and right scale are for DF = 16.
The (green) circles and left scale are for DF = 17. The bottom panel
shows the normalized (see text) entropy differences 	S = SS − SN

vs T/T 0
c on the same vertical scale. The meaning of the symbols is

the same as in the top panel.

that of 	F ) in Fig. 6 indicates that the system undergoes
second-order phase transitions at both Tc1 and Tc2. Also, 	S

is positive for Tc1 < T < Tm where Tm is again the value of T

at which the singlet pair amplitude reaches its maximum and
	F its minimum. That the entropy of the superconducting
state is higher than that of the normal state indicates that
the normal state at Tc1 < T < Tm is more ordered than the
superconducting one. This truly unusual fact, which is the root
cause of the reentrance, is due to the oscillating nature of both
the Cooper-pair condensates and of the exchange field, which
leads to an uncommonly complicated structure for the pair
amplitude. Above Tm, the superconducting state becomes more
ordered than the normal state: 	S is negative. From Figs. 5 and
6, we see that the singlet pair amplitudes, the condensation free
energies, and entropy differences of reentrant case in the range
Tm < T < Tc2 have a similar trend to those of the nonreentrant
case in the range 0 < T < Tc. We have found also examples
of nonreentrant cases in which there is a finite temperature Tm

at which 	F has a minimum but where, on further lowering
T , 	F remains negative all the way to T = 0.

The situation in the more common DF reentrance region,
where we find that the system does not become supercon-
ducting when it is heated from T = 0, is different from that
of T reentrance. A case where Tc vanishes in the range
DF1 < DF < DF2 for I = 0.2 was seen in Fig. 2. To further
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FIG. 7. (Color online) Reentrance with DF . Top panel: normal-
ized singlet pair amplitude, computed at a location one coherence
length inside S from the interface, as a function of DF . Bottom
panel: normalized condensation free energy 	F = FS − FN vs DF

at T = 0.

analyze this DF reentrance, we again calculated the singlet
pair amplitudes inside S at one coherence length from the
interface, in the zero-temperature limit. The top panel of Fig. 7
shows the normalized F (DF + �0) as a function of DF , for
the same parameters as the I = 0.2 case in Fig. 2. The singlet
amplitudes drop to zero in the same range as where Tc vanishes
in Fig. 2: the normal state is the only self-consistent solution
and the superconductivity is completely destroyed in this DF

range. One can also see that the order parameter is continuous
but its derivative discontinuous at DF1 and DF2. In the bottom
panel, we plot the corresponding condensation free energies (at
T = 0) as a function of DF . The DF range and the temperature
are the same as the top panel. The condensation free energies
vanish in the same DF reentrance region although their
extreme smallness (at the level of our numerical uncertainty as
can be gauged by the size of the points) at slightly larger values
of DF makes it difficult to verify in this panel that the regions
are exactly the same. Unlike the derivatives of the singlet pair
amplitudes, the derivatives of 	F at DF1 and DF2 appear to be
continuous.

The physical origins of these two kinds of reentrance are
not identical. As mentioned in Sec. I, the interference effects
of oscillating Cooper-pair wave functions are responsible
for the DF reentrance, provided that I is strong and DF is
not too thick. DF reentrance does not require a nonuniform
magnet. The conical-ferromagnet structure introduces an
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additional nonuniform magnetic order which may coexist with
nonuniform superconductivity as predicted in Ref. 57. This
additional nonuniformity, with its concomitant introduction of
triplet correlations and of a new periodicity, can produce, as we
have shown, reentrant behavior in T , as opposed to the simpler
behavior seen, e.g., near the first minimum in the main plot
of Fig. 4. Thermodynamically, the reentrance with T is due
to the competition between entropy and energy,38 and driven
by the high entropy of the disordered superconducting state.
When T < Tm, 	S is positive and the roles of the normal
and superconducting phases are exchanged: the high-entropy
phase is the superconducting one. Further lowering T brings
the system back to normal state. One can compare the instance
of T reentrance reported here with that reported in our previous
work38 where it occurs near the first minimum of Tc(DF ). In
that work, DS = 150 = 1.5�0 and I = 0.15. Here, not only is
DS thinner but also I is greater. The first minimum of Tc(DF )
in the main plot of Fig. 4 drops to zero and becomes a DF

reentrance region. Because stronger I and thinner DS are
unfavorable to superconductivity, the system can not sustain T

reentrance there. Thus, a delicate balance of geometrical and
material parameters is required.

C. Singlet to triplet conversion

In this section, we will discuss the general properties of
the induced triplet pairing correlations in F/S bilayers with
F being a conical ferromagnet. As mentioned in Sec. I, in the
presence of inhomogeneous exchange fields in the F layers

both the m = 0 and the m = ±1 triplet pair amplitudes are
allowed by conservation laws and the Pauli principle, but this
says nothing about their size or shape, or indeed on whether
they will exist at all. Thus, detailed calculations are needed.
The intrinsically inhomogeneous magnetic textures discussed
here provide unique opportunities to study the triplet proximity
effects in F/S systems containing only a single F layer.
Triplet correlations in the ballistic regime for both F1/S/F2

and F1/F2/S trilayers have been found in previous work21,22,24

to be long ranged, and the expectation33 that they will also be
in our case is fulfilled. We will here discuss and characterize
this and other aspects (such as the effect of the strength of the
exchange fields on the triplet pair amplitudes) of triplet pairing
correlations in F/S bilayers where the magnets maintain a
spiral exchange field. Results presented in this section are all
in the low-T limit.

To exhibit the long-range nature of both types of triplet
amplitudes, we show in Fig. 8 both the triplet and singlet
pair amplitudes for a thick F layer as a function of position,
as given by the dimensionless coordinate Y . In this (and the
next figure, Fig. 9), we will focus on the real parts of the in
general complex [see Eqs. (5)] f0 and f1 since we have found
that, for the cases shown, their imaginary parts are smaller
by at least a factor of 2 to 5 and their behavior is similar to
that of the real parts. To properly compare singlet and triplet
quantities, both the singlet amplitude F (Y ) and the triplet
amplitudes are normalized the same way: to the value of the
singlet amplitude in bulk S material. For visibility, we have
multiplied the triplet pair amplitudes by a factor of 10. In the
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FIG. 8. (Color online) Comparison between the spatial dependencies of the singlet pair amplitude and the induced triplet correlations at
the two indicated values of I , at DS = 150, DF = 300, and T = 0. The S region is to the right of the dashed vertical line. Both singlet F (Y )
(green curves higher in the S region) and triplet f0(Y ), f1(Y ) pair amplitudes are normalized to the value of F (Y ) in pure bulk S material. For
this comparison, the normalized induced triplet pair amplitudes, which are evaluated at τ = 9.6, are multiplied by a factor of 10. The real parts
of f0(Y ) and f1(Y ) are shown (red curves strongly oscillating in the F region).
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I = 0.5. The top panel shows the real part of f0(Y ) and the bottom
one that of f1(Y ).

left and right columns of Fig. 8, we show in this way the real
parts of both f0 and f1 when I = 0.1 and 0.5, respectively.
The ferromagnet has a large thickness: DF = 3�0 = 2DS .
The triplet correlations, which we recall vanish at equal times,
are computed at a value of the dimensionless time τ = 9.6.
One sees right away that both the f0 and f1 components can
be induced at the same time. This is always the case in our
structures, as opposed to what occurs in F1/F2/S and F1/S/F2

trilayers where the f0 and f1 components can be induced
simultaneously only when the exchange fields in these F layers
are noncollinear. Second, the induced triplet correlations on
the F side are long ranged compared to the singlet amplitudes.
The singlet amplitudes decay with a short5 proximity length
2π�F ≈ 2π/I due to the pair-breaking effect of the exchange
field. In contrast, the proximity length for the triplet amplitudes
as seen in Fig. 8 is much longer: it is of the order of �0, and
does not depend strongly on I . The triplet amplitudes spread
over the F side with an oscillatory behavior. This difference
is more pronounced in the I = 0.5 case, where the decay
length �F is much shorter than �0 and the singlet amplitudes
diminish much faster than in the I = 0.1 case. For both I = 0.1
and 0.5, one can also see that the singlet amplitudes begin to
rise from the F/S interface and saturate in the S side about
one superconducting coherence length from the interface. This
agrees with our previous work.5 Another interesting feature
seen in the I = 0.5 case is that the peak height of the f1

component near the interface is not much higher than that of its
other peaks, as happens with its f0 counterpart. In other words,
the subsequent peak heights in the F regions are comparable
to those of the peak nearest to the interface.

In delineating the role of triplet correlations in other ex-
perimentally relevant quantities, it is necessary to understand
their time dependence. Due to the self-consistent nature of
the proximity effects and the fact that the triplet condensate
amplitudes are odd in time, their time dependence is in general
nontrivial. We illustrate this in Fig. 9, where we show the
spatial dependence of both the m = 0 and ±1 components of
the triplet amplitude for several τ . The parameters used here
are the same as in the right panels (I = 0.5) of Fig. 8. For
easier comparison with Fig. 8, we have again multiplied the
normalized triplet amplitudes by a factor of 10. Figure 9 shows
that at small times triplet correlations are generated only near
the interface. (We have of course verified that they always
vanish when τ = 0.) One can extract information about the
proximity length from the growing increase of peak heights
in the F regions. The peak heights grow faster when they
are deeper inside the ferromagnet. Moreover, Fig. 9 clearly
demonstrates that the triplet correlations penetrate into F

regions as τ increases, in the range studied. More remarkably,
the peaks of the f1 component that are not nearest to the
interface grow very fast in time and have heights that are
comparable to the one nearest to the interface, consistent with
our remarks in our discussion of Fig. 8. In contradistinction
with the oscillating behavior of the triplet amplitudes in the F

regions, one can see that both f0 and f1 decay monotonically
into the S side without any oscillations. However, the triplet
correlations still spread over in the S regions at larger values
of τ just as they do in the F layer.

In the above paragraphs, we have discussed the long-range
nature and other properties of the triplet amplitudes in our
system when the conical ferromagnet is very thick. In the
following paragraphs, we will consider the proximity effect of
induced triplet pairing correlations for smaller-scale conical
ferromagnets. To quantify the effect, we introduce a set of
proximity lengths Li,M defined as

Li,M =
∫
M

dY |fi(Y,τ )|
maxM |fi(Y,τ )| , i = 0,1, M = S,F. (8)

Here, the first index denotes the spin component, and the
second index M denotes the region in which the given function
is evaluated. If the decays were exponential, these lengths
would coincide with the characteristic length in the exponent.
Obviously, in the present situation, the decays are more
complicated but the Li,M can easily be extracted numerically.
They depend on DS , DF , I , and τ . The range of DF we will
consider is from � to 3�. In Fig. 10, we plot these proximity
lengths on both the F and S sides for three different values of
I , at τ = 4.0. The left panels show the f0 proximity lengths
and the right panels that extracted from f1. Recall that I = 1
corresponds to the half-metallic limit. We consider first the
F side (top two panels). One can clearly see that both L0,F

and L1,F are correlated to the strength of the exchange fields.
Figure 10 displays a period of near �/2 for both L0,F and
L1,F at I = 1.0. We also see that the peak heights increase
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FIG. 10. (Color online) The proximity lengths Li,M [see Eq. (8)] of the induced triplet pair amplitudes vs DF for different I , at τ = 4.0
and DS = 150. The left panels show the proximity lengths L0,F and L0,S (from f0 in the F and S regions) and the right panels L1,F and L1,S ,
similarly extracted from f1. The lines are guides to the eye.

only slowly with increasing DF . Also, the locations of the
maxima or minima of L0,F are locations of minima or maxima,
respectively, of L1,F . This is as one might expect from the
rotating character of the field. On the other hand, for I = 0.1
or 0.5, the periodicity is not clear since, for reasons already
mentioned, the intermingling of periodicities becomes more
complicated. Overall, the proximity lengths are larger than
those in the half-metallic limit. However, one can still say
that both L0,F and L1,F gradually increase, although with
fluctuations, with DF .

The superconductor on the S side is intrinsically s wave
but because of the F layer, triplet correlations can be induced
in it, near the interface, as seen in Figs. 8 and 9. Their decay,
which is now monotonic, can be equally characterized by the
proximity lengths defined in Eq. (8). Results are plotted in
the bottom panels of Fig. 10. The minimum of L0,S is, for all
three values of I , at DF = 23 which is near 2�. The maxima
of L0,S for I = 0.1 are at DF = 16 and 28, which are not far
from 1.5� and 2.5�, respectively. On the other hand, for L1,S

the maxima for I = 0.1 are at DF = 19 and 31 and there is
a minimum at DF = 26. The locations of these maxima are
still near 1.5� and 2.5� and they are only slightly different
than what they are for the L0,S case. If one recalls the above
discussion of Fig. 3, maxima of Tc occur when DF is close
to an integer multiple of �. Since a higher Tc is correlated
with a higher singlet pair amplitude, this suggests again that
there exists a conversion between singlet and triplet Cooper
pairs. The dependence of L0,S and L1,S , at I = 1.0, on DF

is harder to characterize. This is because the high value of I

reduces the scale of the overall proximity effect in S (i.e., the
depletion of the singlet amplitude). At I = 0.5, one still finds
that the approximate periodicity of L0,S and L1,S is about �/2.

The proximity lengths L0,S and L1,S are again anticorrelated
at I = 0.5: the maxima (minima) locations of L0,S are near
the minimum (maximum) locations of L1,S .

Recent experiments33 in systems that consist of two su-
perconducting Nb electrodes coupled via a Ho/Co/Ho trilayer
have revealed that the long-range effect of triplet supercurrents
was much more prominent at particular thicknesses of the
Ho layers. The magnetic coherence length in Ho in the
experiment was ∼5 nm which would correspond in our
notation to I ∼ 0.1.56 In the experiment, the Ho thickness was
symmetrically varied and the critical current Ic at T = 4.2 K
was measured. Peaks of Ic corresponding to DF = 0.5�

and DF = 2.5� were found. These experimental findings
are consistent with our theory. Here, we have shown (see
Fig. 10) that L1,S has maxima near 1.5� and 2.5� when
I = 0.1 in the DF range we have considered. We found another
maximum at DF ∼ 0.5�, not included in the range shown.
The penetration lengths associated with S are as important as
those associated with F when discussing the triplet proximity
effect because the system can open up the corresponding
channels only when both of them are long ranged. We believe
that no obvious peak near 1.5� was observed because of
the layout of their symmetric system. Therefore, one can
conclude that the spiral magnetic structures play an important
role in the triplet proximity effects. Both experiment and
theory confirm that the existence of the long-range proximity
effects depends on the relation between the thickness of
the magnetic layers and the wavelength of their magnetic
structure.

Having seen in the previous two figures that triplet ampli-
tudes may substantially pervade even rather thick Ho layers
at moderate values of τ , it is of interest to investigate the τ
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FIG. 11. (Color online) Triplet proximity lengths vs DF for I = 0.5, DS = 150, at different τ values. The left panels show L0,F and L0,S ,
and the right panels show L1,F and L1,S . The lines are guides to the eye.

dependence of the proximity lengths in these nanoscale F/S

systems for times roughly up to 2π in our dimensionless units.
We therefore present in Fig. 11 the triplet proximity lengths
as a function of DF for I = 0.5, and at different values of τ .
The panel arrangement is as in the previous figure. Thus, in
the top panels where we plot L0,F and L1,F , we see that both
of them depend only weakly on τ , in the range considered.
This is in part because of the relatively thin F layers included
in the plot. The triplet amplitudes vanish at τ = 0 but can
saturate quickly through the F region as soon as τ increases.
In contrast, on the much thicker (DS = 150) S side (bottom
panels), both L0,S and L1,S increase with τ , as is consistent
with expectation and previous work involving F/S systems
with misaligned exchange fields.22 Furthermore, the overall
shape of the proximity lengths on the S side does not change
with τ and only the magnitude evolves. Quite remarkably, the
minima of L0,S and L1,S are very deep, and the value of these
lengths at their minima is almost τ independent and nearly
the same at all minima in the range plotted. The minima are
separated by �/2. If one compares the left and right panels,
one can see that the locations of maxima in one approximately
coincide with the position of minima in the other: the left and
right panels are again complementary to each other as was the
case with the plots in Fig. 10.

D. Local magnetization and LDOS

Next, we discuss other important physical quantities that are
related to the proximity effects including the local magnetiza-
tion m(y) and the the local DOS (LDOS). Considering that the
ferromagnetism can drastically alter the superconductivity, one
might wonder about the opposite case: how the local magneti-
zations behave near the F/S interface. These so-called reverse
proximity effects have been studied5,17,24,48–53 for a number of

multilayer F/S configurations with uniform exchange fields in
each magnetic layer. Here, the space-varying exchange fields
in F oscillate in the x-z plane and are constant along the y

direction (see Fig. 1). We computed the local magnetizations
using Eq. (7) for DS = 150, DF = �, and three different
values of I . The results are normalized in the usual24,51 way
so that for a putative bulk F material with a uniform internal
field characterized by the parameter I , the quantity plotted
would have the value [(1 + I )3/2 − (1 − I )3/2]/[(1 + I )3/2 +
(1 − I )3/2]. In Fig. 12, each component of m is shown in
a separate panel and their behavior plotted throughout the
whole spiral magnet region and some distance into S near the
interface. Consider first the x component: The corresponding
component of the internal field [see Eq. (1)] vanishes at the
outer interface (Y = 0) and goes smoothly to zero at the
F/S interface which in this case is at Y = DF = �. As a
consequence, one can see that the mx component undergoes a
full period of oscillation in the F material. The maximum and
minimum values as a function of I are numerically what they
should be, given our normalization. However, as Fig. 12 clearly
shows, the self-consistently determined mx does not vanish
at the F/S interface and instead penetrates a short distance
inside S. This is a manifestation of the reverse proximity
effect. For the other transverse component mz, the situation
is more complicated. The field component hz, out of phase
with hx , does not vanish smoothly at Y = 0 nor at Y = DF .
Therefore, the corresponding mz component in F is squeezed,
and in addition to the peak at Y = �/2, which has the expected
location and value, there are two smaller peaks at intermediate
values. At the interface between materials, penetration of this
component is appreciably more considerable than for mx . The
longitudinal component my , which is induced by the uniform
hy component, behaves qualitatively as transverse components
do in uniform ferromagnet F/S structures.14 Penetration into
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FIG. 12. (Color online) Normalized (see text) local magnetization
components plotted as a function of Y for several values of I . From
top to bottom, x, y, and z components are shown. We use DF = �

and DS = 150 in this figure.

the S layer occurs over a relatively short distance, except
at the smallest value of I where it is relatively larger although
the overall scale is of course smaller. The value of my in
the F layer is again the expected one, consistent with our
normalization.

Finally, we wish to discuss the LDOS. Here, we will
present results for the LDOS, as discussed in Sec. II, summed
over spins, integrated over either the F or the S layer, and
normalized, as usual, to its value in the normal state of bulk
S material. The results are given in Fig. 13 where the energy
scale of the horizontal axis is in units of the superconducting
gap of bulk S material 	0. The left panels of Fig. 13 show the
LDOS integrated over the F (top) and S regions (bottom) for
DF = �, 1.5�, and 2�. The superconductor has a thickness
DS = 1.5�0 and F has a relatively weak exchange field

I = 0.1. For DF = �, one can clearly see, for the integrated
DOS in the S side, peaks near ε/	0 = ±1 as in the ordinary
bulk spectrum. There is additional subgap structure including
proximity-induced bound states at smaller energies followed
by a very deep dip, nearly a minigap. Overall, the DOS
structure contains traces of the familiar DOS for a pure bulk
superconductor. On the F side, the integrated LDOS at this
value of DF still exhibits BCS-type peaks at ε/	0 = ±1
and subgap dip, but the whole structure is much weaker
and the depth of the dip much smaller. It is indicative of
the superconducting correlations present in the F region. In
contrast, the subgap superconducting features in the integrated
LDOS for larger DF values (DF = 1.5� and 2�) are much
less prominent, although the peaks near ε/	0 = ±1 remain.
Nonetheless, there are still shallow and discernible signatures
in the gap region, on both the F and S layers. For these two
larger values of DF , the results (as compared on the same
side) are remarkably similar. This is surprising at first since
we have already seen that Tc(DF ) has in this range of I

maxima near DF = � and DF = 2� and a local minimum
at DF = 1.5� as shown in Fig. 3. From that, one might
naively guess that the integrated LDOS for DF = 2� should
behave as that at DF = �, with a different integrated LDOS
for DF = 1.5�. This expectation is incorrect because, as one
can see on a closer inspection of Fig. 3, Tc at DF = � is higher
than that at DF = 2� although both are near local maxima.
Furthermore, Tc at DF = 1.5� is closer to the Tc value at
DF = 2� than to that at DF = �. Since Tc is associated with
the magnitude of the singlet pair amplitudes, in which the
LDOS is indirectly correlated to, one should conclude that
the LDOS corresponding to DF = 2� should be similar to
DF = 1.5� rather than DF = �. Indeed, the results confirm
this notion.

On the right panels of Fig. 13, we present the integrated
LDOS on both the F and the S sides for different exchange
fields I = 0.1, 0.5, and 1.0, at DF = 12 = �. We see that
when I is increased from I = 0.1, the integrated LDOS on the
F side becomes quite flat {at the value (1/2)[(1 + I )1/2 + (1 −
I )1/2] as per our normalization} and essentially devoid of a
superconducting signature. On the S side, the integrated LDOS
at I = 0.5 and 1.0 still retains some vestiges of the structure
seen in the I = 0.1 case. However, the integrated LDOS at
I = 0.5 on the S side is slightly different than that at I = 1.0.
The dip at I = 1.0 is wider than for I = 0.5, in a way more
superconductinglike. What happens is that at larger values of
I , the mismatch between the Fermi wave vector in S and the
Fermi wave vectors in the up and down bands in F increases.
This diminishes the penetration of the Cooper pairs into S

and hence the overall scale of the proximity effects. We recall
that the overall dimensionless scale of the proximity effect in
F is roughly �F = 1/I . Consequently, superconductivity is
impaired in S over a smaller scale when it is in contact with
a stronger ferromagnet. Having said that, one might argue
that at I = 0.1 the integrated LDOS on the S side should
have a smaller dip than the other two curves for stronger I .
However, we have to consider here also the overall behavior
of the Tc versus I curves at constant DF . This behavior is
once again oscillatory but with a superimposed decay. The
overall decay results in Tc being higher at I = 0.1 than at
either I = 0.5 or 1, but the oscillations produce a higher value
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FIG. 13. (Color online) LDOS averaged over the F regions (top panels) and S regions (bottom panels), plotted vs energy. On the left panels,
the integrated LDOS is shown for different DF and I = 0.1. On the right panels, the integrated LDOS is shown for different I and DF = �.
In all cases, the superconductor width is set to DS = 150.

of Tc at I = 1 than at I = 0.5. This explains the progression of
the curves. All the above discussion and results indicate that the
LDOS can provide, if properly analyzed, another perspective
and additional information on the superconducting nature of
our bilayers.

IV. CONCLUSIONS

We have studied several aspects of proximity effects in
F/S bilayers, where the ferromagnet has a spiral structure
characteristic of rare earths such as Ho, by numerically solving
the self-consistent BdG equations. We have calculated Tc(DF ),
the critical temperature as a function of magnet thickness,
for different parameter values. The Tc(DF ) curves exhibit
a fairly intricate oscillatory behavior which is found to be
related to both the strength I (as they would for a uniform
magnet) and the periodicity � of the spiral exchange fields
inherent in the magnet. As is the case for F/S structures in
which F is uniform, we observe reentrant behavior with DF

when I is strong enough. The physical reason behind this
DF reentrance in our bilayers is similar to that in ordinary
F/S structures, but the additional periodicity associated with
the magnet, which in many cases dominates the oscillations,
makes the behavior more complicated. As a function of DS ,
we find that Tc(DF ) can also exhibit DF reentrance even
at small I when DS is of the order of the superconducting
coherence length. The additional oscillations produced by
the magnetic structure lead also to effects not found in
F1/F2/S trilayers, namely, pure reentrance with temperature:
superconductivity occurs in a finite-temperature range Tc1 <

T < Tc2. An example of this reentrance at a very small DF

(DF ∼ 0.5�) was previously38 presented. Here, we report that

this reentrance can also occur when DF > �, where it should
be experimentally easier to realize. To elucidate the physics
underlying these reentrant phenomena, we have evaluated
the singlet pair amplitudes and thermodynamic functions.
The competition between condensation energy and entropy
is responsible for the T reentrance: the superconducting
state may be, under certain circumstances, the high-entropy
state, leading to recovery of the normal state as T is
lowered. The calculated thermodynamic quantities are fully
consistent with the Tc(DF ) phase diagrams and the singlet pair
amplitudes.

When the magnet has a spiral structure, both the m = 0 and
±1 odd triplet components can be induced simultaneously.
This is not the case in uniform-magnet bilayers: at least
two uniform misaligned F layers are needed to generate the
m = ±1 component. We studied the odd triplet pair amplitudes
in our bilayers, and found them to be long ranged in both the
S and F layers. We have analyzed the time-delay dependence
of the odd triplet amplitudes. The results are consistent with
our previous work on both F1/S/F2 and F1/F2/S trilayers, but
the additional � periodicity leads to important differences. We
characterized the triplet long-range behavior by introducing
the appropriately defined lengths. We found that the relevant
proximity length oscillates with DF and these oscillations
depend on the strength and periodicity of the exchange field.
Our methods are likely appropriate for many experimental
conditions, as evidenced by the consistency of our results with
recent tunneling experiments.33

We have also considered the reverse proximity effects: the
influence of the superconductivity on the magnetism. We found
all three components of the local magnetization penetrate
in slightly different ways into the S layer. At larger I , this
is a short-ranged phenomenon, but it is otherwise for weak
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magnetism. Both mx and mz oscillate in the F regions to reflect
the spiral exchange field. Finally, the calculated LDOS reveals
important information and discernible signatures linked to the
proximity effects in these bilayers and are correlated to the
superconducting transition temperatures.
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