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Decoherence of superconducting qubits caused by quasiparticle tunneling
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In superconducting qubits, the interaction of the qubit degree of freedom with quasiparticles defines a
fundamental limitation for the qubit coherence. We develop a theory of the pure dephasing rate �φ caused
by quasiparticles tunneling through a Josephson junction and of the inhomogeneous broadening due to changes
in the occupations of Andreev states in the junction. To estimate �φ , we derive a master equation for the qubit
dynamics. The tunneling rate of free quasiparticles is enhanced by their large density of states at energies close
to the superconducting gap. Nevertheless, we find that �φ is small compared to the rates determined by extrinsic
factors in most of the current qubit designs (phase and flux qubits, transmon, fluxonium). The split transmon,
in which a single junction is replaced by a SQUID loop, represents an exception that could make possible the
measurement of �φ . Fluctuations of the qubit frequency leading to inhomogeneous broadening may be caused
by the fluctuations in the occupation numbers of the Andreev states associated with a phase-biased Josephson
junction. This mechanism may be revealed in qubits with small-area junctions, since the smallest relative change
in frequency it causes is of the order of the inverse number of transmission channels in the junction.
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I. INTRODUCTION

Over the past several years, significant efforts have been
directed toward designing and implementing superconducting
circuits with improved coherence properties. For quantum
computation purposes, the coherence time T2 of a qubit must
be sufficiently long as to allow for error correction.1 The
unavoidable couplings of the qubit with various sources of
noise are responsible for decoherence, and different types of
qubits have different sensitivities to a given noise source. For
example, the phase and flux qubits coherence times are limited
by flux noise,2,3 while the transmon parameters are chosen to
decrease the effect of charge noise in comparison with the
Cooper pair box.4 Flux and charge noise originate from the
environment surrounding the qubits; in this paper, by contrast,
we study an intrinsic mechanism of decoherence due to the
coupling between the qubit and the quasiparticle excitations
in the superconductor the qubit is made of. In general, one
can distinguish two contributions to the time T2: first, the
qubit can lose energy and the corresponding relaxation time
T1 imposes an upper bound to the coherence time, T2 � 2T1.
Second, additional pure dephasing mechanisms, characterized
by the rate �φ , can shorten T2 below this upper limit. Recent
theoretical5,6 and experimental7–9 works have highlighted the
contribution of quasiparticle tunneling to the relaxation rate.
Here, we focus on the pure dephasing effect of quasiparticle
tunneling.

The decoherence rates discussed above are related to the
power spectral density S(ω) of the noise source: the relaxation
rate is proportional to the value of the spectral density
at the qubit frequency ω10, 1/T1 ∝ S(ω10), while the pure
dephasing rate is determined by the low-frequency part of the
spectral density, �φ ∼ S(0)—see, e.g., Ref. 10. Clearly, the
latter relationship cannot hold if the power spectral density
diverges as ω → 0. Because of its experimental relevance,
a well-studied example of diverging spectral density is that
of 1/f noise; in the case of 1/f flux noise, for instance,
the decay of the qubit coherence is not exponential in
time, but Gaussian like10,11 (up to a logarithmic factor that

depends on the measurement protocol). In studying how
quasiparticle tunneling affects dephasing, we find another such
example, since the quasiparticle current spectral density is
logarithmically divergent at low frequencies when the gaps
on the two sides of the junction have the same magnitudes
(see Sec. III). We show that despite this divergence, a finite
dephasing rate �φ can be determined. We then estimate the
dephasing rate for a few different single- and multijunction
qubits and find that in most cases �φ is small compared to
the the quasiparticle induced relaxation rate. An exception
is the split transmon in which the two rates can be of the
same order of magnitude (see Sec. V A). Since it is known
that quasiparticles limit the relaxation rate in this system at
sufficiently high temperatures,9 it may be possible to measure
the quasiparticle dephasing rate if other sources of dephasing
can be minimized.

The quasiparticle dephasing mechanism discussed above
is due to tunneling of free quasiparticles across the junction.
Another dephasing mechanism originates from quasiparticles
weakly bound to a phase-biased junction that give rise to
subgap Andreev states; the dephasing is caused by changes
in the occupations of these states that make the Josephson
coupling and hence qubit frequency ωq fluctuate. Because
of this additional dephasing, the measured decoherence rate
1/T ∗

2 acquires an inhomogeneous broadening contribution,
1/T ∗

2 − 1/T2, which can be suppressed using echo pulse
sequences. When the average occupation xA

qp of the Andreev
states is small, xA

qp � 1, the typical (i.e., root mean square)
fluctuation of the occupations is given by the square root
of xA

qp. Then, for the phase qubit, we show in Sec. VI that
the typical frequency fluctuation is proportional to the typical
fluctuation of the occupations divided by the square root of
the (effective) number of transmission channels Ne in the
junction, 〈(�ωq)2〉1/2/ωq ∝

√
xA

qp/Ne. For these fluctuations
to measurably affect the decoherence rate 1/T ∗

2 , the condition
〈�ωq

2〉1/2T2 � 1 should be satisfied; using this condition,
we estimate that this mechanism is not a limiting factor to
coherence in current experiments with phase qubits. On the
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contrary, it could contribute to decoherence in recent transmon
experiments,7,12 due to the small junction area (i.e., smaller Ne

in comparison with phase qubits). However, this possibility
will require a separate investigation, due to the lack of phase
bias in the transmon.

The paper is organized as follows: in the next section, we
introduce the effective description of a single-junction system.
In Sec. III, we present the master equation governing the qubit
dynamics and we discuss the self-consistent regularization of
the logarithmic divergence in the dephasing rate. Applications
of our results to single- and multijunction qubits are in Secs. IV
and V, respectively. The role of Andreev states is analyzed in
Sec. VI. We summarize our work in Sec. VII. We use units
h̄ = kB = 1 throughout the paper.

II. EFFECTIVE MODEL

The effective Hamiltonian Ĥ for a superconducting qubit
can be split into two parts,

Ĥ = Ĥ0 + δĤ , (1)

where the noninteracting Hamiltonian Ĥ0 is the sum of qubit
and quasiparticle terms,

Ĥ0 = Ĥϕ + Ĥqp. (2)

The Hamiltonian for the qubit degree of freedom accounts
for the charging (EC), Josephson (EJ ), and inductive (EL)
energies in a system comprising an inductive loop shunting a
tunnel junction,

Ĥϕ = 4EC(N̂ − ng)2 − EJ cos ϕ̂ + 1
2EL(ϕ̂ − 2π	e/	0)2,

(3)

with ng the dimensionless gate voltage, 	e the external
magnetic flux threading the loop, and 	0 = h/2e the flux
quantum. The operator N̂ = −id/dϕ counts the number of
Cooper pairs passed through the junction. The quasiparticle
Hamiltonian is given by

Ĥqp =
∑

j=L,R

Ĥ j
qp, Ĥ j

qp =
Nch∑
l=1

∑
n,σ

εj
n α̂

j†
nσ lα̂

j

nσ l, (4)

where α̂
j

nσ l(α̂
j†
nσ l) are annihilation (creation) operators for

quasiparticles with channel index l and spin σ =↑ , ↓ in lead
j = L,R to the left or right of the junction. We have assumed
for simplicity the same number of channels Nch and identical
densities of states per spin direction ν0 in both leads. Denoting
with �j the superconducting gap, the quasiparticle energies
are ε

j
n =

√
(ξ j

n )2 + (�j )2, with ξ
j
n single-particle energy level

n in the normal state of lead j . The occupation probabilities
of these levels are given by the distribution functions

f j
(
ξ j
n

) = 〈〈α̂j†
n↑l α̂

j

n↑l

〉〉
qp

= 〈〈α̂j†
n↓l α̂

j

n↓l

〉〉
qp

, j = L,R, (5)

where double angular brackets 〈〈. . .〉〉qp denote averaging
over quasiparticle states. We take the distribution functions
to be independent of spin and equal in the two leads.
We also assume that δE, the characteristic energy of the
quasiparticles above the gap, is small compared to the gap, but
the distribution function is otherwise generic, thus allowing
for nonequilibrium conditions.

The interaction term δĤ in Eq. (1) accounts for tunneling
and, as discussed in Appendix A of Ref. 6, is the sum
of three parts: quasiparticle tunneling ĤT , pair tunneling
Ĥ

p

T , and the Josephson energy counterterm ĤEJ
. When the

superconducting gaps are larger than all other energy scales,
the only effect of the last two terms is to contribute to
the renormalization of the qubit frequency6 [see also the
discussion after Eq. (13)]; therefore we neglect those terms
and consider only the quasiparticle tunneling Hamiltonian,
δĤ = ĤT with

ĤT =
Nch∑

l,k=1

t̃lk
∑
n,m,σ

(
eiϕ̂/2uL

n uR
m − e−iϕ̂/2vR

mvL
n

)
α̂

L†
nσ lα̂

R
mσk + H.c.

(6)

Here, the Bogoliubov amplitudes u
j
n, v

j
n are real quantities,

since their dependence on the phases of the order parameters
appears explicitly through the gauge-invariant phase difference
ϕ. The elements t̃lk � 1 of the electron tunneling matrix t̃ are
related to the junction conductance by gT = 2gK

∑Nch
p=1 Tp,

where gK = e2/h is the conductance quantum and the trans-
mission probabilities Tp (p = 1, . . . ,Nch) are the eigenvalues
of the matrix (2πν0)2 t̃ t̃†.

Since we are interested in the dynamics of the qubit
only, rather than that of a multi-level system, we project the
Hamiltonian Ĥ onto the qubit states |0〉 and |1〉, which we
represent by the vectors (0,1)T and (1,0)T for the ground
and excited states, respectively; the two-level approximation
is justified under the conditions that permit the operability of
the system as a qubit13 (i.e., anharmonicity large compared to
linewidth). Then in terms of the Pauli matrices, we can write

Ĥϕ = ω10

2
σ̂ z, (7)

where the qubit frequency in general depends on all the
parameters present in Eq. (3), and dropping for notational
simplicity the channel indices,14

ĤT = t̃
∑
n,m,σ

[
Ad

nmσ̂ z + Ar
nm(σ̂+ + σ̂−) + Af

nmÎ
]
α̂L†

nσ α̂R
mσ

+ H.c., (8)

where the coefficients Ak
nm, k = d, r, f , have the structure

Ak
nm = Ak

c

(
uL

n uR
m − vL

n vR
m

)+ iAk
s

(
uL

n uR
m + vL

n vR
m

)
. (9)

Here, Ak
c,s denote combinations of matrix elements for the

operators e±iϕ̂/2 associated with the transfer of a single charge
across the junction:

sij = 〈i| sin
ϕ̂

2
|j 〉, (10)

Ad
s = 1

2
(s11 − s00) , (11)

Ar
s = s10, (12)

Af
s = 1

2
(s11 + s00) , (13)

and the Ak
c are obtained by replacing sine with cosine in

the above definitions. As it will become evident in the next

184514-2



DECOHERENCE OF SUPERCONDUCTING QUBITS CAUSED . . . PHYSICAL REVIEW B 86, 184514 (2012)

section, only the terms with k = d and k = r contribute to
pure dephasing and relaxation of the qubit, respectively.

The term with k = f (in combination with the k = r one)
contributes to the average frequency shift. More precisely,
the average frequency shift δω = δωEJ

+ δωqp has two parts,6

originating from the quasiparticle renormalization of the
Josephson energy and virtual transitions between qubit states
mediated by quasiparticles, respectively. The latter part (δωqp)
is discussed further in Appendix A. Here, we note that in the
leading (∝ t̃2) order, the Josephson part δωEJ

is the sum of two
contributions with distinct origins. The first one comes from
the product of the terms proportional to A

f
nm and Ar

nm in δĤT

[see Eq. (8)]. The second contribution is due to the terms we
neglected in δĤ . (The neglected terms are the pair tunneling
and Josephson counterterm, as defined in Appendix A of
Ref. 6.) Since we are studying decoherence effects in this
work, we set A

f
nm = 0 henceforth. Equations (4), (7), and (8)

(with A
f
nm = 0) constitute the starting point for the derivation

of the master equation presented in the next section.

III. QUBIT PHASE RELAXATION:
THE MASTER EQUATION

The information on the time evolution of the qubit is
contained in its density matrix ρ̂(t), which we decompose
as

ρ̂ = 1
2 [Î + ρzσ̂

z] + ρ+σ̂− + ρ∗
+σ̂+. (14)

In this section, we present the final form of the master
equation for the density matrix. The derivation can be found in
Appendix A, where we start from the Hamiltonian of the sys-
tem presented in the previous section and employ the standard
Born-Markov and secular (rotating wave) approximations15 to
arrive at the expressions given here.

The diagonal component ρz of the density matrix obeys the
equation

dρz

dt
= − (�1→0 + �0→1) ρz + (�0→1 − �1→0) , (15)

where, assuming equal gaps in the leads (�L = �R ≡ �),

�1→0 = 2gT

πgK

∫ +∞

�

dε f (ε) [1 − f (ε + ω10)]

×
[

ε(ε + ω10) + �2

√
ε2 − �2

√
(ε + ω10)2 − �2

∣∣Ar
s

∣∣2
+ ε(ε + ω10) − �2

√
ε2 − �2

√
(ε + ω10)2 − �2

∣∣Ar
c

∣∣2 ], (16)

and �0→1 is obtained by the replacement f → 1 − f . The
general solution to Eq. (15) is

ρz(t) = ρz(0)e−t/T1 + �0→1 − �1→0

�0→1 + �1→0
, (17)

where we introduced the relaxation time T1 as

1

T1
= �0→1 + �1→0 . (18)

Equation (16) represents the generalization, valid for any
ω10 < 2�, of the relaxation rate formula derived in Refs. 5

and 6 in the limit ω10 � 2� using Fermi’s golden rule. Indeed,
the assumption that quasiparticles have characteristic energies
small compared to the gap enables us to approximately
substitute ε → � in the numerators in square brackets in
Eq. (16), and neglecting terms of order ω10/�, we find

�1→0 � ∣∣Ar
s

∣∣2 Sqp(ω10) , (19)

where

Sqp(ω) = 16EJ

π

∫ +∞

0
dx

1√
x
√

x + ω/�

× f [(1 + x)�] {1 − f [(1 + x)� + ω]} (20)

and we remind that EJ = �gT /8gK . The agreement of
Eq. (19) with the results of Refs. 5 and 6 validates the present
approach. Since the relaxation rate is studied in detail in those
references, we do not consider it here any further, except to
note that the terms neglected in Eq. (19) can become important
if the matrix element Ar

s is small, |Ar
s/A

r
c|2 � ω10/�. In fact,

Ar
s can vanish at particular values of the external parameters

used to tune the qubit, for example, in the flux qubit when the
external flux equals half the flux quantum;5,6 in such a case,
one needs to retain the term proportional to Ar

c in Eq. (16) to
evaluate the (nonvanishing) relaxation rate.

The master equation for the off-diagonal part of the density
matrix is

dρ+
dt

= i (ω10 + δω) ρ+ − 1

2T1
ρ+ − �φρ+, (21)

where δω is the quasiparticle-induced average frequency
shift5,6 discussed in the previous section, T1 is defined in
Eq. (18), and the pure dephasing rate is

�φ = 4gT

πgK

∫ +∞

�R

dε f (ε) [1 − f (ε)]

×
[

ε2 + �L�R√
ε2 − (�L)2

√
ε2 − (�R)2

∣∣Ad
s

∣∣2
+ ε2 − �L�R√

ε2 − (�L)2
√

ε2 − (�R)2

∣∣Ad
c

∣∣2 ], (22)

where we assumed �R > �L. The general solution to Eq. (21)
is

ρ+(t) = ρ+(0)ei(ω10+δω)t e−t/T2 (23)

with

1

T2
= 1

2T1
+ �φ . (24)

The pure dephasing rate defined in Eq. (22) has a structure
similar to that of the relaxation rate, Eq. (16), if we substitute
ω10 → 0 and Ar

s(c) → Ad
s(c) in the latter. Thus we recover

the relationship between the power spectral density S(ω)
of a noise source and the decoherence rates discussed in
Introduction, �1→0 ∝ S(ω10) and �φ ∝ S(0). However, in
Eq. (22), we have explicitly assumed an asymmetric junction,
�R > �L, and extension of this result to the typical case of a
symmetric junction (�R = �L) is problematic. Indeed, let us
consider an almost symmetric junction, �R − �L � �R , with
|Ad

s | � |Ad
c | and a nondegenerate quasiparticle distribution
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[f (ε) � 1, ε > �R]; then we find, using from now on the
notation � = �R ,

�φ � 4gT

πgK

∣∣Ad
s

∣∣2 �

∫ +∞

0
dx

f [(1 + x)�]√
x
√

x + (� − �L)/�

� 2
∣∣Ad

s

∣∣2 Sqp(� − �L). (25)

In the symmetric junction limit �L → �, �φ diverges loga-
rithmically due to the singularity at x = 0 of the integrand in
Eq. (25); for example, in thermal equilibrium at temperature
T � � − �L, we have

�φ ≈ 32EJ

π

∣∣Ad
s

∣∣2 e−�/T

[
ln

4T

� − �L
− γE

]
. (26)

Due to the logarithmic divergence, in general we cannot simply
take �φ ∝ Sqp(0); the correct procedure that leads to a finite
dephasing rate is presented in the next section.

A. Self-consistent dephasing rate

The terms in the right hand sides of the master
equations (15) and (21) are proportional to the square of the
tunneling amplitude via the tunneling conductance gT ∝ t̃2;
this proportionality is a consequence of the lowest order
perturbative treatment of the tunneling Hamiltonian [see
Eq. (8)], which enables us to neglect higher order (in t̃)
terms when evaluating certain correlation functions involving
qubit and quasiparticle operators [see Appendix A for details].
This implies that those correlation functions oscillate but
do not decay in time, which is a limitation of the used
approximation: the inclusion of higher-order effects introduces
decaying factors of the from e−γ t into the correlation functions,
where at leading order the decay rate γ is itself proportional to
the tunneling conductance. Here, we discuss an ansatz for γ

whose validity is checked perturbatively in Appendix B. As we
show there, a finite decay rate γ reflects itself into a smearing
of the singularity for �L = � of the integrand in Eq. (25):∫ +∞

0

dx

x
=
∫ +∞

0

dx√
x

∫ +∞

0

dy√
y

δ(x − y)

→
∫ +∞

0

dx√
x

∫ +∞

0

dy√
y

1

π

γ/�

(x − y)2 + (γ /�)2
.

(27)

In the problem at hand, there are two inverse time scales that
could serve as a low-energy cutoff to regularize the integral
as in the above equation, the relaxation rate �1→0 and the
pure dephasing rate �φ . A finite relaxation rate means that
the qubit excited level has a finite width; one could argue
that this uncertainty in the energy will in turn reflect itself
in an uncertainty of the energy exchanged between qubit and
quasiparticles, thus smearing the singularity as in Eq. (27).
However, relaxation and dephasing rates are determined by
different matrix elements [cf. Eqs. (11) and (12)], so one can
imagine, at least in principle, a limiting situation in which the
relaxation rate vanishes, which would then cause the dephasing
rate to diverge. Therefore we expect that dephasing processes
will themselves be the ultimate limiting factors for coherence,
so that γ = �φ . With this identification, we arrive at the self-

consistent expression for the pure dephasing rate

�φ = 32EJ

π

∣∣Ad
s

∣∣2 ∫ +∞

0

dx√
x

∫ +∞

0

dy√
y

f [(1 + x)�]

× {1 − f [(1 + y)�]} 1

π

�φ/�

(x − y)2 + (�φ/�)2
. (28)

Equation (28) is the central result of this paper. It is valid for
symmetric junctions (or nearly symmetric, �R − �L � �φ)
and we show in Appendix B that it agrees with the result of the
perturbative derivation of the master equation extended with
logarithmic accuracy to the next to leading order in t̃2.

Similarly to the relaxation rate, for some specific values of
the qubit parameters the matrix element Ad

s can be small or
even vanish exactly. Then one should take into account the
second term in square brackets in Eq. (22) to get

�φ = 32EJ

π

∣∣Ad
c

∣∣2 ∫ +∞

0
dx f [(1 + x)�]{1 − f [(1 + x)�]}.

(29)

An estimate for the actual dephasing rate is given by the larger
of the two rates calculated using Eq. (28) or (29).

B. Nonequilibrium quasiparticles

The relaxation rate in Eq. (19) depends explicitly on
the qubit properties via the matrix element Ar

s , while the
spectral density Sqp accounts for the dynamics of quasiparticle
tunneling. The same structure is present in the right hand
sides of Eqs. (28) and (29)—a matrix element multiplies
factors describing the tunneling dynamics. These factors can
be further simplified under certain assumptions. Here, we focus
on Eq. (28) and distinguish two cases: first, let us assume that
the quasiparticle energy is small compared to the dephasing
rate, δE � �φ , and that quasiparticles are nondegenerate,
f [(1 + y)�] � 1. Then integrating first over y and then over
x, we find

�φ � 16EJ

π

∣∣Ad
s

∣∣2√ �

�φ

xqp, (30)

where

xqp =
√

2
∫ +∞

0

dx√
x

f [(1 + x)�] (31)

is the quasiparticle density normalized by the density of
Cooper pairs. Indicating with f0 the typical occupation
probability, we estimate16 xqp ∼ f0

√
δE/�. Then solving

Eq. (30) for �φ , the requirement �φ � δE can be written
as

16

π

EJ

�

∣∣Ad
s

∣∣2 f0 � δE

�
. (32)

This condition is in practice difficult to satisfy, since with
our assumptions f0 � 1, while |Ad

s | � 1, EJ /� � 1, and at
the lowest experimental temperatures δE/� ∼ T/� � 0.01.
Thus we conclude that for nondegenerate quasiparticles an
upper bound for the dephasing rate is given by �φ � δE.
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The second case we consider, for both degenerate and
nondegenerate quasiparticles, is in fact that of small dephasing
rate, �φ � δE. Then neglecting terms of order �φ/δE,
Eq. (28) simplifies to

�φ � 32EJ

π

∣∣Ad
s

∣∣2 ∫ +∞

0

dx√
x

Re
1√

x + i�φ/�

× f [(1 + x)�] {1 − f [(1 + x)�]}
∼ 32EJ

π

∣∣Ad
s

∣∣2 f0 (1 − f0) ln
4δE

�φ

. (33)

We note that both Eqs. (30) and (33) can be written ap-
proximately in the form17 �φ ∝ |Ad

s |2Sqp(�φ); however, the
proportionality coefficients are different in the two cases.
Solving Eq. (33) for �φ by iterations gives

�φ ≈ 32EJ

π

∣∣Ad
s

∣∣2 f0(1 − f0) ln
πδE

8EJ

∣∣Ad
s

∣∣2 f0(1 − f0)
. (34)

As a specific example, we consider from now on a quasi-
equilibrium distribution f (ε) = e−ε/Te , where Te is the effec-
tive quasiparticle temperature.18 In this case, we have δE = Te

and f0 = e−�/Te � 1, so that the dephasing rate is

�φ(Te) ≈ 32EJ

π

∣∣Ad
s

∣∣2 e−�/Te

(
�

Te

+ ln
πTe

8EJ

∣∣Ad
s

∣∣2
)

. (35)

A few remarks regarding the above results are in order. We
assume that volume V of an electrode is such that the total
number of quasiparticles in it is large. Therefore we neglect the
parity effects.19 At equilibrium, the corresponding condition20

is satisfied for temperatures T � �/ ln(V �ν0), where ν0 is
the normal-state density of states. Considering, for example,
aluminum electrodes with V of a cubic micron, it means
T/� � 0.06. We also note that the divergence for �R = �L

in Eq. (22) is a consequence of the square root singularity of
the BCS density of states at the gap edge. Therefore possible
modifications of the density of states would in principle lead to
different estimates of the dephasing rate. An example of such a
modification is broadening as described by the Dynes model;21

within this model, the effect of a small density of subgap states
has been recently considered in Ref. 22. However, we argue in
Appendix E that these modifications do not affect the estimates
for the dephasing rate of Al-based qubits which we present in
the remainder of the paper.

IV. PHASE RELAXATION OF SINGLE-JUNCTION QUBITS

In this section we consider the dephasing rate for two
single-junction systems, the phase qubit and the transmon,
under the assumption of small qubit frequency, ω10 � � (see
Appendix C 1 for the flux qubit). The calculations of the matrix
element entering the relaxation rate are described in detail
in Ref. 6, whose result we briefly summarize. Here, we use
(without giving all the details) the same approach of that work
to obtain the matrix elements for dephasing. Interestingly, in
all cases the pure dephasing rate �φ turns out to add at most
a small correction to 1/T2 in comparison with the relaxation
term 1/2T1.

A. Phase qubit

In a phase qubit, the charging energy EC is small compared
to the transition frequency ω10. The latter depends on the
external flux via the position ϕ0 of a minimum in the potential
energy of the Hamiltonian in Eq. (3), as determined by

EJ sin ϕ0 + EL (ϕ0 − 2π	e/	0) = 0. (36)

Then the frequency is

ω10 =
√

8EC (EL + EJ cos ϕ0) . (37)

For a small effective temperature Te � ω10, the relaxation
time is

1

T1
= 1

π

ω2
p

ω10
e−�/Te

√
πTe

ω10
(1 + cos ϕ0) , (38)

where

ωp =
√

8ECEJ (39)

is the plasma frequency of the junction.
Within the same approximations used to obtain the above

formulas,23 the matrix element for dephasing is

∣∣Ad
s

∣∣2 = 1

8

(
EC

ω10

)2

(1 − cos ϕ0) (40)

and substituting into Eq. (35), we get

�φ = EC

2π

ω2
p

ω2
10

e−�/Te

[
�

Te

+ ln
8πTeω

2
10

ECω2
p(1 − cos ϕ0)

]

× (1 − cos ϕ0). (41)

Note that the factor in front of e−�/Te is smaller for �φ in
comparison with that for 1/T1 because the matrix element
for dephasing is smaller than that for relaxation by a factor
EC/ω10. At low temperatures, the terms in square brackets
in Eq. (41) are dominated by �/Te and hence, neglecting
factors cos ϕ0 as they are small compared to unity, the condition
2T1�φ > 1 can be written as

Te

�
<

(
ω10

�

)1/3 (
EC

ω10

)2/3

. (42)

Typically, for a phase qubit, the product on the right is of
order 10−2, while Te/� ∼ 10−1. Therefore the pure dephasing
contribution to T2 [see Eq. (24)] can be neglected. Interestingly,
for a quasiparticle temperature of the order of the base
temperature, T/� ∼ 10−2, relaxation and pure dephasing
would have similar order of magnitudes, although both would
be much smaller than at Te/� ∼ 10−1 due to their common
exponential suppression by the Boltzmann factor.

B. Transmon

The Hamiltonian of transmon is given by Eq. (3) with
EL = 0, supplemented by a periodic boundary condition in
phase.4 For our purposes, the transmon can be considered as a
particular case of the phase qubit with ϕ0 = 0 [see Eq. (36)].
With these parameters, one obtains from Eq. (38) the correct
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estimate for the relaxation time T1,

1

T1
= 2

π
ωpe−�/Te

√
πTe

ωp

. (43)

However, the vanishing for ϕ0 = 0 of the matrix element in
Eq. (40) is not the correct result for the transmon: careful eval-
uation of the matrix element, following the procedure outlined
in Appendices B and C of Ref. 6, gives an exponentially small
value, Ad

s ∝ exp(−√
8EJ /EC). This exponential suppression

is sufficient to ensure that the dephasing rate is dominated by
the contribution in Eq. (29), since the matrix element entering
that equation has no such suppression,

∣∣Ad
c

∣∣2 = 1

4

(
EC

ωp

)2

= 1

32

EC

EJ

. (44)

Substituting this expression into Eq. (29), for the quasiequi-
librium distribution function we find

�φ = 1

π
ECe−�/Te

Te

�
. (45)

Using Eqs. (43) and (45) it is easy to show that for the
transmon 2T1�φ � 1; therefore, as for the phase qubit, the
pure dephasing contribution to T2 is negligible.

V. PHASE RELAXATION OF MULTIJUNCTION QUBITS

The results of Sec. III are readily generalized to multijunc-
tion systems by following the same procedure as in Sec. V of
Ref. 6. Assuming the same gaps and distribution functions in
all superconducting elements, we simply need to substitute

EJ

∣∣Ad
s(c)

∣∣2 →
M∑

j=0

EJj

∣∣Ad
s(c),j

∣∣2 (46)

in Eqs. (28) and (29) (and hence in subsequent equations in
Sec. III B). Here, index j denotes the M + 1 junctions with
Josephson energy EJj and capacitance Cj , while the matrix
elements are defined by

Ad
s,j = 1

2

(
〈1| sin

ϕ̂j

2
|1〉 − 〈0| sin

ϕ̂j

2
|0〉
)

(47)

with ϕj the phase difference across junction j . The similar
definition for Ad

c,j is obtained by replacing sine with cosine.
We remind that the phases are not independent, as they are
constrained by the flux quantization condition

M∑
j=0

ϕj = 2πf, f = 	e/	0 . (48)

Below, we consider explicitly the two-junction split trans-
mon, while the many-junction fluxonium is analyzed in
Appendix C 2.

A. Split transmon

The split transmon single degree of freedom is governed by
the same Hamiltonian of the single-junction transmon, but the
SQUID loop has a flux-dependent effective Josephson energy

EJ (f ) = (EJ0 + EJ1) cos (πf )
√

1 + d2 tan2 (πf ) (49)

FIG. 1. (Color online) Normalized relaxation rate T1(0)/T1(f )
vs reduced flux f for (top to bottom) d = 0.02, 0.05, 0.1. (Inset)
Normalized frequency ωp(f )/ωp(0) vs reduced flux for the same
values of the asymmetry parameter (but decreasing top to bottom).

with

d = |EJ0 − EJ1|
EJ0 + EJ1

(50)

quantifying the junction asymmetry. In quasiequilibrium at the
effective temperature Te, the relaxation time is given by6

1

T1(f )
=
√

Te

πωp(f )
e−�/Te

ω2
p(f ) + ω2

p(0)

ωp(f )
, (51)

where

ωp(f ) =
√

8ECEJ (f ) , EC = e2

2(C0 + C1)
. (52)

We note that the smaller the asymmetry, the larger the tun-
ability of the qubit, since ωp(0)/ωp(1/2) = 1/

√
d. However,

this flexibility comes at the price of enhancing the relaxation
rate, T1(0)/T1(1/2) = (1 + d)/(2d3/4). In Fig. 1, we plot
the normalized relaxation rate T1(0)/T1(f ) as a function of
reduced flux f for three values of the asymmetry parameter.
We note that the relaxation rate rises by about a factor 1.5 up
to f ∼ 0.4, but can increase sharply for small asymmetry as
f → 0.5.

The matrix elements for dephasing are [cf. Eq. (40)]

∣∣Ad
s,j

∣∣2 = 1

8

[
EC

ωp(f )

]2

[1 − cos(πf ± ϑ)] , (53)

where the upper (lower) sign should be used for j = 1 (j = 0)
and

tan(ϑ) = d tan(πf ). (54)

Note that in contrast with the single junction transmon, the
matrix elements in general do not vanish (except at f = 0).
Using Eqs. (49), (53), and (54), we find

1∑
j=0

EJj

∣∣Ad
s,j

∣∣2 = 1

64
EC

[
ω2

p(0)

ω2
p(f )

− 1

]
, (55)
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FIG. 2. (Color online) Normalized dephasing rate 2T1�φ vs
reduced flux f for (top to bottom) d = 0.02, 0.05, 0.1. Other
parameters are specified in the text after Eq. (56). The vanishing
of �φ as f → 0 is an artifact of the approximations used to obtain
Eq. (56); a finite dephasing rate at any flux would be obtained by
including a subleading contribution analogous to Eq. (45).

and the above-described generalization to multijunction sys-
tems of Eq. (35) gives

�φ = 1

2π
EC

[
ω2

p(0)

ω2
p(f )

− 1

]
e−�/Te

×
{

�

Te

+ ln
8πTe

EC

[
ω2

p(0)
/
ω2

p(f ) − 1
]
}

. (56)

In Fig. 2, we show examples of the dependence of 2T1�φ

on flux for different values of the asymmetry parameter d

and typical values of the other dimensionless parameters
[EJ (0)/EC = 80, ωp(0)/� = 0.2, Te/� = 0.06]; we note
that near f = 1/2 and for small asymmetry, pure dephasing
dominates over relaxation, 2T1�φ > 1. Therefore the pure
dephasing effect of quasiparticle tunneling could be measured
in a split transmon if other sources of dephasing (such as flux,
photon, and charge noise) can be suppressed. Charge noise, in
particular, can become the dominant dephasing mechanism
as f → 1/2, since the Cooper pair box regime of small
EJ (f )/EC is approached in this case for small asymmetry.4

However, the contribution of �φ to 1/T2 becomes relevant and
thus potentially observable at values of reduced flux smaller
than 1/2, where the system is still in the transmon regime; for
example, for f ∼ 0.35 where EJ (f )/EC ∼ 0.45EJ (0)/EC ,
we estimate 2T1�φ ∼ 0.4.

VI. T ∗
2 AND ANDREEV STATES

IN A JOSEPHSON JUNCTION

In the previous sections we have considered the pure de-
phasing due to the interaction between tunneling quasiparticles
and qubit. Here, we study a different quasiparticle mechanism
affecting the measured dephasing rate 1/T ∗

2 : as discussed
briefly in Sec. II and in more detail in Ref. 6, the quasiparticles
renormalize the qubit frequency by shifting it by an amount
δω, which depends on the quasiparticle occupation. Therefore
fluctuations in the occupation induce frequency fluctuations
that can cause additional dephasing. In this section, we focus

on the phase qubit and show that this mechanism is not active
during a single measurement, so that it does not contribute to
the pure dephasing rate �φ ; however, it can contribute to the
time T ∗

2 by changing the qubit frequency from measurement to
measurement. In other words, the fluctuations of the Andreev
level occupation take place on a time scale much longer than
the relaxation time T1 and therefore do not contribute to
dissipation; this is in contrast with the fluctuations discussed,
e.g., in Refs. 24 and 25, for weakly damped superconducting
quantum point contacts, where the dissipation is governed by
the electron-phonon interaction in the junction region. In the
present case, the fluctuation mechanism being slow compared
with the coherence time, its dephasing effect can be corrected
by using echo techniques.

In a Josephson junction, weakly bound quasiparticles
occupy the Andreev states that carry the dissipationless
supercurrent.26 Changes in the occupations of these states
affect the value of the critical current (or equivalently of
the Josephson energy) and in turn fluctuations in EJ lead
to frequency fluctuations. As we show below, the parameter
determining the relative magnitude of these fluctuations is the
inverse square root of the (effective) number of transmission
channels through the junction; therefore this fluctuation
mechanism could be relevant in small junctions. For each
transmission channel p (p = 1, . . . ,Nch) with transmission
probability Tp [defined after Eq. (6)], we find a corresponding
Andreev bound state with binding energy [see Appendix D]

ωA
p = � − EA

p , EA
p = �

(
1 − 1

2
Tp sin2 ϕ0

2

)
. (57)

This result is valid for Tp � 1; the expression valid for
arbitrary Tp can be found in Ref. 26. The (zero-temperature)
Josephson energy entering Eq. (3) is given by EJ =
�
∑

p Tp/4. To account for the occupations xA
p of the Andreev

states, due for example to finite temperature, in Eq. (37), we
replace EJ by

EJ → �

4

Nch∑
p=1

Tp

(
1 − 2xA

p

)
. (58)

From this substitution, we see that a change in the occupation
of a single Andreev level can lead to a small change δEJ

in the Josephson energy and hence in the qubit frenquency,
with a relative frequency shift of the order of δEJ /EJ ∼
1/Nch. This effect could be measurable in small junction
(Nch ∼ 105) qubits and may have already been observed in
a transmon, where slow frequency jumps of few parts per
million magnitude have been measured.7 More generally, we
find for the qubit frequency ωq at a given set of occupation
numbers xA

p

ωq � ω10 − 8EC

ω10
cos ϕ0

N∑
p=1

�

4
TpxA

p . (59)

Here we assumed that on average the occupation numbers
are small, xA

qp = 〈xA
p 〉 � 1; in quasiequilibrium the average

takes the exponentially small value xA
qp = e−�/Te .27 From this

expression, we see that fluctuations of the occupations of the
Andreev states lead to frequency fluctuations. The mean square
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fluctuations of xA
p are related to the average xA

qp as28

〈(
�xA

p

)2 ≡ 〈(xA
p − xA

qp

)2〉 = xA
qp

(
1 − xA

qp

)
. (60)

Using this expression for the nondegenerate case xA
qp � 1, we

find for the root-mean-square frequency fluctuations√〈(�ωq)2〉
ω10

= | cos ϕ0|
ω2

p

ω2
10

√
xA

qp

1√
Ne

, (61)

where

Ne =
(∑

p Tp

)2∑
p T2

p

(62)

is the effective number of channels; Ne coincides with Nch

if all the channels have equal transmission probabilities. The
number Ne can be estimated independently by measuring the
so-called subgap structure due to Andreev reflections,29

Ne = δI1

δI2

gT

2gK

, (63)

where the first factor in the right-hand side is the ratio between
the current step δI1 measured as the voltage increases from
below to above 2�/e and the subgap current step δI2 at
V ∼ �/e. This ratio is related to junction transparency and
is of the order30,31 δI2/δI1 ∼ 10−5–10−3, while depending
on junction area the ratio between junction conductance gT

and the conductance quantum gK is gT /gK ∼ 1–100, so we
estimate Ne ∼ 103 to 107 for junction sizes from small to large.

The dephasing effect of the above frequency fluctuations
gives observable contribution to T ∗

2 if

〈(�ωq)2〉1/2T2 � 1. (64)

Using Eq. (61), this condition is

T2 � ω10

2ω2
p

√
Ne

xA
qp

∼ 1

ωp

√
Ne

xA
qp

. (65)

Assuming equilibrium between the occupation factors of An-
dreev and free-quasiparticle states at the effective temperature
Te ≈ 140 mK (so that xA

qp = e−�/Te ), since ωp ∼ 1011 s−1 we
find T2 � 10−6 s (10−4 s) for small (large) junctions. For phase
qubits, which are fabricated with large junctions, this estimate
is two to three orders of magnitude longer than the observed
coherence time.2 Therefore fluctuations in the occupations of
Andreev levels do not contribute significantly to dephasing in
current experiments with phase qubits.

The dephasing effect of the frequency fluctuations can
be corrected using an echo pulse if the occupations do not
change during a single measurement. In other words, if the
rate at which the occupations change is small compared to
the greater of �φ and 1/2T1, then the fluctuations contribute
to the decoherence time T ∗

2 rather than to T2. Within our
model Hamiltonian (1), the only processes that can change the
quasiparticle occupations are due to the interaction between
qubit and quasiparticles; for an occupied Andreev level, this
interaction leads to its ionization, with the qubit relaxing and
giving its energy to a bound quasiparticle which is then excited
into the continuum part of the spectrum. Since this process
relaxes the qubit, it can in principle contribute to 1/T1 and, via

the fluctuation-dissipation theorem, give rise to an additional
contribution to the real part of the junction conductance. Such
a contribution has been considered in Refs. 24 and 25 for
the case of weakly damped superconducting quantum point
contacts. However, we show in Appendix D that this intrinsic
contribution is small compared to the relaxation rate due
to the interaction of the qubit with the bulk quasiparticles.
There are of course extrinsic mechanisms that could affect
the occupations of the Andreev states and hence the rate of
frequency fluctuations. An example of such a mechanism is
flux noise; we estimate that the ionization rate due to flux
noise is in fact small compared to the experimental 1/T2,
see Appendix D 2. Another mechanism is the quasiparticle
recombination caused by the electron-phonon interaction. The
recombination rate is ≈ xqp/τ0, with the characteristic time
τ0 ∼ 10−7–10−6 s in aluminum and ∼10−10 s in niobium.32,33

Since at low temperatures7,34 xqp ∼ 10−7–10−8, we find that
the recombination rate is much smaller than 1/T2.

So far, we have considered the effect of fluctuations of
the Andreev levels occupations. Other mechanisms can, in
principle, contribute to decoherence. For example, fluctuations
of the order parameter � in the vicinity of the junction also
affect the Josephson energy, see Eq. (58); however, at low
temperatures, the typical time scale over which � changes in
response to a sudden perturbation is very short, of order 1/�,35

so these fluctuations do not lead to additional decoherence.
Another mechanism is associated with fluctuations in the
number of free (rather than bound) quasiparticles. As discussed
at the end of Sec. II, there are two contributions to the average
frequency shift—the Josephson one δωEJ

and the quasiparticle
one δωqp. Fluctuations of free-quasiparticle occupations affect
the latter, but their contribution to inhomogeneous broadening
is small. Indeed, the average frequency shift can be obtained
by considering the effect of quasiparticles on the junction
impedance;5,6 in quasiequilibrium, the contribution of the
normalized quasiparticle density xqp to the quasiparticle part
Yqp of the junction impedance YJ is smaller than the term in
YJ proportional to xA

qp by the parameter
√

Te/ω10. Moreover,
the root-mean-square fluctuations of xqp scale as the inverse
square root of the volume of the electrodes28 and can therefore
be neglected for macroscopic electrodes.

VII. SUMMARY

In this work, we have studied decoherence caused by quasi-
particles in superconducting qubits and obtained estimates
for the pure dephasing rate �φ and for the contribution of
inhomogeneous broadening to the decoherence rate 1/T ∗

2 .
We have presented a master equation approach that not only
reproduces and generalizes the formula for the relaxation
rate 1/T1 of Refs. 5 and 6 [see Eq. (16))], but also gives
a self-consistent expression for the pure dephasing rate �φ ,
Eq. (28). Moreover, in studying 1/T ∗

2 we have derived a
formula, Eq. (61), for the typical fluctuation of the qubit
frequency due to change in the occupations of Andreev states.
These two equations are our main results.

Application of Eq. (28) to single-junction qubits such
as the phase qubit, the transmon (Sec. IV), and the flux
qubit (Appendix C 1), and to the many-junctions fluxonium
(Appendix C 2) shows that in these systems the pure dephasing
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rate is a small contribution to decoherence, 2T1�φ < 1. In the
split transmon (Sec. V A), on the other hand, the quasiparticle
dephasing rate can be larger than the relaxation rate when the
external flux that tunes the qubit frequency approaches half
the flux quantum, see Fig. 2; together with its temperature and
flux dependence [see Eq. (56)], the increased importance of
�φ in this regime could permit its experimental measurement.

Finally in Sec. VI, we have considered the contribution to
the decoherence rate 1/T ∗

2 due to quasiparticles bound into
Andreev states localized near the Josephson junction. Fluctu-
ations of the occupations of these levels from measurement to
measurement can, in principle, induce dephasing, which can be
corrected with an echo pulse. In practice, this mechanism gives
negligible contributions to dephasing in current experiments
with phase qubits: due to the short observed T2 time, Eq. (64)
implies that the fluctuations of the occupations would need to
cause relative frequency fluctuations of the order 10−3 to start
affecting the coherence of the qubit.
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APPENDIX A: DERIVATION OF THE MASTER EQUATION

In this Appendix, we summarize the main steps of the
derivation of the master equation presented in Sec. III. Our
starting point is the von Neumann equation,15 which we write

for the two components of the qubit (i.e., reduced) density
matrix as

dρz

dt
= −iTr{[δĤ ; ρ̂t ]σ̂

z}, (A1)

dρ+
dt

= iω10ρ+ − iTr{[δĤ ; ρ̂t ]σ̂
+}. (A2)

Here, ρt is the total density matrix of the system, comprising
both qubit and quasiparticles, [·; ·] denotes the commutator
and, as discussed in Sec. II, for our purposes the interaction
Hamiltonian δĤ = ĤT is given by Eq. (8) with A

f
nm = 0. More

useful forms of the traces in the right-hand sides of the above
equations are

Tr{[ĤT ; ρ̂t ]σ̂
z} = 〈〈[σ̂ z; ĤT ]〉〉

= 2t̃

〈〈
(σ̂+− σ̂−)

∑
n,m,σ

Ar
nmα̂L†

nσ α̂R
mσ

〉〉
+ H.c.′,

(A3)

and similarly

Tr{[ĤT ; ρ̂t ]σ̂
+} = t̃

〈〈
σ̂ z
∑
n,m,σ

Ar
nmα̂L†

nσ α̂R
mσ

〉〉

− 2t̃

〈〈
σ̂+ ∑

n,m,σ

Ad
nmα̂L†

nσ α̂R
mσ

〉〉
+ H.c.′,

(A4)

where angular brackets denote quantum statistical averaging
with respect to the total density matrix and the prime denotes
that Hermitian conjugation is not applied to qubit operators
(i.e., Pauli matrices).

The averages in the right hand sides of Eqs. (A3) and (A4)
can be found by solving the equations governing their time
evolution, such as

−i∂t

〈〈
σ̂±α̂†L

nσ α̂R
mσ

〉〉 = 〈〈[Ĥ ; σ̂±α̂†L
nσ α̂R

mσ

]〉〉
= (±ω10 + εL

n − εR
m

) 〈〈
σ̂±α̂†L

nσ α̂R
mσ

〉〉+ t̃
(± Ad∗

nmρ±(t)
[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]
− 1

2Ar∗
nm

{
[1 ± ρz(t)]f

L
n

(
1 − f R

m

)− [1 ∓ ρz(t)]
(
1 − f L

n

)
f R

m

})
. (A5)

The terms in curly brackets originate from averages of one qubit operator times four quasiparticle operators evaluated in the Born
approximation,15 for example, ∑

i,j,ρ

〈〈
σ̂+{α̂R†

jρ α̂L
iρ ; α̂L†

nσ α̂R
mσ

}〉〉 = ρ+(t)
[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]
, (A6)

where {·; ·} is the anticommutator. The solution of Eq. (A5) is

〈〈
σ̂±α̂†L

nσ α̂R
mσ

〉〉 = it̃

∫ t

0
dτ ei(±ω10+εL

n −εR
m+i0+)(t−τ )

(
±Ad∗

nmρ±(τ )
[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]
−1

2
Ar∗

nm

{
[1 ± ρz(τ )] f L

n

(
1 − f R

m

)− [1 ∓ ρz(τ )]
(
1 − f L

n

)
f R

m

})
. (A7)

A similar expression can be derived for the average in Eq. (A4) that contains σ̂ z. After substituting these expressions into
Eqs. (A3) and (A4) and the results into Eqs. (A1) and (A2), we perform two additional approximations. First, we neglect fast
rotating terms; this so-called secular (or rotating wave) approximation15 is valid when the decoherence rate is small on the scale
of the qubit frequency, 1/T2ω10 � 1, and it amounts to keeping in the equation for ρz only the terms proportional to (1 ± ρz)

184514-9



CATELANI, NIGG, GIRVIN, SCHOELKOPF, AND GLAZMAN PHYSICAL REVIEW B 86, 184514 (2012)

and in the equation for ρ+ only those proportional to ρ+. With this approximation, we find
dρz(t)

dt
= −2t̃2

∫ t

0
dτ
∑
n,m

∣∣Ar
nm

∣∣2 {ρz(τ )
[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]
[e++− + e−+− + e+−+ + e−−+]

+ [f L
n

(
1 − f R

m

)− (1 − f L
n

)
f R

m

]
[e++− − e−+− − e+−+ + e−−+]

}
(A8)

and
dρ+(t)

dt
= iω10ρ+(t) − 2t̃2

∫ t

0
dτ
∑
n,m

ρ+(τ )
[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]
×{2∣∣Ad

nm

∣∣2[e++− + e+−+] + ∣∣Ar
nm

∣∣2[e0+− + e0−+]
}
, (A9)

where we use the shorthand notation

eαβγ = ei(αω10+βεL
n +γ εR

m+i0+)(t−τ ). (A10)

Next, we introduce the Markov approximation15 by substitut-
ing in the integrands of Eqs. (A8) and (A9) ρz(τ ) → ρz(t),
ρ+(τ ) → e−iω10(t−τ )ρ+(t) and extending the lower integration
limits from 0 to −∞. Then the τ integrals can be performed
using the identity∫ t

−∞
dτ ei(ω+i0+)(t−τ ) = iP

1

ω
+ πδ(ω), (A11)

where P denotes the principal part. We note that in Eq. (A8)
the contributions of the principal parts cancel out, while after
rewriting the summations over n, m as integrals over the
quasiparticle energies the δ functions can be used to eliminate
one of these integrals. Assuming equal gaps in the leads, we
finally arrive at Eq. (15).

Applying the above steps to Eq. (A9), we find that the
principal parts cancel out in the term proportional to Ad

nm;
in that term we assume different gaps with �R > �L to
get expression (22) for the pure dephasing rate �φ . On the
other hand, we can take the gaps to be the same in the term
proportional to Ar

nm; then the δ functions give rise to the
contribution −1/2T1ρ+ in Eq. (21). As for the principal parts,
they contribute a term iδω̃ρ+(t) with

δω̃ = ∣∣Ar
s

∣∣2 [Fqp(−ω10) − Fqp(ω10)]. (A12)

The function Fqp is defined in Appendix A of Ref. 6; as in
that work, we have neglected here contributions suppressed
by the factor ω10/�. We note that while δω̃ has a structure
similar to that of δωqp in Ref. 6, due to the projection onto the
qubit subspace described in Sec. II the expression in Eq. (A12)
accounts for virtual transitions between the qubit states only
and neglects those to other states of the full system. In systems
with small anharmonicity (e.g., the transmon and phase qubit),
these transitions cannot be neglected and the average frequency
shift must be calculated using the formulas in Ref. 6. Finally,
we remind that the total average frequency shift δω contains
also a Josephson part δωEJ

, as discussed in Sec. II.

APPENDIX B: DEPHASING AT
NEXT-TO-LEADING ORDER

The self-consistent equation (28) for �φ requires going
beyond the lowest order (in the tunneling amplitude t̃) per-
turbative considerations of Appendix A in order to regularize
the logarithmic divergence in Eq. (22) for equal gaps. Here we

focus on the next to leading order contributions to validate that
equation. First, however, let us discuss briefly the smearing of
the singularity, Eq. (27), which is obtained as follows: after
the Markov approximation, the term in Eq. (A9) proportional
to Ad

nm is explicitly

−4t̃2ρ+(t)
∑
n,m

[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

] ∣∣Ad
nm

∣∣2

× lim
γ→0+

∫ t

−∞
dτ [ei(εL

n −εR
m+iγ )(t−τ ) + ei(−εL

n +εR
m+iγ )(t−τ )].

(B1)

Rather than taking the limit, we assume γ small but finite (in
particular, γ � ω10 for the rotating wave approximation to be
valid). After integration, the last line becomes

2γ(
εL
n − εR

m

)2 + γ 2
. (B2)

This explains the origin of the last factor in the second line
of Eq. (27), with the other factors accounting for the square
root singularity of the BCS density of states. We now want
to show that the identification γ = �φ is correct at next to
leading order. To do so, we initially assume that the left/right
gaps are different, so that the logarithmic divergence is absent
and the perturbative expansion in t̃ is justified. Next, we keep
only those terms that would become logarithmically divergent
in the limit of equal gaps.

To begin our derivation, we note that in Eq. (A9), the
first term in square brackets multiplying Ad

nm originates from
〈〈σ̂+α̂

†L
nσ α̂R

mσ 〉〉, as explained in Appendix A. Together with
the other term in square brackets, they give rise to the pure
dephasing rate term in the master equation (A9) via the equality

2t̃
∑
n,m,σ

[
Ad

nm

〈〈
σ̂+α̂L†

nσ α̂R
mσ

〉〉+ Ad∗
nm

〈〈
σ̂+α̂R†

mσ α̂L
nσ

〉〉] = i�φρ+(t).

(B3)

In what follows, we first consider in some detail the next-
order contributions to 〈〈σ̂+α̂

†L
nσ α̂R

mσ 〉〉 and then discuss briefly
the contributions to other averages. Without invoking the
lowest order Born approximation, the equation of motion for
〈〈σ̂+α̂

†L
nσ α̂R

mσ 〉〉 is obtained by adding to the right-hand side of
Eq. (A5) the terms

t̃
∑
i,j,ρ

(
Ad

ijN
σ,ρ

nm,ij + Ad∗
ij M

σ,ρ

nm,ij − 1

2
Ar

ijQ
σ,ρ

nm,ij

− 1

2
Ar∗

ij P
σ,ρ

nm,ij + 1

2
Ar∗

ij S
σ,ρ

nm,ij + 1

2
Ar∗

ij R
σ,ρ

nm,ij

)
(B4)
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with the definitions

M
σ,ρ

nm,ij = 〈〈σ̂+{α̂R†
jρ α̂L

iρ ; α̂L†
nσ α̂R

mσ

}〉〉
− δniδmj δσρρ+

[
f L

n

(
1 − f R

m

)+ (1 −f L
n

)
f R

m

]
, (B5)

N
σ,ρ

nm,ij = 〈〈σ̂+{α̂L†
iρ α̂R

jρ ; α̂L†
nσ α̂R

mσ

}〉〉
, (B6)

P
σ,ρ

nm,ij = 〈〈σ̂ z
{
α̂

R†
jρ α̂L

iρ ; α̂L†
nσ α̂R

mσ

}〉〉
− δniδmj δσρρz

[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]
, (B7)

Q
σ,ρ

nm,ij = 〈〈σ̂ z
{
α̂

L†
iρ α̂R

jρ ; α̂L†
nσ α̂R

mσ

}〉〉
, (B8)

R
σ,ρ

nm,ij = 〈〈[α̂R†
jρ α̂L

iρ ; α̂L†
nσ α̂R

mσ

]〉〉− δniδmj δσρ

[
f R

m − f L
n

]
, (B9)

S
σ,ρ

nm,ij = 〈〈[α̂L†
iρ α̂R

jρ ; α̂L†
nσ α̂R

mσ

]〉〉
. (B10)

In introducing these definitions we have subtracted out the
lowest order contributions already appearing in Eq. (A5). Then
in that equation and in Eqs. (B5) and (B7), the density matrix
should be understood as the lowest (zeroth) order one. In other
words, by construction, the quantities defined in Eqs. (B5) and
(B10) account for higher order (in t̃) contributions; these can
be found by considering the equations of motions for those
quantities, such as

−i∂tM
σ,ρ

nm,ij

= (ω10 + εL
n − εR

m + εR
j − εL

i

)
M

σ,ρ

nm,ij

+ t̃
∑
k,l,μ

〈〈
σ̂+{Ad

klα̂
L†
kμα̂R

lμ + Ad∗
kl α̂

R†
lμ α̂L

kμ;Aσ,ρ

nm,ij

}

− 1

2
σ̂ z
{
Ar

klα̂
L†
kμα̂R

lμ + Ar∗
kl α̂

R†
lμ α̂L

kμ;Aσ,ρ

nm,ij

}
+ 1

2

[
Ar

klα̂
L†
kμα̂R

lμ + Ar∗
kl α̂

R†
lμ α̂L

kμ;Aσ,ρ

nm,ij

]〉〉
, (B11)

where Aσ,ρ

nm,ij stands for the anticommutator

Aσ,ρ

nm,ij = {α̂R†
jρ α̂L

iρ ; α̂L†
nσ α̂R

mσ

}
. (B12)

At lowest order, all the averages in the right hand side of
Eq. (B11) vanish; nonvanishing contributions can in principle
be found by considering once again the equation of motions for
those averages. As it is well known, proceeding in this manner
we would obtain a hierarchy of coupled equations.36 Here
we make two approximations: first, we truncate the hierarchy
at this level; second, as explained above we keep only those
terms that in the limit of equal gaps would give logarithmically
divergent contributions to the master equation. As a first step,
this amounts to performing a mean-field-like approximation in
which the averages in the right-hand side of Eq. (B11) are writ-
ten in terms of product of averages as in the following example:〈〈

σ̂+{α̂L†
kμα̂R

lμ;Aσ,ρ

nm,ij

}〉〉

= 2
〈〈
σ̂+α̂

L†
kμα̂R

lμ

〉〉〈〈
Aσ,ρ

nm,ij

〉〉+ 2
〈〈
σ̂+α̂L†

nσ α̂R
mσ

〉〉〈〈
Aμ,ρ

kl,ij

〉〉
, (B13)

where〈〈
Aσ,ρ

nm,ij

〉〉 = δniδmj δσρ

[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]
. (B14)

Similar expressions can be written for the other averages
appearing in Eq. (B11). In the second step, we check which of
the terms obtained in this way are logarithmically divergent
in the limit of equal gaps and discard those that are finite
(here we employ again the Born-Markov37 and rotating wave
approximations).

Applying the above procedure to Eq. (B11), we find that
the terms in the last two lines can be neglected, while in terms
originating from the second line we use Eq. (B3) as well as
Eq. (A7) (in the rotating wave approximation, we only need
to keep the term in the right-hand side of that equation that
contains ρ+). Solving the equation for M

σ,ρ

nm,ij so obtained, we
finally arrive at

M
σ,ρ

nm,ij (t) = −t�φρ+(t) δniδmj δσρ

[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]− 2t̃2ρ+(t)Ad
ijA

d∗
nm

[
f L

i

(
1 − f R

j

)+ (1 − f L
i

)
f R

j

]

× [f L
n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

] ∫ t

0
du ei(εL

n −εR
m+εR

j −εL
i +i0+)(t−u)

∫ u

0
dτ
[
ei(εL

n −εR
m+i0+)(u−τ ) + ei(−εL

i +εR
j +i0+)(u−τ )].

(B15)

We then use the same approach to find the expression for N
σ,ρ

nm,ij [see Eq. (B6)], which has the structure similar to that of the last
term in Eq. (B15). Using these results, we get

∑
i,j,ρ

(
Ad

ijN
σ,ρ

nm,ij + Ad∗
ij M

σ,ρ

nm,ij

) = −�φρ+(t)Ad∗
nm

[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

][
t +
∫ t

0
dτ ei(εL

n −εR
m+i0+)(t−τ )

]
. (B16)

To obtain the last term in square brackets, we used the identity

∫ t

0
du

∫ u

0
dτ h(τ,u) =

∫ t

0
dτ

∫ t

0
du h(τ,u) −

∫ t

0
du

∫ u

0
dτ h(u,τ ) (B17)

to combine contributions coming from M
σ,ρ

nm,ij and N
σ,ρ

nm,ij in a compact form.
Using the same procedure, one can find the expressions for the quantities defined in Eqs. (B7)–(B10). Those quantities,

however, do not contribute to the master equation within the approximations we are employing (in particular, we remind that in
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the rotating wave approximation we neglect by assumption terms small by the factor �φ/ω10). Therefore we obtain the following
next-to-leading order equation of motion for 〈〈σ̂+α̂

†L
nσ α̂R

mσ 〉〉 by substituting Eq. (B16) into Eq. (B4) and adding the result to the
left hand side of Eq. (A5):

−i∂t

〈〈
σ̂+α̂†L

nσ α̂R
mσ

〉〉 = (ω10 + εL
n − εR

m

) 〈〈
σ̂+α̂†L

nσ α̂R
mσ

〉〉+ t̃Ad∗
nmρ+

[
1 − �φt − �φ

∫ t

0
dτ ei(εL

n −εR
m+i0+)(t−τ )

]

×[f L
n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]− t̃

2
Ar∗

nm

[
(1 + ρz)f

L
n

(
1 − f R

m

)− (1 − ρz)
(
1 − f L

n

)
f R

m

]
. (B18)

As explained at the beginning of this Appendix, we want to show that this equation agrees at next to leading order with the
smearing obtained by introducing a finite decay rate in the terms responsible for dephasing, with the decay rate given by �φ

itself. Indeed, introducing this decay in Eq. (A7), we find

〈〈
σ̂+α̂†L

nσ α̂R
mσ

〉〉 = it̃Ad∗
nm

∫ t

0
dτ ei(ω10+εL

n −εR
m+i�φ )(t−τ )ρ+(τ )

[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]
− 1

2
it̃Ar∗

nm

∫ t

0
dτ ei(ω10+εL

n −εR
m+i0+)(t−τ )

[
(1 + ρz(τ ))f L

n

(
1 − f R

m

)− (1 − ρz(τ ))
(
1 − f L

n

)
f R

m

]
. (B19)

Taking the time derivative of this equation, we get

−i∂t

〈〈
σ̂+α̂†L

nσ α̂R
mσ

〉〉 = (ω10 + εL
n − εR

m

)〈〈
σ̂+α̂†L

nσ α̂R
mσ

〉〉+ t̃Ad∗
nmρ+

[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]− t̃

2
Ar∗

nm

[
(1 + ρz)f

L
n

(
1 − f R

m

)
−(1 − ρz)

(
1 − f L

n

)
f R

m

]− �φt̃Ad∗
nm

∫ t

0
dτ ρ+(τ )ei(ω10+εL

n −εR
m+i�φ )(t−τ )

[
f L

n

(
1 − f R

m

)+ (1 − f L
n

)
f R

m

]
.

(B20)

At next-to-leading order, one should expand the exponentially
decaying part of ρ+ [cf. Eqs. (23) and (24)] in the second
line of Eq. (B20) and hence substitute there, with logarithmic
accuracy, ρ+ → ρ+(1 − �φt). The last term in Eq. (B20) is
explicitly of higher order, so one can use ρ+(τ ) � eiω10τ and
drop �φ in the exponent. In this way, we recover Eq. (B18),
thus showing for 〈〈σ̂+α̂

†L
nσ α̂R

mσ 〉〉 the validity of our ansatz.
To complete the proof, we repeat the above steps for other
averages, such as 〈〈σ̂+α̂

†R
mσ α̂L

nσ 〉〉 and 〈〈σ̂ zα̂
†L
nσ α̂R

mσ 〉〉. The latter
contributes to the 1/2T1 term in the master equation (21) and
at next-to-leading order the only correction we find is that
corresponding to the expansion of the exponentially decaying
part of ρ+, as discussed above for the second line in Eq. (B20).

APPENDIX C: PHASE RELAXATION IN FLUX
QUBIT AND FLUXONIUM

1. Flux qubit

In a flux qubit, the external flux threading the superconduct-
ing loop is tuned to half the flux quantum, f = 	e/	0 � 1/2,
and the potential energy takes the form of a double well. Then
the qubit states |±〉 are the two lowest tunnel-split states in this
potential with energy difference

ω10(f ) =
√

ε̄2 + [(2π )2ĒL(f − 1/2)]2, (C1)

where for ĒJ � ĒC , we have

ε̄ = 2

√
2

π

√
8ĒCĒJ

(
8ĒJ

ĒC

)1/4

e−
√

8ĒJ /ĒC . (C2)

Expressions for the renormalized parameters ĒC , ĒJ , and ĒL

in terms of the bare parameters of the Hamiltonian (3) can
be found in Sec. IV.B of Ref. 6. It was shown there that the

matrix element Ar
s vanishes at f = 1/2 because of symmetry

considerations, thus leading to a minimum for the relaxation
rate. Here, we focus on the case f = 1/2, and therefore we
need to evaluate the contribution to relaxation originating from
the last line in Eq. (16). The relevant matrix element is

∣∣Ar
c

∣∣ = ε̄

ω10(f )
, (C3)

which equals unity at f = 1/2. Then from Eq. (16), we obtain

1

T1
= 8

π
EJ

√
ω10

2�
xqp = 8

π
EJ

√
πε̄Te

�2
e−�/Te . (C4)

Turning now to the dephasing rate, we find at f = 1/2 the
following expression for the matrix element

∣∣Ad
s

∣∣ = D

2
√

2

ε̄

ĒJ

(
ĒJ

ĒC

)1/3

, (C5)

where D ≈ 1.45 is a numerical coefficient.6 Using Eq. (35)
and (C4), after straightforward algebra, we arrive at

2T1�φ = D2

√
π

√
�

EC

√
�

Te

(
ε̄

ĒC

)3/2 (
ĒC

ĒJ

)4/3

×
{

�

Te

+ ln

[
π

D2

Te

�

�

ĒC

(
ĒC

ε̄

)2 (
ĒJ

ĒC

)1/3 ]}
.

(C6)

Due to the exponential suppression of the splitting, Eq. (C2),
this quantity is, in general, small. Indeed, for ĒC/�, Te/� >

0.01 and ĒJ /ĒC � 15 we find 2T1�φ � 0.01.
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2. Fluxonium

In the fluxonium, an array of M � 1 identical junctions
(each with Josephson energy EJ1 � EC1 large compared to
their charging energy) acts as a lossy inductor connected to a
weaker junction with EJ0 < EJ1. The inductive energy of the
array is EL = EJ1/M and the losses are due to quasiparticle
tunneling through the array junctions. In fact, for external flux
near half the flux quantum, the relaxation time is determined
by this loss mechanism,6

1

T1
= 4πEL

√
πTe

ω10(f )
e−�/Te

[
ω10(1/2)

ω10(f )

]2

, (C7)

since as discussed above for the flux qubit the contribution of
the weaker junction is suppressed at f = 1/2 [cf. Eq. (C4)].
Note that at f = 1/2, the rate in Eq. (C7) is larger than that in
Eq. (C4) by the factor (�/EJ )[EL/ω10(1/2)].

To calculate the dephasing rate, we note that at f = 1/2,
the matrix element for the weak junction is the same as for the
flux qubit, Eq. (C5),

∣∣Ad
s,0

∣∣ = D

2
√

2

ω10(1/2)

ĒJ0

(
ĒJ0

ĒC0

)1/3

, (C8)

while for each array junction, we get∣∣Ad
s,1

∣∣ = π

2M

∣∣Ad
s,0

∣∣ . (C9)

Then the coefficient containing the sum over all junctions is

M∑
j=0

EJj

∣∣Ad
s,j

∣∣2 =
(

EJ0 + π2

4
EL

) ∣∣Ad
s,0

∣∣2 , (C10)

which in the limit ĒJ /ĒC � 1 is exponentially suppressed,
see Eq. (C2). Therefore at f = 1/2, the dephasing rate �φ

has the same exponential suppression as in the flux qubit.
Since as discussed above the fluxonium relaxation rate is
parametrically larger than the flux qubit one,38 we find again
that the pure dephasing rate is small compared to the relaxation
rate for large ĒJ /ĒC . The latter condition is not satisfied
experimentally, since typically39 EJ /EC � 5, and numerical
calculations beyond the scope of the present work may be
needed to address this parameter regime. However, we note
that in all cases studied here, decreasing the ratio EJ /EC

increases the relative contribution of pure dephasing to 1/T2.

APPENDIX D: ANDREEV BOUND STATES
AND IONIZATION RATE

The goals of this Appendix are to derive Eqs. (57) starting
from the model defined by Eqs. (1)–(6), and to estimate the
ionization rates due to qubit-quasiparticles interaction and
flux noise. In the low-energy limit where the characteristic
energy of the quasiparticles δE as well as the qubit transition
frequency ω10 are small compared to the superconducting gap
�, we approximate the BCS coherence factors as u

j
n ≈ v

j
n ≈

1/
√

2. Then considering for now a single-channel junction,
Eq. (6) takes the form6

ĤT = it̃ sin(ϕ̂/2)
∑
n,m,σ

α̂L†
nσ α̂R

mσ + H.c. (D1)

Assuming for simplicity identical left/right leads, we perform
a canonical rotation into a new quasiparticle basis defined by
the operators

γ̂±nσ = 1√
2

(
α̂L

nσ ± iα̂R
nσ

)
. (D2)

In this basis, we have [cf. Eq. (4)]

Ĥqp = Ĥqp+ + Ĥqp− , Ĥqp± =
∑
n,σ

εnγ̂
†
±nσ γ̂±nσ , (D3)

ĤT = t̃ sin
ϕ̂

2

∑
n,m,σ

(γ̂ †
−nσ γ̂−mσ − γ̂

†
+nσ γ̂+mσ ). (D4)

Denoting with |j 〉 and Ej the eigenstates and eigenenergies
of Ĥϕ [see Eq. (3)], the total Hamiltonian Ĥ can then be split
into parts that are respectively diagonal and nondiagonal in the
qubit subspace, Ĥ = Ĥd + Ĥnd, with the diagonal part defined
as

Ĥd =
∑

j

Ej |j 〉〈j | +
∑

j

|j 〉〈j |(Ĥj+ + Ĥj−), (D5)

where

Ĥj± = Ĥqp± ∓ t̃ sjj

∑
n,m,σ

γ̂
†
±nσ γ̂±mσ , (D6)

and we have used the definition (10) for the matrix elements
sij . The nondiagonal part is given by

Ĥnd = t̃
∑
i �=j

sij |i〉〈j |
∑
m,n,σ

(γ̂ †
−nσ γ̂−mσ − γ̂

†
+nσ γ̂+mσ ). (D7)

It describes real transitions in which qubit and quasiparticles
exchange energy. The term proportional to t̃ in the diagonal
part, on the other hand, accounts for virtual transitions that
renormalize the spectrum. Indeed, as we show next, for sjj > 0
(sjj < 0), there exists a subgap Andreev bound state in the γ+
(γ−) subspace. Because the two subspaces are uncoupled, we
can restrict ourselves to either one of those; in the following,
we consider the γ+ subspace.

Since Ĥd is diagonal in the qubit space, to find the spectrum,
we only need to calculate the eigenvalues of the quasiparticle
Hamiltonians Ĥj±. We denote with |Aj 〉 the wave function of
the Andreev state when the qubit is in state |j 〉; to solve the
Schrödinger equation Ĥj+|Aj 〉 = E|Aj 〉 we make the Ansatz
|Aj 〉 =∑nσ ajnγ

†
+nσ |∅〉, where |∅〉 denotes the quasiparticle

vacuum state, γ±nσ |∅〉 = 0, and obtain the following system
of linear equations:

ajn = t̃ sjj

1

εn − E

∑
m

ajm. (D8)

To find the eigenenergy E, we sum both sides over n and in
the low energy limit we write εn ≈ � + ξn

2/(2�); then the
sum over n in the right hand side can be approximated by an
integral,

∑
n ≈ ν0

∫
dξ , and we arrive at

1 = πν0 t̃ sjj

√
2�

� − E
. (D9)

A solution with energy E < � exists if and only if sjj > 0
(the opposite holds in the γ− subspace where a bound state
exists if and only if sjj < 0.). The corresponding bound state

184514-13



CATELANI, NIGG, GIRVIN, SCHOELKOPF, AND GLAZMAN PHYSICAL REVIEW B 86, 184514 (2012)

energy is

EA
j = �[1 − 2(πν0 t̃)

2sjj
2]. (D10)

This energy depends on the state of the qubit via the matrix
element sjj . However, for the low-energy states of the phase
qubit, this matrix element is the same at leading order in
EC/ω10 � 1, since the square of the matrix element is6

sij
2 = δi,j

[
1 − 2

EC

ω10

(
i + 1

2

)]
sin2 ϕ0

2

+ EC

ω10
[jδi,j−1 + (j + 1)δi,j+1] cos2 ϕ0

2
(D11)

up to higher-order terms ∝ (EC/ω10)2. Keeping only the
leading term in this equation, introducing the transmission
probability T = (2πν0 t̃)2 in Eq. (D10), and generalizing it to
multiple channels, we arrive at Eq. (57). (In that equation, the
subscript p denotes the transmission channel, and we have
dropped the qubit state index j since, as explained above, the
leading order expression is independent of j .)

For later use, we note that the normalization condition∑
n(ajn)2 = 1/2, which accounts for spin degeneracy, together

with the square of Eq. (D8), leads to the amplitudes

ajn = 1√
πν0

(
2�ωA

j

)3/4

ξn
2 + 2�ωA

j

, (D12)

where ωA
j = � − EA

j is the binding energy.

1. Ionization rate

The ionization of the Andreev level can be caused by quan-
tum fluctuations of the phase difference across the junction
induced by the finite charging energy EC ; the ionization rate
can be calculated using Fermi’s golden rule by treating the
nondiagonal part (D7) of the Hamiltonian as a perturbation.
For a qubit initially in the state |i〉, the ionization rate �A

i is
given by

�A
i = 2π

∑
nj

|〈j,εjn|Ĥnd|i,Ai〉|2

× δ
(
Ej + εn − Ei − EA

i

)
[1 − f (εn)]. (D13)

Here, |εjn〉 is a scattering state in the continuum part of the
quasiparticle spectrum and the factor [1 − f (εn)] gives the
probability that this state is empty. The matrix element in
Eq. (D13) is the product of the off-diagonal matrix element sji

times the overlap of the wave functions of bound and scattering
states at the junction,

〈j,εjn|Ĥnd|i,Ai〉 = −t̃ sj i

∑
m

ψ∗
jm(εn)

∑
n′

ain′ , (D14)

where ψjm(εn) = 〈εm|εjn〉 and |εm〉 are the eigenstates of
Ĥqp+, see Eq. (D3). Next, we calculate the wave functions
for the continuum states by solving the scattering problem in
the standard T -matrix approach.40

We focus again on the γ+ subspace and write
Ĥj+ = Ĥqp+ + Ĥj1 with Ĥj1 = −t̃ sjj

∑
nm,σ γ̂

†
+nσ γ̂+mσ

[cf. Eq. (D6)]. From the Schrödinger equation, we have for

the scattering states |εjn〉,

|εjn〉 = |εn〉 + 1

εn − Ĥqp+ + i0+ Ĥ1j |εjn〉

=
[

1̂ + 1

εn − Ĥqp+ + i0+Tj (εn)

]
|εn〉, (D15)

where we have defined the T matrix as

Tj (εn) = Ĥ1j + Ĥ1j [εn − Ĥqp+ + i0+]−1Ĥ1j + . . . . (D16)

The T matrix is related to the quasiparticle Green’s function
Gj via

Gj = g + gTj g , (D17)

where g is the (diagonal in momentum) bare quasiparticle
Green’s function gn(ω) = 1/(ω − εn + i0+). Using the in-
verse of this equation: Tj = g−1Gjg

−1 − g−1, we find, upon
projecting Eq. (D15) onto |εm〉,

ψjm(εn) = lim
ω→εn

Gj,mn(ω)[gn(ω)]−1. (D18)

The Green’s function, as obtained from the equations of motion
for γ+nσ , is given by

Gj,nm(ω) = δnmgn(ω) − t̃ sjj gn(ω)gm(ω)

1 + t̃ sjj

∑
p gp(ω)

. (D19)

Hence the continuum states are

ψjm(εn) = δnm − t̃ sjj gm(εn)

1 − iπν0 t̃ sjj

√
2�

εn−�

, (D20)

where we have used that in the low-energy limit
∑

p gp(εn) ≈
−iπν0

√
2�/(εn − �).

Using Eqs. (D12) and (D20), we find∑
n

ain = 21/4πν0

√
t̃�sii , (D21)

∑
m

ψ∗
jm(εn) = 1

1 + iπν0 t̃ sjj

√
2�/(εn − �)

. (D22)

Substituting these expressions into Eq. (D13), and considering
explicitly the case of a phase qubit, using the expressions for
the matrix elements sij given in Eq. (D11) finally yields for
the ionization rate of a single-channel junction:

�A
j = j

ωp
2

8ω10
(1 + cos ϕ0)

√
2ωA

j

Ej −Ej−1−ωA
j

1 + ωA
j−1

Ej −Ej−1−ωA
j

× [1 − f
(
Ej − Ej−1 + EA

j

)]
, (D23)

with ϕ0, ωp, and ω10 defined in Sec. IV A and we used that for
a single-channel junction EJ = �(πν0 t̃)2.

The above result can be easily generalized to the case of
Nch independent channels. Assuming for simplicity identical
transmission amplitudes, the Andreev binding energy can
be written as ωA

j = 2EJ sjj
2/Nch, which for a phase qubit

reduces approximately to ωA ≈ EJ /Nch. We assume Nch � 1
sufficiently large so that ωA � ω10 and obtain for the
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ionization rate of each occupied channel,

�A
1 ≈ 1

4Nch

ωp
2

ω10

√
2ωA

ω10

1 + cos ϕ0

2
. (D24)

A single ionization event is sufficient to relax the qubit
energy, and the probability of at least one ionization event
taking place during time t , when initially Nocc � Nch Andreev
levels are occupied, is given by p = 1 − e−Nocc�

A
1 t . Introducing

the total ionization rate �A
tot = Nocc�

A
1 and using Eq. (38), leads

to the estimate

T1�
A
tot ≈ 1

4
√

2π

Nocc

N
3/2
ch

e�/Te

√
EJ

Te

. (D25)

Defining the frequency shift δωq = ω10 − ωq and using
Eq. (59) to estimate its value, we may eliminate Nocc and
rewrite the above as

T1�
A
tot ∼ e�/Te

√
EJ

NchTe

δωq

ω10
∼ 4 × 104 δωq

ω10
, (D26)

where we used EJ /Nch ∼ 10−5� and Te ≈ 140 mK. Thus,
when δωq � 10−4ω10, the qubit relaxation is likely domi-
nated by the ionization process, rather than by quasiparticle
transitions within the continuum. However, we note that the
typical shift is much smaller than this, δωq/ω10 ∼ e−�/Te ∼
3 × 10−7, i.e., p ≈ 0.012, so the contribution of ionization to
qubit relaxation is negligible unless Nocc is anomalously large.

2. Ionization by flux noise

As an example of an extrinsic ionization mechanism,
we consider here low frequency (�ω10) flux noise. Small
fluctuations δ	e(t) � 	0 of the external flux induce small
fluctuations ϕ1(t) of the phase difference ϕ0,

ϕ1(t) = 2π
δ	e(t)

	0

EL

EL + EJ cos ϕ0
(D27)

[see Eq. (36)]. Since the low-frequency fluctuations do not
induce qubit transitions, their effect is accounted for by
substituting ϕ0 → ϕ0 + ϕ1(t) into the diagonal matrix element
sjj in Eq. (D6). At linear order in ϕ1, we thus obtain the
time-dependent perturbation (in the γ+ subspace)

V̂ (t) = −t̃
ϕ1(t)

2
cos

(
ϕ0

2

) ∑
n,m,σ

γ
†
+nσ γ+mσ . (D28)

Using Fermi’s golden rule and following similar steps as in
the previous section, the total ionization rate can be expressed
as

�A
tot = Nocc

(
EJ

Nch

)3/2 ∣∣∣∣ sin
ϕ0

2

∣∣∣∣1 + cos ϕ0

2

×
∫ ∞

ωA

dω Sϕϕ(ω)

√
ω − ωA

ω
[1 − f (ω + EA)], (D29)

where Sϕϕ(ω) = 1/(2π )
∫

eiωt 〈ϕ1(t)ϕ1(0)〉dt is the phase fluc-
tuation spectrum and the binding energy introduces a natu-
ral low-frequency cutoff. For nondegenerate quasiparticles,
f (ωA + EA) � 1, and a power-law spectrum of the form2,3,10

Sϕϕ(ω) = (δϕ)2/(2πωα), we obtain

�A
tot = (δϕ)2

2π
Nocc

(
EJ

Nch

)3/2 ∣∣∣∣ sin
ϕ0

2

∣∣∣∣1 + cos ϕ0

2

×ω
1
2 −α

A

∫ ∞

1
dx

√
x − 1

xα+1
. (D30)

For α = 1 (pure 1/f noise), the remaining integral is equal to
π/2 and since ωA = 2(EJ /Nch) sin2(ϕ0/2), we arrive at

�A
tot = (δϕ)2

4
√

2
Nocc

(
EJ

Nch

)
1 + cos ϕ0

2
. (D31)

The measured2,3 magnitude of the fluctuations is small,
δϕ ∼ 10−6; since EJ /Nch ∼ 10−5� and Nocc � Nch � 107,
we estimate this rate to be much smaller than 1 Hz.

APPENDIX E: MODIFICATIONS
OF THE DENSITY OF STATES

The logarithmic divergence of the dephasing rate and its
regularization discussed in Sec. III are a consequence of the
square root singularity of the BCS density of states at the
gap edge. Here we discuss other mechanisms that also can
regularize the divergence and show that for Al-based qubits
used at present they do not affect the estimates in the main
text.

To begin with, we consider the broadened density of states
introduced by Dynes21 to interpret experimental tunneling
data. This phenomenological density of states is characterized
by a broadening parameter �D � � and a finite density
of subgap states. These states give rise to an additional
contribution to the dephasing rate, which we denote with �

sg

φ ;
assuming quasi-equilibrium, it is given by22

�
sg

φ (Te) = 16EJ

π

∣∣Ad
c + iAd

s

∣∣2 (�D

�

)2
Te

�
, (E1)

and it is always smaller than the broadening, �
sg

φ � �D .
Comparing Eqs. (35) and (E1), we see that a small broadening
in the latter can compensate for the exponential suppression
of the quasiparticle occupation in the former. Then we can
distinguish three regimes: (1) at “high” temperatures, the
dephasing rate is given by Eq. (35), since the broadening can
be neglected in calculating �φ . The high-temperature regime
is defined by the condition �D � �φ(Te); (2) at intermediate
temperatures, when �

sg

φ (Te) � �φ(Te) � �D , the broadening
of the density of states cannot be neglected. With logarithmic
accuracy, this amount to substituting �φ → �D in the last term
in Eq. (33) and hence replacing the square bracket in Eq. (35)
with ln(Te/�D) [see also Eq. (E4) below; as we discuss
there, since this substitution affects only the logarithm, use of
Eq. (35) still gives a correct order-of-magnitude estimate]. (3)
At low temperatures, such that �φ(Te) � �

sg

φ (Te) the subgap
contribution becomes dominant.

In recent measurements,34 the intrinsic value of the
broadening parameter in aluminum was found to be small,
�D/� < 2 × 10−7. Using this value and the results of Sec. IV,
our estimates show that the low-temperature regime is en-
tered for Te � 60 mK. In experiments with superconducting
resonators41 as well as qubits,7,42 the quasiparticle effective
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temperature is larger, Te ∼ 140 mK, so we can neglect the
subgap contribution to the dephasing rate for Al-based qubits,
which we focus on in this paper. However, the subgap
contribution may be relevant in other systems, such as qubits
fabricated with niobium.22

While the above considerations are based on a phenomeno-
logical model, an intrinsic modification of the continuum
part of the density of states near the junction is due to the
presence of Andreev bound states. They modify the square-
root singularity into a square-root threshold√

2�

ω − �
→

√
2�

√
ω − �

ω − EA
(E2)

with EA the energy of the bound state defined in Eq. (57)
(here we consider for simplicity the single channel case). The
above substitution can be obtained using Eq. (D19) for the
Green’s function to calculate the density of states. Assuming
the binding energy ωA = � − EA to be small compared to
the typical quasiparticle energy, ωA � δE, we find that the
substitution (E2) would lead to the replacement of �φ with
ωA in the right-hand side of Eq. (33). In quasiequilibrium, this
amount to replacing the square brackets in Eq. (35) with

ln
Te

ωA
∼ ln

Te

EJ

+ ln Nch, (E3)

where Nch � 1 is the number of channels in the junction.
We note that the tunneling limit we are considering consists

in taking the transmission amplitude t̃ → 0 at finite EJ ,
which implies Nch → ∞. Then in this limit, the self-consistent
approach is justified with logarithmic accuracy as explained in
Appendix B.

In both the examples above, the modifications of the
density of states can lead to a regularization of the logarithmic
divergence of �φ . More generally, assuming that if the subgap
states are present their effect can be neglected [see discussion
above] and indicating with �b the energy scale characterizing
the broadening of the peaks in the density of states, for
�b � � the estimate for the dephasing rate �b

φ regularized
by broadening is

�b
φ(Te) ≈ 32EJ

π

∣∣Ad
s

∣∣2 e−�/Te ln
4Te

�b

. (E4)

This expression is correct irrespective of the mechanism
causing the broadening. For example, in clean superconductors
it can be caused by order parameter anisotropy, but this effect
is washed out in dirty superconductors.43 Strictly speaking,
Eq. (E4) applies at low temperatures when �b � �φ(Te),
while at higher temperatures Eq. (35) remains valid. Using
experimental estimates of Te and typical values of the matrix
element for a phase qubit, we estimate that Eq. (35) should be
used only when �b � 10−9�. However, even for broadening
as large as �b ∼ 10−3�, Eq. (35) overestimates the dephasing
rate by a factor of less than 4, so it can always be used in
practice for order-of-magnitude estimates.
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