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Quantum effect of inductance on geometric Cooper-pair transport
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We introduce a model for a flux-assisted Cooper-pair pump, the sluice, which is used to study geometric
charge transport. Our model allows for a nonvanishing loop inductance going beyond the usual treatment
with an exact phase bias. We derive the device Hamiltonian and current operators for different elements of
the system and calculate the pumped charge carried by the ground state in the adiabatic limit. We show that
extending the model beyond the exact phase bias has a weak but potentially non-negligible effect on the
charge transport. This effect is observed to depend on the external flux bias. The adiabatic energy level and
eigenstate structures are studied and the unusual features are explained. Finally, we discuss the requirements of

adiabaticity.
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I. INTRODUCTION

The methodology of constructing superconducting Joseph-
son junction circuits' has provided a wondrous test bed
for many quantum phenomena. Perhaps one of the most
intriguing applications is the possibility to study physics
related to quantum phases,” most notably the Berry phase.®*
Understanding the properties of these phases®™ has given rise
to geometric quantum computing'®!" where the robustness
against a certain type of noise is an inherent property of the
computing scheme.

One of the most extensively studied Josephson devices
related to geometric phases is the Cooper-pair sluice.'>!3
It builds on the idea of implementing an array of Joseph-
son junctions where single Cooper pairs are adiabatically
transported in a controlled manner'*'7 establishing a link
between the pumped charge and the Berry phase.'®!° The
introduction of superconducting quantum interference devices
(SQUIDs) operating as tunable junctions adds to the pump
control.'?> Cooper-pair pumps based on such array structures
have been theoretically shown to produce very accurate
charge quantization’’?? as well as having the potential for
implementing non-Abelian structures.>>>* For the sluice, the
connection between the pumped charge and the Berry phase
has been shown both theoretically'®>> and experimentally.?
Furthermore, the development of the sluice has given rise
to proposals to implement geometric quantum computing
featuring similar architectures.”’?® The sluice itself has
been proposed to be used as a Landau-Zener-Stiickelberg
interferometer.”’

During the past few years, theoretical effort has been put
into modeling the sluice coupled to a dissipative environment.
Using the usual reduced-density-operator methods,**3! such a
coupling leads to charge nonconservation. Recent papers have
dealt with this problem using either superadiabatic bases>>~
or the Floquet theory.**3” Both methods also have the potential
for describing pumping when the driving is nonadiabatic,
a regime recently studied experimentally.® Furthermore, a
current induced directly by the environment has been shown
to emerge for certain types of noise operators* leading to a
development of a conservation law for all operator currents
in open quantum systems.*’ To date, all considerations of
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the sluice have assumed an exact phase bias. Namely, the
inductance of a superconducting loop at the heart of the device
has been assumed so small that the total gauge-invariant phase
difference across all the weak links along the loop is fixed
exactly by the penetrating magnetic flux. This assumption has
simplified the theoretical analysis which has still been shown
to provide predictions in agreement with the implemented
experiments.”® However, these experiments have not been
carried out with very high precision and, given that the sluice
has been widely discussed as a candidate for a metrological
current source, it is of utmost importance to study whether the
finite realistic loop inductance plays a role here.

In this paper, we introduce a theoretical model for the sluice
which allows the inclusion of a nonvanishing loop inductance.
The derived Hamiltonian accounts for the emerging additional
quantum degrees of freedom. The current operators for the
superconducting island and the effective inductor are derived
from first principles. We calculate the geometric charge carried
by the adiabatic ground state emphasizing the features due to
the finite loop inductance and show that the results given by
the model with vanishing inductance are valid to a rather good
degree with experimentally relevant parameters. Variation of
the additional parameters included in our model is shown to
weakly affect the pumped charge. We study the instantaneous
eigenenergies and eigenstates to point out the differences
between our more general model and the case of the exact
phase bias. Finally, we consider the adiabaticity criteria for
the system.

The paper is organized as follows: In Sec. IT A, we introduce
our model for the sluice and derive the Hamiltonian for it. In
Sec. II B, we derive current operators for the different parts
of the system without resorting to operator derivatives. In
Sec. IIT A, we study analytically the transferred geometric
and dynamic charges in first-order perturbation theory. The
charges are found equal to those obtained using the original
model. In Sec. I1I B, we perform a numerical analysis of both
the system and its charge transport features in the adiabatic
limit. The geometric charge carried by the ground state is
shown to differ slightly from the original model. The features
of the energy level structure and eigenstates are explained
and the requirements of adiabaticity are discussed briefly. We
conclude the paper in Sec. IV.
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FIG. 1. Circuit diagram of the Cooper-pair sluice. The external
fluxes threading the left and right SQUIDs are denoted by &, and
®,, respectively, and & denotes the operator for the total flux
threading the large superconducting loop. The operators for the
phase differences over the SQUIDs are marked by ¢, and ¢, and
are defined in the direction specified by the arrows in the figure.
The internal capacitances of the SQUIDs are C; and C,, the loop is
connected to the ground terminal via two identical capacitors with
capacitances C,, and L = Lg + Lg denotes the total inductance of
the loop comprising of both the geometric L and the kinetic L
contributions. The gate capacitance C, is used to manipulate the
island charge with the gate voltage V,. The operators A, i;, and 7, are
for the Cooper-pair numbers of the corresponding islands. Note that
the superconducting islands described by #; and 7, are inductively
coupled. The choice of the charge orientation at the capacitors for
positive voltages across the capacitor plates is marked by {+,—}
including the effective junction capacitors denoted by dashed lines.

II. MODEL DEVICE

A. Hamiltonian

The device structure we use is an adaptation of the original
model used for the Cooper-pair sluice.'> The original model
consists of a superconducting island isolated by two SQUIDs
positioned in a large superconducting loop (see Fig. 1 for
our model resembling the original structure with respect to
the device operation). The island is capacitively coupled to a
gate terminal used to manipulate its charge state. The leads are
taken to have capacitive couplings to a ground terminal. The
self-inductances of the SQUID loops are assumed negligible so
that they act as tunable Josephson junctions whose Josephson
energies can be controlled with the external magnetic fluxes
threading the loops. Phase biasing is typically introduced for
the device by assuming that the total inductance of the large
loop is negligible, implying that the total superconducting
phase difference over all the weak links in the loop is a real
number exactly determined by the penetrating magnetic flux.
This assumption allows one to determine the system dynamics
using only the island charge basis.

We improve on the existing model by introducing an induc-
tive element allowing us to depict, among other inductance
sources, the self-inductance of the loop.*! Ground couplings
are established from both sides of the element using two
identical shunt capacitors. The resulting device is shown in
Fig. 1. The Hamiltonian for the device can be written as (see
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Appendix A for details)

A N 2 27 3 E 2
H = Ec(ii —ng) + E,n" + Hpn + 5 (@ — ¢o)
— Ej, cos(¢p + ¢/2) — Ejcos(¢p — ¢/2), (1)

where ¢ is the island phase operator, ¢ is the operator for the
total phase difference over the SQUIDs, 7 is the Cooper-pair
number (CPN) operator for the island and 7 = (i1, — #,)/2
is the Cooper-pair number operator for the feed; that is, it
describes the average charge imbalance between the left and
right leads. The CPN operators for the left and right leads
are given by 71; and 7i,, respectively. To allow for a form
resembling the case of the exact phase bias, we omitted
explicitly writing all identity operators but will reestablish
their use in the following presentations of the Hamiltonian.
Here, E( is the charging energy scale for the island [see
Eq. (A2)], E, is the charging energy scale for the feed [see
Eq. (A2)], E;L =(1 /L)(;Il?‘r’)2 is the inductive energy scale
due to the finite total inductance L of the loop, Hp is an
additional charging Hamiltonian stemming from the derivation
[see Eqgs. (A3) and (A4)], o = 2m Pexi/Dp is related the
external magnetic flux ®cy, ny = V,C,/(2e) is the normalized
gate charge, and E,;,E;, are the Josephson energies of the
tunable junctions. The flux quantum is denoted by ®y =~
2.07 fWb, the elementary charge is denoted by ¢ and L =
L + Lk, where Lg is the total geometric inductance of the
loop and Lk is the corresponding kinetic inductance. The
derivation of the Hamiltonian and the exact definitions of all
the quantities are given in Appendix A.

We have written the Hamiltonian using two pairs of
conjugate variables; that is, (ﬁ,(f&) and (71,9). In particular,
the definition of the feed CPN operator allows us to treat the
inductive part of the Hamiltonian. We identify

2

N E;
H, = E,i* + — ( — o)’ = —Ewa—g@2

E; . 5
2 + 2(90 ®o)

@)
as being the Hamiltonian for a phase-shifted quantum har-
monic oscillator, for which the effective mass is m = h> /2Ey)
and the effective angular frequency is w = \/2E,E /h. If we

denote dy = 2E,/E 1)"/#, the corresponding eigenproblem
I:I(p |Wy) = E |y defines the Fock states for the feed

2 do

x H <§0;<ﬂ0>7 3)

0

2
(oI W) = %k !\mdy)™* exp [_1 (w - <P0) }

where k is any non-negative integer and Hj, is the kth Hermite
polynomial. The corresponding energies are given by

Ex = 2E,EL (k+3). 4)

Notice that the canonical commutation relation is [@,71] = i
implying that the effective momentum operator is 7i7i. Defining
the relevant bosonic creation and annihilation operators for the
feed Fock states as a' and 4, respectively, allows us to write
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the total phase difference operator as

E 1/4 ;
s~ Lo ~ ~ . 5
¢ <2EL> (@+a")+go Q)

Using the above-mentioned notation, the Hamiltonian can
be written as

ﬁ: I:I ®ﬁ +ﬁn®l:l¢+ﬁFIN

_Eu,
! {n ® 2 D(igy) + it @ e /2 D(—igp))

E R . n
- J{n ® e 2 D(—igo) + - ® e D(igo)},

(6)

where H, = Ec(i —n @)% I, is the identity operator in the
island CPN basis, I[w is the identity operator in the feed Fock
basis, A = exp[i$] (A_ = exp[—ig])is the raising (lowering)
operator in the island charge basis and D(igo) = expligo(a +

a"], where
— E(/’ 4 (7)
8=\, )

The operator D(i go) is the displacement operator for one mode
in the quantum phase space with ig, being the displacement.
This notation is typically utilized in quantum optics. Finally,
we rewrite the Hamiltonian as

H = ﬁs®ﬁ¢+ﬁn®ﬁ¢+ﬁFIN
+ H ® [D(igo) — 1,1+ A} @ [Dl(igo) — 1,1, (8)

where Hs = Ec(i — ng? — Ej cos(¢ + ¢0/2)
Ej; cos(¢p — ¢o/2) is the Hamiltonian for the original model
with exact phase bias and Hp = —%ei‘/’O/z[EJ,ﬁ+ + Ejn_].
Note that if the total inductance is negligible (L — 0, E; —
00), the system dynamics are accurately described by the
original Hamiltonian acting only on the island degrees of
freedom.

B. System currents

To study the currents flowing in the device, we describe
the temporal change of the expectation value of the feed
charge operator using the corresponding current operator
[ =—(ei /h)[lf] ,i1], where we exploited the usual current
identity applicable for any arbitrary charge operator that does
not depend on time explicitly.>>3 We thus proceed to write
the feed CPN operator as

R 1 4

n=—i—;(@-—a', ©))
480

which allows us to write the general form for the current

operator as

A~

I= —T[H]I ® (@ —ahl. (10)
Exploiting the Hamiltonian derived in the previous section and
utilizing some of the properties of the displacement operator
familiar from the coherent state formalism,*? the current
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FIG. 2. Schematic diagram of the electric currents for the model
used to analyze the Cooper-pair sluice. See text for further explanation
of the current operators.

operator becomes
N el AL AT Atcs
I = i[HB ® D(igo) — Hy ® D'(igo)]

2e (E JE3

1/4
5ot
- 5 ) f, ® @+ ah. (11

Note that the first and third terms of the Hamiltonian in Eq. (8)
do not contribute anything to the current operator due to
commutation. If the total inductance is negligible, the first term
on the right-hand side in Eq. (11) yields the current operator
used in the original model.

The current operator in Eq. (11) can be interpreted in terms
of currents flowing in the system. The operator I describes
the temporal change in the charge imbalance and, hence, the
transfer of charge between the shunt capacitors or the effect-
ive junction capacitors. Due to the device structure, the
charge can be transferred via two separate routes: through the
inductor or through the island, and the total transfer must be
described by 1.

To quantify the argument given above, let us present the
current schematic for the sluice in Fig. 2. In the figure, [,
is the operator for the average current tunneling through the
junctions, I is the operator for the current flowing through
the inductor, and 1, (fz) describes the current flowing to the
junction system from the left (right). Furthermore, we denote
the operator for the current leaving the left shunt capacitor
by f; and for the current arriving to the right shunt capacitor
by I,. By the definition of the feed charge operator presented
in Appendix A, we have I=17 1+ I ] — Il, where we use the
fact that the system of islands is capacitively isolated from any
external current sources. By current conservation, [} = I + I
and, hence, I = fL + 1 ;. Thus, the simple argument given
above about the separation of [ into different current operators
for the system has been shown to be valid. In addition, we have
—1I, = I}, + I,. If the current arriving at the island equals the
average current tunneling through the junctions I, = I, then
the conservation of total charge I =1 implies that I=-1I =
— I indicating that the current operator describes discharging
(charging) of the right (left) shunt capacitor.
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Identifying the current operators for the inductive element
and for the tunneling current across the island is straight-
forward. As described in Appendix A, the inductive current
can be derived by studying the operator for the total flux
penetrating the loop ® = ®ext + LI, and its relation to
the operator for the total phase difference over the SQUIDs
21 d /Dy = § — (2¢/h)L I1. Rewriting the inductive current
operator given in Eq. (AS) yields

; ZeE . 2¢ 3 Hing

L=7 L((p_‘PO)—ﬁ 29
where the last form is just to show that the usual manner
of defining via operator derivatives is also applicable. For-
mulating this current operator in terms of the creation and
annihilation operators allows us to write

~ 2eE
i L

12)

L= [2g0(a +a") + o — o]
2¢ (E,E3\"*.
:;e(%) i, ®@+ah, (13)

which can be identified as the second term in [ in Eq. (11).
Using the operator derivative, we could also identify the first
term in Eq. (11) as stemming from the Josephson part of the
Hamiltonian and, hence, describing the charge passing through
the island. However, due to the above-derived separation
of currents, such application of operator derivatives is not
necessary in order to define the island current operator.

In the adiabatic limit, there is no voltage over the inductor so
that the potentials on the left and right islands are equal. Thus,
there is no potential difference that would induce a change
in the charge imbalance between the left and right leads, and
hence (f ) = 0 at all times; that is, there is no net current
flowing in or out of the shunt capacitors. In this case, we can
define the charge circulating in the loop to be described by
either fL or f,.

III. ANALYSIS

Using the assumption of negligible loop inductance, the
geometric charge transferred adiabatically through the sluice
during one parameter cycle has been theoretically studied in
several references.!223-32:3335-37.39 However, a model enabling
one to use a non-negligible inductance for such transfer
has not been studied previously. We write the geometric
charge transferred by the mth adiabatic state in the usual
manner: %1525

Gum) _
Qujy =

hIm / 3 (M@ ) @)k@))
Y k#m Em(q) - Ek(‘_i)

x (k(g)IVglm(q)) - dq, 14

where |i(g)) is the ith instantaneous eigenstate of the Hamil-
tonian in Eq. (8) and E;(g ) is the corresponding eigenenergy.
We present everything as a function of the point in the
control parameter space denoted by the vector ¢ whose scalar
components are the external control parameters. The integral
is over a contour y in the parameter space. In the case
of cyclic evolution, the contour is closed and the pumped
charge is related to the Berry phase obtained during the time
evolution.'32>26 The pumped charge is fully determined by
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the contour and, hence, it does not depend on the pumping
speed. For analytical calculations, we also define the dynamic
charge carried by the supercurrent as

1/f .
o = /0 dt(m()| 1y 1,(0)Im(0)), (15)

where the pumping frequency is denoted by f.

In the following, we assume that the island is capacitively
symmetric C; = C, = C; and that C, < C,. According to
Appendix A, Hpy can consequently be neglected in the total
Hamiltonian. Furthermore, we assume that the external control
parameters are manipulated slowly enough for the evolution
to remain adiabatic.

A. Perturbative approach to lowest order in g,

Perturbation theory can be applied in the lowest order in
go to obtain analytical information on the properties of the
system. Decomposing the displacement operator yields

D(igo) =1, +igo(@ +a") + 0(gj). (16)

If E, < Ep, gois small and the linear term suffices so that the
Hamiltonian in Eq. (8) is accurately approximated by

A~HAs@l, +1,® A, +igo(Hs — Ap) @ @+ah. (17
Similarly, taking only the linear term in Eq. (11) yields

N ~ N e A A
i= s®]1¢—goﬁ(HB+H£)®(&+&T)

2¢ (E,E3\*.
+{<%> i ®@+ah. (18)

where we have identified Iy = (ei /h)(Hg — H ;) as the current
operator in the original model. For future reference, we denote
the first term on the right-hand side as the zeroth-order island
current operator I ;0) and the second term as the first-order

island current operator [ ;1).

After an analytical calculation, it can be shown that no first-
order perturbative correction in gy emerges to the dynamic or
geometric currents across the island compared with the original
model. Furthermore, the corresponding currents through the
inductor can be shown to be equal but of opposite sign up to this
order. This observation agrees with our previous assumption
that the total temporal change of the expectation value of
the feed CPN operator is zero in the adiabatic limit. See
Appendix B for details of the perturbative calculation. Exploit-
ing higher-order perturbation theory would require a higher-
order expansion of the displacement operator in Eq. (16) lead-
ing to an increasingly more difficult analytical analysis. Fur-
thermore, we wish to study a region where g is significantly
large so that the perturbative approach is no longer practical.
Hence, we resort to numerical analysis below to study the
current contribution arising from the finite loop inductance.

B. Numerical analysis

We begin our analysis by discussing the physical energy
scales. Assuming that C, is nearly negligible, the charging
energy scales are determined by Ec ~ ¢*/C; and E, ~
4e?/ (Cy + Cy) (see Appendix A). To establish a comparison
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with recent studies, 233393739 we assume that E /kp = 1K,

where kp is the Boltzmann constant. This defines the junction
capacitances C; = C; = C, to be of the order of femtofarads.
We study a range from 0.05 to 500 fF in the shunt capacitances
C,. We can assume, for example, that the shunt capacitances
are primarily due to capacitive couplings to a bottom ground
terminal via bonding pads. If the device is constructed on
a 500-pum-thick silicon wafer with square-shaped pads, the
equivalent range in the length of the side of the pads is from
15 pum to 1.5 mm yielding experimentally relevant values.
Using the above-mentioned capacitances, the maximum feed
energy scale is limited by C; so that E, decreases from 4E¢
to 1072 E¢ with increasing pad capacitance.

The inductive energy scale is determined by E; =
1/ L)(%)2 (see Appendix A). We approximate the geometric
inductance of the wire by L ~ ul, where u is the perme-
ability of the wire material and [ is the length of the large
superconducting loop. The kinetic inductance can be written
in the BCS formalism as

Lo _ (L) Rah 1
K7 \w)/ 272A tanh (A /2ksT)’

where w is the width of the superconducting wire, Ry, is
the sheet resistance of the wire in the nonsuperconducting
state, A is the superconductor energy gap, and 7 is the
wire temperature.*>** We assume that T < T,, where T, is
the critical temperature of the superconductor, and that the
wire is made of aluminum such that w is of the order of a
micrometer.2® In addition, we assume that the thickness of the
wire is of the order of tens of nanometers or larger, limiting the
kinetic inductance to be of the same order than the geometric
one or smaller. The feasible length scales for the loop range
between 10 um and 1 cm corresponding to values between
103E¢ and E¢ in the inductive energy scale.

The standard control parameter cycle utilized in
Refs. 32, 33, 35-37, and 39 is adopted and the device is
operated in the charging regime E¢ > max{E,;,E;.}. The
parameter cycle is presented in Fig. 3 (see Appendix C for a
detailed description). Furthermore, the normalized gate charge
ng is manipulated near 1/2 so that the required island states
are limited near this value. In the original model, using only
the two closest island CPN states |[n = 0) and |n = 1) was
sufficient. We conduct our simulations using a basis with
an even number N; of island CPN states such that the basis
consists of N; /2 pairs of states [n = 1 — i) and |n = i), where
i=1,...,N;/2, and N, feed Fock states with the lowest
energies.

According to Eq. (8), the interesting features are char-
acterized by two factors: the energy gap Ay~ /2E, E;
between the states in different Fock subspaces and gy =
[E,/(32E)]'/* dictating the strength of the coupling between
the island and feed degrees of freedom. To assess the impli-
cations of these features with respect to the original model,
we consider three different points in the (Ey, E,) space. First,
we establish a base point corresponding roughly to the energy
scales used in the experiments of Ref. 26 using E; = 10?E¢
and E, = Ec. Second, we depict the point of smallest A,
within the feasible energy scales using E; = Ec and E, =
1072 E¢. Third, we illustrate the point of largest gy using E; =
Ec and E, = 4E¢. We perform the simulations for all values
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max
Eg

min
EJl ...........................

FIG. 3. (Color online) Time dependence of the control parameters
Ej, Ej,, and n, during a Cooper-pair pumping cycle.

of the flux bias and retrieve a pumped charge close to the usual
cosine dependence Qg = 2e(1l — 2€ cos ¢p) + O0(€?), where
€ = ETN/ETX k € {l,r}.>% Identical SQUIDs are assumed
and we exploit the parameter cycle given in Appendix C.
The flux bias dependence of the pumped charge at the three
selected parameter points is given in Fig. 4(a) and the charge
differences between the base point and the other two points in
Fig. 4(b).

The charge transferred at the base point is equal to the
one given by the original model within the accuracy of
the simulations. Note however that the accuracy of both
simulations is orders of magnitude lower than the metrological
accuracy 1073, Furthermore, the charges transferred through
the island and through the inductor were found equal in all
the simulations validating the assumptions made about the
adiabatic limit in Sec. II B.

Near the phase values ¢y = w/2 + Nm, where N € Z, the
pumped charge is robust against variation of the additional
parameters included in our model whereas at ¢y = N, the
absolute difference between the charges reaches its local
maxima; see Fig. 4(b). Furthermore, averaging over the flux
bias yields a vanishing charge difference. Both of these features
are likely caused by the shape and symmetry of the parameter
cycle. The two quantum degrees of freedom in our model are
coupled by the tunneling term in the Hamiltonian. A crude
estimate would thus state that the feed degree of freedom acts
as if the original model obtains a reshaping of the parameter
cycle for the SQUIDs explaining the vanishing effect on the
pumped charge at approximately ¢y = w/2 4+ N, the same
point where the vanishing effect of the residual Josephson
energies appeared in the original analytical model. Note
that treating the inductance classically within the original
model fails to capture the above-mentioned dependence on
the external flux.¥ The observed weak influence of altering
the parameters is especially remarkable since, according to
Eq. (14), the geometric charge is not affected only by changes
in the state carrying it but also by changes in all the other states.
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" Analytical result

$o

3 32

34

AQG/R

FIG. 4. (Color online) (a) Pumped charges and (b) charge differences as a function of the scaled external magnetic flux bias ¢y = 27w Doy / Pg.
We use Ec/kg = 1 K, EJ*/Ec = E*/Ec =0.1, E}}"/Ec = E}"/Ec = 0.003, nj* = 0.8, ny™ = 0.2. The parameter points in (a) are
E; = 10?E¢ and E, = Ec (basepoint), E;, = Ecand E, = 1072E¢ (point 2), and E; = E¢ and E, = 4E (point 3). The dashed line depicts
the approximate analytical result derived for the original model and the dashed rectangle indicates the area of the inset. In (b), we give the
geometric charge differences between the base point and point 2 and between the base point and point 3 (from bottom to top at ¢y = 7). For

the simulations, we use N; = 2 and Ny = 25.

We study the instantaneous energy level structure and
eigenstates emerging from our model focusing near the point of
maximum robustness; that is, we select the external magnetic
field to yield ¢y = 7 /2. According to the original model, this
point is of special interest as the lowest-order effect of the
residual Josephson energy on the pumped charge vanishes.
The energy level structure at the different parameter points
is given in Figs. 5(a)-5(c). For the probability distribution of
the ground-state population to different basis states P(n,k),
where n refers to the island CPN state and & to the feed Fock
state, we only show the elements that exceed 1072 at any
time instant in Fig. 5(d). At the base parameter point, there

(a)

25t
20
o
2
=15
Sy
108
0 02 0.4 0.6 0.8 1
tf
(c)
o
=
Ry 4
)l
0 02 0.4 0.6 038 1
tf

is hardly any mixing between different feed Fock subspaces
which are separated by a large energy gap. Restricted to
one such subspace, the populations resemble the ones given
by the original model. At the second parameter point, the
subspaces are no longer separated by a large gap and the
energy diagram is greatly affected. In particular, the higher
energy levels obtain a complicated structure having multiple
avoided crossings where the energy gap is very small during
the cycle. The ground-state distribution is still similar to that
in the previous case, but the other adiabatic states change
significantly. We give the first excited state in Fig. 6, showing
that the state remains isolated to the first excited feed Fock

b 02 04 0.6 0.3 1

tf
(d) 1 >
P(0,0) P(1,0)
0.8
.g 0.6
LS
2 o4t
o
0.2 E
P(1,0) P(0,0)
% 0.2 0.4 0.6

Ltf

FIG. 5. (Color online) Energy level structures and ground-state probability distributions of the sluice as a function of scaled time ¢f,
where ¢ is time and f is the pumping frequency. Lowest instantaneous energy levels for (a) £, = 10*E¢ and E, = E¢, (b) E; = Ec and
E, =107Ec, and (c) E; = Ec and E, = 4E during a pumping cycle detailed in Appendix C. The penetrating magnetic flux is selected so
that ¢y = 7/2 and the other parameters are equal to the ones used in Fig. 4. The distribution of the ground-state populations P(n,k) on different
basis states (see text for further details) is given in panel (d). The differences in the distributions between the different parameter points are
smaller than the line width in the figure and, hence, we only present the distribution for the base point for clarity. We use N; = 4 and Ny = 25.
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FIG. 6. (Color online) Distribution of the first-excited-state populations P(n,k) on different basis states (see text for further details) for
E; = Ec and E, = 1072E as a function of scaled time 7f, where 7 is time and f is the pumping frequency. Other physical parameters are
the same as in Fig. 4 with ¢y = /2. For the simulations, we use N; = 4 and Ny = 25.

subspace during the time evolution except in the vicinity of
the avoided crossings where some of the population leaks to
the other feed Fock subspaces. Note especially that the first
excited state is no longer confined to the same Fock subspace
as the ground state which may be significant for nonadiabatic
and dissipative dynamics. At the third parameter point, the
parameter gy is more than four times that at the base point.
However, the effect of this increase on the level structure
seems small and the most significant changes, including the
emergence of the avoided crossings at the higher levels, can
be explained by the diminishing of A;. The ground-state
distributions for the third parameter point and the base point are
very similar [see Fig. 5(d) for the distribution at the base point],
but a closer inspection reveals a small deviation between the
two near the degeneracy points. This was to be expected as the
terms involving the displacement operator in Eq. (8) couple to
the Josephson terms of the tunable junctions.

Since the robustness of the geometric charge carried by
the ground state has been shown above, we turn our attention
to the requirement of energy separation. Both Landau-Zener
transitions>3%4 and noise’>*>¥747 may excite the system
causing the transferred charge to drop. In the original model,
the parameter cycle was designed such that the two lowest
states were well separated from the rest of the eigenspectrum.
In Fig. 5(a), this assumption clearly applies for our model,
too. However, the assumption is broken if A is of the order
of the lowest energy gap within a single Fock subspace as
shown in Fig. 5(b). Hence, using the same driving speed
as in the original model does not necessarily mean that
the transitions are localized at some well-defined avoided
crossings similar to the ones in Fig. 5(a). Furthermore, the
energy separation between the higher states is very small at
the emerging avoided crossings, indicating that a complex
process of excitations involving multiple levels may occur.
This is potentially detrimental for pumping.

IV. CONCLUSIONS

We introduced a model for the Cooper-pair sluice utilized to
observe the features of geometric charge transport. Our model
allows the inclusion of a nonvanishing loop inductance extend-
ing the theory beyond the usually applied exact-phase-bias pic-
ture. The Hamiltonian for the device was derived by identifying

relevant pairs of conjugate operators, and the current operators
for the different elements of the system were formulated.

The methodology used to derive the model can be straight-
forwardly adapted to more complicated systems. A direct
application of the methodology includes the proposal for
geometric quantum computing using a loop with two islands
separated by SQUIDs.?’ For this device, the practical operation
window in the extended parameter space should be carefully
surveyed since the ground-state degeneracy might be lifted,
invoking error for each holonomic gate. In addition, we
generally expect that using our methodology for modeling
dissipative systems yields a more exact description of the effect
of the environment. Applying the full quantum description is
especially important for systems where the flux noise reveals
important features, such as the dissipative currents flowing in
the sluice,?® or where it becomes the dominant noise source
due to inbuilt robustness against charge noise, as is the case
for the transmon qubit.*3

We analyzed the charges carried by the adiabatic states
during a pumping cycle both analytically and numerically. We
showed that the difference in the transferred charges between
our model and the exact-phase-bias picture is of second order
or higher in the strength of the coupling between the island
and feed degrees of freedoms. Within experimentally feasible
energy scales, we retrieve the known cosine dependence of
the geometric charge with respect to the external magnetic
flux with good accuracy. The geometrically transferred charge
differs slightly from the original model when the additional
quantum degrees of freedom are included using experimentally
relevant values. The effect of altering the additional parameters
included in our model on the charge depends on the external
magnetic flux bias such that robust bias points emerge. The
dependence differs from what the classical treatment of the
loop inductance within the original model predicts and, hence,
emphasizes the necessity of the quantum approach. In addition,
applying the full quantum picture does not necessarily lead
to a decreased geometric charge but the charge can also be
increased by an appropriate selection of the loop inductance,
the shunt capacitances, and the magnetic field. Although
the charge is only weakly influenced by the changes in the
loop inductance, future experiments may be able to probe
the variation using experimental setups based on current
state-of-the-art methods.>>26-38
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Based on the geometric nature of the pumped current,?!?3

the sluice and its generalizations have some potential to be used
as quantized current sources for metrological applications.
However, the metrological source requires extreme accuracy
such that the maximum relative error is ~107%. The analysis
presented in this paper shows that applying our model is neces-
sary in the studies of the operation and feasibility of the sluice
as such a source.'” This is because experimentally relevant
variations in the additional parameters included in our model,
especially the self-inductance of the loop, have an effect on the
pumped charge that is orders of magnitude larger than the rel-
ative error required to realize a metrological current standard.

Finally, we studied the instantaneous energy level structure
and the probability distributions of the instantaneous eigen-
states to different basis states near a maximally robust bias
point. The energy separation of the feed Fock subspaces largely
determined the instantaneous energies such that a complicated
array of avoided crossings emerged when the separation
was small. The ground state remained significantly robust
whereas the higher states were prone to changes. Changing the
additional energy scales emerging in our model was shown to
be able to cause significant changes in the system energies.
In particular, the energy separation between the ground state
and the first excited state may be diminished and temporally
altered, implying that the time-local Landau-Zener transition
probability is generally increased and the transitions are not
necessarily localized at avoided crossings similarly to the
original model. Drastic adjustment in the driving speed may
be required to experimentally remain in the adiabatic limit.
In addition, reduction in the energy separation between the
ground state and the first excited state potentially causes the
environment-induced transitions to become more prominent
between these states.
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APPENDIX A: CONSTRUCTING THE DEVICE
HAMILTONIAN

We denote the Cooper-pair number (CPN) operators for
the charge in the tunable SQUID junctions by 7i;,7, and for
the charge in the shunt capacitors by 7,7, ,, where the
subindices [ and r denote the left and right capacitive elements,
respectively. The CPN operators for the superconducting
islands can then be written as A = A, — fi;, i, = A; — iy, and
i, = —f, + A, as detailed in Fig. 1. In the following, we
refer to 71 as the island CPN operator and define

ﬁ _ _ ﬁl + ﬁr ﬁ(p,l + fl(p,r

2 2 2

as the feed CPN operator describing the average charge
imbalance between the superconducting islands that constitute
the left and right leads. The only way to affect the imbalance
is by charging the shunt capacitor system corresponding
to charge transport from one capacitor to the other or by
charging the capacitive junction system corresponding to
charge transport between the effective junction capacitors.

The system of superconducting islands is electrically
isolated so that the net charge is constant (i.e., A+ 7; +
i, = Ay — g1 = Aﬁr, where A is constant in time and
fi; is a tensor product of the identity operators of the
individual islands). The conservation reduces to a comparison
of the shunt capacitors since the junction charges cancel.
This means that if some charge is added to one shunt
capacitor, an equivalent charge must be removed from the
other. Hence, we can rewrite i, = —i, + i, + Al and 2 =
(A — ,)/2 = (A 4+ 74,)/2 — Ay — (A/2)17. We thus obtain
the CPN operators for the left and right islands as 7; =
A—n/2+(A/2)0rand A, = = — /2 + (A/2)[;. Note that
for the charge transport, the total charge in the system is
irrelevant and can be taken to zero without loss of generality;
that is, Ay, — gy = A]TT = 0. We adopt this convention. In
addition, we omit explicitly writing all identity operators in
the following presentation of the Hamiltonian.

Deriving the charging Hamiltonian for the device is a
straightforward task using the CPN basis formulation for
the system of islands. After applying the above-mentioned
transformations, the charging Hamiltonian assumes the form

Ec = 2é°

He = Ec(i — ny)? + E,n* + Hr, (A1)
where we have
|
. (2C, + Co)2C, +C1 4+ C))
4{CgClC, + C(%(Cg +C 4+ C) + Cy[2C,Cr 4 Co(Cr + C,)]}’ 42)

Co(Cr + C) +2Cy(Cy + C1 + C,)

E, =2¢*

© CeCiC, + C2(Cy + €+ C) + CoR2C/C, + Co(Cr+ CT’

Here C, is the gate capacitance, C, is the capacitance of one of the identical shunt capacitors and C;,C, are the internal
capacitances of the tunable junctions. Furthermore, the normalized gate charge is n, = V,C,/(2e), where Vj is the externally

controlled gate voltage. The final term in the Hamiltonian is

2 A 2 2 AL
Hpy = Eyngn + Ezng + Ezngn + Esfin,

(A3)
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where the prefactors are

El 2262

PHYSICAL REVIEW B 86, 184512 (2012)

Cg(chj + Cl + Cr)

2{C,CIC, 4 C2(Cy + Ci + Cp) + Cy[2C1C, + Co(Cr + CI}

4C1Cr - Cg(Cl + Cr) + 2C¢(Cl + Cr - Cg)

E, = 2¢% ,
27T 4C,CiC + CACy + i+ C) + C2CIC, + Co(Cr + C)
Ex = 25 2C,(Cr — C))
T C,CiC, + C2(Cq + C; + Cy) + Cy[2C,C, + Co(Cr + C]’
2C, + Co)(C; — C,
Ey =2 (BCy + GG — &) . (Ad)
C,CiC, + C2(Cy + Cr + Cy) + Cy[2C,C, + Co(Cy + )]
[
Presenting the Hamiltonian in this form showcases its prop- the operator for the inductive current assumes the form
erties. If the island is capacitively symmetric C; = C, = Cy, o
we have E3 = E4 = 0 so that the first-order feed term and the I, = 2—0 Z(go o), (AS5)
b1

term coupling the island and feed degrees of freedoms vanish
from the charging Hamiltonian. Furthermore, the remaining
prefactors become

2C, + Co)(Cy, + Cy)

EC = 262 > s
2[C4CF + CACy +2C)) +2C,Cs(Cy + Cy)]
E — 202 2(CyCy + Cy(Cy +2Cy))
¢ CyC3 + C2(Cy +2Cy) +2C,Cy(Cy + Cy)’
E, = 262 C,(C, +Cy)

CyC2 + CA(Cy +2C)) +2C,Ch(Cy + Cy)’
2C% — C4Cy + Cy(2Cy — Cy)
2[CyC2 + CA(C,y +2C,) +2C,Ch(Cy + Cp)]’

E, = 26°

If we assume that the gate capacitance is vanishingly small
compared to the shunt capacitance, the first-order island charge
term becomes negligible. The remaining term E2n§ in ﬁpIN is
proportional to the identity operator, and hence only induces
a time-dependent shift of the zero point of the energy that can
be neglected.

The inductive part of the Hamiltonian stems from the
inductive energy I:Iind = %LIA L2 where L is the total inductance

of the loop element and [, is the operator for the current
passing through it. Note that in addition to the geometric
inductance Lg, L = Lg + Lx also includes the kinetic
inductance Lk which can potentially be significant for a
superconducting wire.** The total magnetic flux threading the
loop can be expressed as a sum of the applied external flux
and the flux induced by the supercurrent due to the geometric
inductance ® = ®uy + Lg I; . Furthermore, the operator for
the total phase difference over all the weak links in the
loop ¢ is related to the total flux operator by 2 d /Dy =
&+ @, — Qe/m)Lil, = ¢ — (2e/WL Iy, where ¢, and ¢,
are the operators for the gauge-invariant phase differences over
the left and right SQUIDs, respectively. The kinetic inductance
adds to the total phase difference over the loop according to
the ac Josephson equation,** and the directions over which the
phase differences and the inductive current are calculated are
given in Figs. 1 and 2. Using the above-mentioned identities,

where @y = 2w ey /Py and we denote the flux quantum by
@y = h/(2e). Thus, the inductive Hamiltonian can be written
as

. E
Hia = =@ — 90)”. (A6)
where we denote E; = (1/L)(%‘;)2.

Finally, the Josephson part describing the tunneling through
the junctions is given by**

H; = —Ej, cos . — Ej cos @y, (A7)

where Ej;(®;) and E;.(P,) are the Josephson energies for
the left and right tunable junctions, respectively. Starting from
the operators for the phase differences over the SQUIDs, we
perform a transformation to a new pair of phase operators such
that ¢ = ¢, + @, and ¢ = (@, — ¢1)/2. This transformation
is well-founded since the canonical commutation relation
between the charge and phase operators of the individual
junctions yields [¢,4] = i indicating that ¢ is the island phase
operator and [p,n] =i indicating that ¢ is the canonical
conjugate of the feed CPN operator.*’ If the average charge
imbalance between the left and right leads changes by one,
the occupation in the eigenbasis of 71 subsequently changes.
This implies charge transfer in the system and allows us to
monitor the system currents. With the transformed phases, the
Josephson part assumes the form

ﬁjz—EJ,cos<§+<$> —E,mos(%—é). (AB)

APPENDIX B: PERTURBATIVE ANALYSIS

The unperturbed states |k) |\V,,) are defined via the eigen-
problem

(As @1, +1, ® A,11k) |¥,)
=[x + V2E,EL (n+ 5) ] 1K) [W,)

where |k) is an eigenstate of Hg and ¢ is the corresponding
eigenenergy. Denoting the adiabatic states and energies as
|®y,) and Ey, corresponding to the knth unperturbed state,
the inner products relating to the different current elements
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mentioned in Sec. III A become

. . B L Jm Jm
(@ FV1® ) = (kI 51 p)Sm + 80— Y (kI s|) (I 5] p) + Sm—1
ri=e eZ[: €p—€e+J2E,EL € —¢€ —J2E,EL
m+ 1 m+ 1 2
+ + (Sn m +0 ’ Bl
<6p_61_\/m pp—— waEL) , +1i| (83) (BI)
and
A e A A
(@l 1} 1@ ) = —go (kILH + HL1Ip) (ot + Vm + T8umi) + O(g5). (B2)
and

2E,E;
(€p — €)* —2E,E; Sn.m h

<q>kn|iL|q>pm> = <k|iS|P> (SE E3) Sk p(\/_gn m—1+~vm 811 m+1) + O(go) (B3)

Using Egs. (B1) and (B2), the dynamical current through the island carried by |®y,) can be readily written as /; (Dokn)

(Ppnl 1| Prn) = (k| 5lk) + O(g2). Similarly, Eq. (B3) allows us to write 1\°*" = (®y, | IL|®p,) = — (k| Fslk) + O(gd).
In order to study the geometric currents, we need the temporal derlvatlves of the adiabatic states. The corresponding inner
product is

v m + 16n.m+1 + \/%Sll,m—l

. h PN
D, |0 | Prn) = (plk)Su.m + 80— D{lIs|k
(® |34 @i} = (P15, ger[(P|>(|s| >(6k_el+m p——

l

)+ 1) pl sty

X( \/_8nm 1 \/m+18n,m+1 >:|_|_g @a( <p|iS|k >«/—5
TG+ IEE. e —a— JIE.E Y\ e — e, + V2E,EyL ot

h (plLs|k) ) 2
+80—-9, méy m—1 + O , B4
goe I(Gk—fp—\/m \/_ ,m—1 (go) (B4)
where the dot indicates time derivative. Using Eq. (B4) and the above-mentioned current elements, the geometric current through
the island becomes

; (D | 71D k|1, .
[ = 21Im ) M@pmw,@w =2hIm ) M<p|k> +0(g), (B5)
Ekn - Epm € —€p
p.m pF#k
where >_* denotes a double summation that does not include the term for which p = k and m = n simultaneously. Calculating

the inductive element in a similar manner, we obtain IiG’k") = —II(G‘k") up to first order.

APPENDIX C: PARAMETER CYCLE

The parameter cycle consists of six equivalently long legs designed to maintain good charge quantization per cycle. In the
beginning, both SQUIDs are closed so that their residual Josephson energies are E7" and ET™", and the gate charge is n?“‘
Nonzero values for the residual Josephson energies are typically used to include the effect of nonidealities stemming from the
manufacturing of the junctions and lead to a nonvanishing supercurrent flowing through the device. During the first stage, the left
SQUID is opened by bringing its Josephson energy linearly to E7™*. During the second stage, the gate charge is linearly increased
to n** drawing charge from the left lead to the center island. The left SQUID is then linearly closed and the right SQUID opened
ina sumlar manner bringing its Josephson energy to E™*. During the fifth stage, the gate charge is brought linearly back to nmm
pushing the charge to the right lead. Finally, the right SQUID is linearly closed and the system has completed a closed loop in
the external parameter space.
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