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Striped phases, in which spin, charge, and pairing correlations vary inhomogeneously in the CuO, planes, are
a known experimental feature of cuprate superconductors, and are also found in a variety of numerical treatments
of the two-dimensional Hubbard Hamiltonian. In this paper, we use determinant quantum Monte Carlo to show
that if a stripe density pattern is imposed on the model, the d-wave pairing vertex is significantly enhanced. We
attribute this enhancement to an increase in antiferromagnetic order which is caused by the appearance of more
nearly half-filled regions when the doped holes are confined to the stripes. We also observe a w-phase shift in the

magnetic order.
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I. INTRODUCTION

Cooper pairs in conventional BCS superconductors are
typically envisioned to have a large spatial extent characterized
by the coherence length &, which is many hundreds of lattice
spacings in elemental, metallic superconductors. At the other
extreme is the BEC regime, where much smaller Cooper
pairs form into bosonic particles which subsequently can
Bose-Einstein condense into a superfluid phase. The crossover
between the BCS and BEC limits has been much explored.

If real-space pairing on small length scales is favorable
energetically, a natural question to ask is why more than two
fermions do not bind together. Indeed, the competition of
such “phase separation” with superconductivity was a central
theme of investigation in early studies of Hamiltonians such
as the two-dimensional (2D) fermion Hubbard*'? and ¢-J
(Refs. 13—18) models in the context of cuprate superconduc-
tors, which have short coherence length. Upon doping away
from one particle per site, a spatial division into half-filled
antiferromagnetic (AF) regions and areas where the hole
concentration is high occurs. The tendency to phase separation
was found to be especially great in the 7-J model, and
somewhat less so in the Hubbard model. Roughly speaking,
for small hole doping in the strong-coupling limit, such phase
separation can be envisioned to arise because it minimizes the
energy by preserving the largest number of antiferromagnetic
bonds. On the other hand, when ¢ >> J and the amount of holes
is large, phase separation was shown to occur as to minimize
the doped hole kinetic energy.'*

A compromise between complete phase separation into dis-
tinct two-dimensional regions, and spatial homogeneity which
would be favored by longer-range Coulomb interactions,'**°
is the possibility that the doped particles form quasi-one-
dimensional patterns in which hole-rich and hole-poor regions
alternate. Magnetic domain lines were observed in inhomo-
geneous Hartree-Fock studies very early in the history of
cuprate superconductivity. “Charge domain lines” were first
reported in a multiband model which included both the copper
d and oxygen p orbitals,’' and subsequently in the single-band
Hubbard Hamiltonian.?>??
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Such striped patterns have also been observed
experimentally.z“’25 In La; _,Ndy4Sr,CuOy, there is a sup-
pression of superconductivity at x = 1/8 associated with a tilt
pattern of oxygen tetrahedra and charge/spin domain walls.
Away from x = 1/8, domain-wall ordering is weaker, with
coexisting superconductivity.

The relation between pairing and stripes is still contro-
versial. The formation of charge stripe order is related to an
increase in the resistance perpendicular to the CuO planes,
frustrating the formation of bulk superconductivity, as denoted
by a sharp decrease of the critical temperature®® T, resulting
in values as low as 4 K. As stripes are perpendicularly
stacked in each successive CuO plane, if the Josephson
coupling between stripes in the same plane is negative, the
coupling between stripes in different planes is destroyed.?’?8
In LaBaCuO, on the other hand, angle-resolved spectroscopy
and transport measurements suggest a positive correlation
between 2D pairing and stripes.?-*

There is an order-of-magnitude drop in the in-plane
resistivity p,, when the spin order occurs at Ty, ~ 42 K. Fur-
thermore, there are indications of true 2D superconductivity
for T < Tpxr ~ 16 K when p,;, goes to 0.26-3°

A recent exciting development is the direct evidence of
stripes in YBa;Cu30,. Nuclear magnetic resonance measure-
ments show that high magnetic fields induce charge order,
with the same period of four lattice spacings as in LaBa-based
cuprates.’® Zero-field diffraction with resonant soft**3> and
hard®® x-ray scattering observed incommensurate charge order
with a period around 3.2 lattice spacings. These experiments
seem to indicate that stripes are an intrinsic phenomena in the
cuprates, and that at least incipient charge ordering can be seen
even in compounds with larger critical temperatures.

This has led to a large set of theoretical studies of charge-
ordered patterns to refine and improve upon the initial mean-
field treatment.’’** Given the complexity of the question of
superconductivity even in the homogeneous model, it is not
surprising that the details of the interplay with stripe formation
should be challenging.

A recent calculation within the dynamical clus-
ter approximation** (DCA) provided detailed information
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concerning pairing correlations amidst static stripes, and
revealed a rich competition between an enhancement of the
pairing interaction and a suppression of the noninteracting
susceptibility. The latter effect occurs as a consequence of
the formation of Mott regions away from the stripes, and a
resulting suppression of quasiparticle weight. The two effects
combine to give a nonmonotonic evolution of the transition
temperature with the stripe modulation strength.

In this paper, we undertake determinant quantum Monte
Carlo (DQMC) studies of stripe formation in the two-
dimensional Hubbard model. The DQMC method comple-
ments the DCA approach, working in real space rather than
momentum space. It is possible to study somewhat larger
clusters with DQMC with, however, an off-setting greater
restriction to the accessible temperatures. The key results
of our work are an enhancement of antiferromagnetic order
by charge modulation, and a w-phase shift above a critical
threshold of the stripe potential. Accompanying this larger
magnetic order is a stronger signal of d-wave pairing in the
associated superconducting vertex, although we are not able
to lower the temperature enough to cross below the transition
temperature.

II. HAMILTONIAN AND METHODOLOGY

We study a two-dimensional repulsive Hubbard Hamilto-
nian in which stripes are introduced externally via a raised site
energy Vp on a set of rows of period P:

A==t Y (e, + i)+ U Y nigniy
(ij) o i

—u Y (g A m) Vo > (g +miy). (1)

iyeP

Here, t = 1 is the intersite fermion hopping between near-
neighbor sites i, j on a square lattice, U is an onsite repulsion,
n is a global chemical potential, and V; is an additional
onsite energy imposed on a set of rows i= (i,,i,) with
mod(i,,P) = 0. When P = 4, this choice produces the spin
and charge patterns postulated based on neutron scattering
studies”*?> and shown to arise in density-matrix renormaliza-
tion group (DMRG) studies on the #-J Hamiltonian.>

This Hamiltonian does not, of course, address the issue
of spontaneous stripe formation in a translationally invariant
system, nor does it acknowledge the tendency of charge
domain walls to fluctuate. Nevertheless, it allows us to examine
the nature of spin and pairing correlations in the presence of
a set of preformed lines of reduced charge density, and is an
appropriate approximate model in the limit where the energy
scale of stripe formation is considerably greater than that of
pairing.

Most of our results will be for 16 x 16 lattices with P = 4,
so that each stripe (row with V{ term active, blue filled circles
in Fig. 1) is separated by three rows where the V| term is
not present (empty circles in Fig. 1). The entire 16 x 16 site
system accommodates four stripes for this P = 4 case. We will
also analyze finite-size effects and present a smaller amount
of data for pairing correlations at other periodicities P. Most
of our results will be for a total density p = 0.774 averaged
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FIG. 1. (Color online) 16 x 16 lattice with period P = 4, sites
with Vj active are depicted in blue (filled circles), whereas the
interstripe sites are red (empty circles).

over the entire lattice. This value was chosen because it allows
for the exploration of a broad range of densities on the stripe
and between stripes, and also because certain experimentally
observed characteristics of the striped phase, such as the
“m-phase shift” of the spin correlations when traversing a
stripe, are absent at some other fillings.

In this P =4 case, we expect the charge order to be
modulated along the y direction with the same period four,
and the spin order has a period twice as large as a result of
the m-phase shift (see below), also observed in experiments.
Therefore, x-ray and neutron diffraction experiments are
expected to show peaks at Qco = 27”(0; +268) and Qgo =

27”(0.5; 0.5 & 6).243151 respectively. The value of § is doping

dependent in the La,_,Ba,CuQOy4 family?' and is assumed
to be 1/8 for doping higher than 0.125,°>°3 in agreement
with the stripe sketch in Fig. 1. Some experiments, however,
displayed incommensurate charge stripes with § smaller than
expected.’!*

Our methodology is determinant quantum Monte Carlo
(DQMC).>>>% In this approach, the quartic interaction term
is replaced by a coupling of the local z component of spin
to an auxiliary field.”” The fermion degrees of freedom are
integrated out analytically, leaving a Monte Carlo over the
auxiliary field. In the process of eliminating the interaction
term, the inverse temperature § is discretized. We choose the
discretization mesh At = 1/8¢. The resulting Trotter errors
are typically only a few percent, and their elimination is of
consequence only if subtle changes in short-range correlation
functions are of interest.’®>° In DQMC, the Trotter errors
are typically smaller than accessible statistical errors on
long-range spin, charge, and pairing correlations at the lowest
temperatures.

The stripe potential Vj, breaks particle-hole symmetry so
that there is a sign problem® for all fillings. Thus, we
can not obtain ground-state properties as can be accessed,
for example, in the half-filled homogeneous system or the
attractive Hubbard Hamiltonian at any filling. A contour plot
of the sign for p =0.774 and U =4 for a 16 x 16 lattice
is shown in Fig. 2. It can be seen that the sign problem
is no worse than in the doped, homogeneous case where
one can already discern significant trends concerning the
superconducting correlations.®!
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FIG. 2. (Color online) Contour plot of the sign as a function of Vj
and B for a 16 x 16 lattice with U = 4 and p = 0.774. The contours
are basically vertical, indicating that the sign problem is independent
of Vy. However, for V,, ~ 4, there is a modest improvement in the sign.
This is the potential for which the interstripe density goes through
half-filling.

We will show results for the spin and (d-wave) pair
correlations

coin®) = (S5iST). 87 =iy,
Capani) = (A i AL, ©)

Aoy = i€y = sy + ey =gy
The quantities cepin(i) and cgpair(i) do not have complete
translation invariance owing to the presence of the stripes.
They will depend on the row index iy, for example, whether
mod(i,,P) =0 so the row has a reduced density or for
mod(i,,P) # 0 on the distance from the reduced density
stripe.

In a phase with long-range spin or pairing order, the
appropriate correlation function would approach a constant
value asymptotically as |i| — oco. Indeed, precisely this is seen
in the ground state of the half-filled Hubbard model which
has long-range antiferromagnetic order’®? and the attractive
Hubbard model at a range of fillings.® It is still an open issue
as to whether ¢, p.i:(i) is nonzero at long distances when the
homogeneous Hubbard model is doped away from half-filling
because the sign problem prevents attaining the ground state
in the doped case.

Given this limitation on the simulations, it is important to
develop methods which extract the maximal useful informa-
tion about the tendency to order at temperatures above the
putative superconducting phase transition. To this end, one
introduces a somewhat more sensitive measure of pairing by
considering the pair-field susceptibility P; and its associated
vertex. To define P;, we first extend the definition of the equal
time pair correlation function cgpair(i) to allow the insertion
and removal of the Cooper pair to be separated in imaginary
time. P, is the sum over all spatial sites i and integral over all
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imaginary-time T separations of ¢y pir(i,7):

Capain(i,T) = (A1, (DAL0)),
Al (1) = e A0, 3)

B
Py = E / Cdpair(i’f)d7~
f 0
i

We also define the uncorrelated pair field susceptibil-
ity P; which instead computes the expectation values of
pairs of operators prior to taking the product, with ex-
pressions such as (Ci+j¢(f) Ci+jT(7:) chT(O) CjTi(O)) which ap-
pear in evaluating the P; in Eq. (3) being replaced by
(€ig () ¢] O iy (D) ], O)).

P; includes both the renormalization of the propagation
of the individual fermions as well as the interaction vertex
between them, whereas P, includes only the former effect. In
short, in DQMC, the averaging over the Hubbard-Stratonovich
field replaces the interaction with the one-body potential by
the original electron-electron interactions, so that the order of
averaging and multiplying the operators can be used to control
which many-body effects are included.

By evaluating both P; and P, we are able to extract®' the
interaction vertex I";:

r 1 1 @
¢ P, d ?d '
If Ty P, < 0, the associated pairing interaction is attractive. In
fact, rewriting Eq. (4) as

Py

PZ—_ 5
TP, )

suggests that 'y Py, — —1 signals a superconducting instabil-
ity. This is the analog of the familiar Stoner criterion U xo = 1,
which arises from the random phase approximation expression
X = xo/(1 — U xo) for the interacting magnetic susceptibility
x in terms of the noninteracting yo. We will discuss this
criterion in more detail in the coming sections.

III. RESULTS

When the total density, averaged over the entire lattice,
is fixed, the densities on and in-between the stripes depend
on Vj as shown in Fig. 3 for p = 0.774 and 0.875. V, =0
corresponds to the homogeneous lattice, and the stripe and
interstripe densities are equal there. As Vj increases, charge
is driven off the stripes until, ultimately, for Vp > 10, the
stripes are nearly empty. The fermions flow into the interstripe
regions. Their density rises, going through half-filling at V ~
6, and asymptotically increasing to a bit over unity for large
Vo for p = 0.774. If the average density on the entire lattice
were p = 3/4, then, for P = 4, the interstripe regions would
be precisely half-filled when the stripes are completely empty.
For p = 0.875, the interstripe density crosses half-filling at
Vo & 3 and approaches p ~ 1.2 as Vj, increases.

In Fig. 4, the spin-spin correlation cqpiy(i) is shown along
the center of the interstripe region (i.e., parallel to the stripes,
see arrows in the inset), at p = 0.774 for Vy = 4 [Fig. 4(a)]
and Vp = 10 [Fig. 4(b)]. As seen in Fig. 3, these values
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FIG. 3. (Color online) The density of particles is shown on the
striped rows where V) acts (closed symbols) and on the unstriped rows
(open symbols). The total density of the system is fixed at p = 0.774
(circles for 16 x 16 and up triangles for 8 x 8 lattices) and p = 0.875
(squares for 16 x 16 and down triangles for 8 x 8 lattices). There is
only a very small variation of density on the unstriped rows with
different distance from the stripes, so only the average is shown. Data
for 8 x 8 and 16 x 16 lattices are essentially indistinguishable.

correspond to densities slightly below and slightly above
half-filling, respectively. Despite the doping, there is a fairly
robust antiferromagnetic pattern as 7T is lowered.

In contrast, in the absence of stripes Vy = 0, the doped
holes are spread uniformly throughout the lattice, and for the
same density as exhibited in Fig. 4, antiferromagnetic order is
very short ranged, as seen in Fig. 5. In the absence of any sort
of charge inhomogeneity, it would be very unlikely that these
weak magnetic correlations could provide the “pairing glue”
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FIG. 4. (Color online) The spin correlation function cgys (i) along
the center of one of the (three-site-wide) interstripe regions. Here,
U = 4, and the average density p = 0.774 over the whole lattice, for
Vo =4 (a) and V; = 10 (b). The interstripe region is fairly close to
half-filling and so, as the temperature 7' is lowered, cin (i) oscillates
over fairly large distances. The arrows indicate the sites along which
the spin-spin correlations are calculated.
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FIG. 5. (Color online) Same as Fig. 4 except for V, = 0 so that
the lattice is at homogeneous density. When there are no stripes, the
spin correlations die out very rapidly for this doping of the uniform
Hubbard Hamiltonian. They would be unlikely to be able to supply
the “glue” for Cooper pairing.

for high-temperature superconductivity. Thus, the results of
Figs. 4 and 5 suggest that domain formation is a prerequisite
for any superconductivity which is postulated to arise from
robust magnetism at this density.

The presence of stripes alone is not enough to guarantee the
presence of antiferromagnetic correlations. Figure 6 shows
the same spin-spin correlations as in Figs. 4 and 5, but
for p = 0.875. Although spin-spin correlations are slightly
higher at Vjy = 3, where the interstripe density is close to one,
antiferromagnetic correlations are very short ranged for all V.

If the lattice is traversed perpendicular to the stripes, we
expect the spin correlations to be significantly reduced: the low
density on the stripes does not support a very large moment. In
Fig. 7, we show cin(i = 29), corresponding to a pair of sites
on a line parallel to the y axis and traversing a stripe (see inset
for a sketch). The scale of cqpin(i = 2¥) is roughly an order
of magnitude smaller than ¢ (i = 2£), as suggested should
be the case by the preceding argument. Apart from the size of
the correlation, there is another feature of crucial interest. For
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FIG. 6. (Color online) Same as Fig. 4 except for p = 0.875 at
fixed B = 5 and different values of V.
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FIG. 7. (Color online) Spin correlations are shown perpendicular
to the stripe and, specifically, for fixed distance i = 2§ which crosses
a stripe and varying V,. For V; small (the nearly homogeneous
limit), cein(i = 29) is positive, as would arise in an up-down-up-. ..
staggered magnetic pattern. However, as stripes are introduced,
Cspin(i = 29) flips sign. The magnetic order exhibits a 7-phase shift
and the sublattices of the (bipartite) square lattice on which the
up-spin electrons sit are reversed upon crossing a stripe. Arrows in
the inset show pairs of sites traversing the stripe, where the spin-spin
correlation functions are calculated.

p = 0.774 and small Vj, i.e., close to the homogeneous limit,
the spin correlation two sites away cgin(i = 29) is positive,
as expected for an antiferromagnet. However, for V; > 3, the
sign flips and cgin(i = 29) becomes negative. This effect is
strongly reduced for p = 0.875, where the negative values of
Cspin(i = 27) are smaller in magnitude than those for p = 0.774
and only occur for Vy 2 7.

This m-phase shift is a prominent experimental feature of
stripe physics in the cuprates.’*>> These results show that this
shift in the sublattice order across a stripe is also a characteristic
of the doped 2D fermion Hubbard model, at least in the case
considered here in which the stripes are created through an
externally imposed potential.

We turn now to the pairing correlations. Figure 8 shows
the d-wave pairing correlation function along a stripe. As we
will see in the following, the lowest temperatures achieved
are well above the superconducting transition and therefore
the superconducting correlations are short ranged. Figure 9
shows the pairing correlations between two neighboring sites
within a stripe as a function of Vj. It is clear that the presence
of stripes enhances pairing, and it is interesting to note that
for both p = 0.774 and 0.875, ¢4 pair(i) stabilizes for V; close
to the value for which the -phase shift takes place, namely,
Vo ~ 4 and V 2 7, respectively.

Figure 10 shows the key result of this paper. As charge
domains are introduced into the square-lattice Hubbard model,
the d-wave pairing vertex becomes considerably more attrac-
tive. Indeed, not only is its magnitude increased by a factor of 3
relative to the homogeneous system, the temperature evolution
becomes increasingly steep. As in all existing DQMC studies
of the repulsive Hubbard Hamiltonian, the sign problem
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FIG. 8. (Color online) d-wave pair-pair correlation functions
along the stripes for g =5, p = 0.774, and different V. Pairing
correlations are shown to be short ranged.

prevents accessing low enough temperatures to establish
a critical 7. where TP, = —1, if such a superconducting
transition does indeed occur in this model. Nevertheless,
the results of Fig. 10 are suggestive that charge domains
considerably enhance the d-wave pairing.

We can study these same data as a function of Vj at
constant temperature. Figure 11 shows results for our canonical
parameters, 16 x 16 lattices, U = 4, and p = 0.774. We find
that the pairing vertex becomes more and more robust with
increasing V. This is not completely intuitive. One might
expect that a maximum pairing would occur for V) ~ 6 where,
according to Fig. 3, the interstripe regions are most close to
half-filling and hence antiferromagnetic correlations are most
strong. Alternately, as V; becomes very large, the particle
density within the stripes drops to zero. If the physical picture
is that of pairing of mobile carriers in the doped region driven
by spin correlations in the half-filled domains, at large V; the
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FIG. 9. (Color online) d-wave pair correlations on neighboring
sites, along the stripe, as a function of V;. It is clear that as V; is
increased, the d-wave pairing is enhanced along the stripes.
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FIG. 10. (Color online) The d-wave pairing vertex is shown as a
function of temperature for U = 4, p = 0.774, and different values
of the externally imposed stripe potential V,. For the homogeneous
system Vo =0, and small V; generally, [ P,| < 0.10. For larger
Vo, T P4| exceeds 0.3 in magnitude. A superconducting instability
is signaled by 'P; — —1. Data for 8 x 8 lattice (V) =4, open
symbols) show finite-size effects are negligible.

density of these carriers becomes small, and one would again
expect I'P; to turn over.

Recent DCA calculations® indeed reveal an initial en-
hancement of pairing with the introduction of stripes, fol-
lowed by a falloff as the above physical arguments suggest.
However, this nonmonotonicity is observed only at very low
temperatures 7' ~ 0.05 quite close to 7. For higher T, closer
to the range studied here, there is no sign of the d-wave
eigenvalue coming down at large Vj. Although the lower-
temperature scales are the most likely explanation for the DCA
nonmonotonicity, it is also possible that, in the work presented
here, the decline of pairing correlations in the doped stripes is

0.0 u T T T T T T T T T T T

p=0.774 U=4

FIG. 11. (Color online) The data of Fig. 10 are replotted to show
the d-wave pairing vertex as a function of V; for fixed inverse
temperature 8. I' P, becomes monotonically more attractive. Data for
16 x 16 lattices (closed symbols) and 8 x 8 lattice (open symbols)
show finite-size effects are smaller than statistical fluctuations.
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FIG. 12. (Color online) The pairing vertex is shown as a function
of temperature for the same parameters as Fig. 10, except for a larger
onsite repulsion U = 6 rather than U = 4, and 8 x 8 lattices. The
behavior is similar: charge inhomogeneities make the d-wave vertex
more attractive.

compensated by an increase in the interstripe domains, which
are shifted away from half-filling at large V;. It seems clear
that for large V;) and density p = 0.750, where the interstripe
regions are precisely half-filled, the pairing signal would be
forced to be small, and hence that a turnover such as is seen in
DCA calculations should occur.

The physics of the half-filled homogeneous Hubbard model
on a square lattice is believed not to be highly sensitive to
the interaction strength U. That is, the ground state is an
antiferromagnetic insulator for all U, although the precise
nature of the phase evolves from a weak-coupling regime
described by spin density wave physics to a strong-coupling
Mott insulator. In order to assess whether the enhancement of
d-wave pairing due to striped formation is similarly generic
to different U or specific to U = 4, we show data for I'Py
as a function of temperature 7 in Fig. 12 for U = 6. The
same basic evolution is observed as in Fig. 10, with the vertex
being enhanced by Vy both in magnitude and also in the
steepness of its evolution as 7' is lowered. A comparison of
the data ranges of Figs. 10 and 12 also reveals some of the
limitations of DQMC. As U gets larger, the sign problem
grows, as do the fluctuations (error bars). For U = 6, the
lowest accessible temperature is 7 ~ 0.3 (8 = 3), compared
to T ~0.2 (B =35) at U = 4. Smaller interaction strengths,
e.g., U ~ 2, can readily be simulated, but tend to harbor large
finite-size effects which are the remnants of high degeneracies
in the noninteracting energy levels on a square lattice.

We next explore a different lattice periodicity P = 2.
Unlike the case of different interaction strengths, where the
qualitative physics remains unchanged, P = 2 behaves in a
very different manner from P = 4, as seen in Fig. 13. In this
case, increasing V; reduces the magnitude of I' P4, and by the
time V = 3, the vertex has even changed sign and become
repulsive. It should be noted that because for P = 2 there
are fewer sites which do not feel the V; potential to absorb
the fermions as Vjy increases, their density is increased above
p = 1, where AF correlations are most evident, far more easily
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FIG. 13. (Color online) Pairing vertex for the P = 2 case, where
the stripes are separated by a single interstripe row. Unlike the P = 4
case where a three-site-wide interstripe region separates the stripes,
increasing charge inhomogeneity is detrimental to pairing. In fact,
the d-wave vertex becomes repulsive for V > 2.

than in the P = 4 case shown in Fig. 3. This is the probable
cause for the decrease in d-wave pairing correlations.

Our final check of the robustness of the enhancement of
pairing by stripes is to explore a different density p = 0.875,
which is optimal for pairing in the absence of stripes. Figure 14
indicates that the temperature evolution for nonzero Vj is
essentially unchanged from the homogeneous case. Thus, even
though at V = 0 the product I' P, is larger for p = 0.875 than
for p = 0.774, this is no longer the case for nonzero Vj. Indeed,
stripes can ultimately make the pairing vertex substantially
larger for the lower density. The strong antiferromagnetic
correlations induced by the stripes at P = 4 provide the “glue”
for pairing at p = 0.774, whereas at p = 0.875 this “glue” is
not present.

0.0 — —

02+ AN .
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16x 16 v 10
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FIG. 14. (Color online) For a total density corresponding to close
to the “optimal” doping of the cuprate superconductors, p = 0.875,
the pairing vertex, while remaining attractive, shows somewhat less
enhancement as Vj is turned on.
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Energy

FIG. 15. (Color online) The total energy as a function of V,, for
16 x 16 lattices with U =4, 8 = 5,P = 4, and p = 0.875 (squares)
and p = 0.774 (circles).

We have focused thus far on the density, spin, and pairing
correlations. Figure 15 examines the total energy as a function
of Vypon 16 x 16 lattices. Although we have imposed V in our
Hamiltonian, this computation of the energy provides a crude
measure of the tendency for spontaneous stripe formation.
The monotonically decreasing behavior of the energy with Vj
suggests that a maximization of charge imbalance is favored.
When we study the effect of the periodicity of the stripes, as
shown in Fig. 16 on a 12 x 12 lattice, we see that P = 3,4
have much lower energies, suggesting their formation might be
favored. These periodicities have densities on the lines which
are not subject to the additional potential Vj, relatively close to
half-filling, and hence they have the largest antiferromagnetic
correlations.

'01 T T T T T T T
°®
02+ [ J .
2l B U=4 7
(]
& V=5
0.4 p=0.774 i
B=6
12x12
05 F ® Py -
1 1 1 1 1 L 1 1
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FIG. 16. (Color online) The total energy for different distances
between stripes. The minimum for P = 3, 4 is associated with the
fact that the density of the V) = 0 rows is close to half-filling for total
density p = 0.774.
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IV. CONCLUSIONS

The external imposition of stripes via the introduction
of a linear pattern of reduced chemical potential has been
shown to result in a significant enhancement of the d-wave
pairing vertex of the two-dimensional Hubbard Hamiltonian.
When the overall density and periodicity of the stripes are
such that the density in the interstripe region is close to
one, antiferromagnetic correlations are also made larger, and
exhibit a w-phase shift across the stripes. Both the m-phase
shift and the growth in the superconducting response occur
only when the charge inhomogeneity is sufficiently large,
specifically when the additional inhomogeneous site potential
Vo exceeds roughly three times the hopping.

This enhancement of superconductivity has previously been
observed in the closely related dynamical cluster approxima-
tion treatment of the two-dimensional Hubbard Hamiltonian,
again in the case when a site potential V) was introduced
externally. In this situation, the modulation was chosen to
be broader than the purely one-dimensional pattern explored
here. The observation of an optimal stripe potential in the
DCA calculations might be associated with this difference.
It is also interesting to note the possible differences between
pinned and fluctuating stripes. There are suggestions?>-64-6¢
that the motion of charge/spin domain walls is important to
the enhancement of superconductivity, whereas frozen stripes,
such as created by Nd doping, is inimical to pairing. The studies
in this paper, as well as the earlier DCA work of Maier et al.,*’
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indicate that the situation may not be quite so straightforward
and that, in fact, the stripes produced by an external potential
might also be able to enhance superconductivity.

We have motivated our form for the externally imposed
stripe potential at P = 4 as producing the charge/spin patterns
suggested by neutron scattering®* and DMRG calculations.*®
Our pattern contains equal Fourier components for all wave
vectors Q, = 2mn/P. In the DCA work,* the effect of
different Fourier components Q = /2 and 7 /4 was explicitly
isolated, with the former showing little effect on pairing and
the latter driving significant enhancement.

Spontaneous stripe formation in the doped Hubbard model,
if it occurs, takes place at temperatures below those accessible
to DQMC simulations, which are limited by the sign problem®
to temperatures greater than roughly 1/40 of the noninteracting
bandwidth. It would be interesting also to explore the possi-
ble enhancement of pairing at these temperature scales by
other types of charge inhomogeneities such as checkerboard
patterns®’ and in the presence of nonmagnetic disorder.5%%
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