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Effect of magnetization pinning on the spectrum of spin waves in magnonic antidot waveguides
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We study the spin-wave spectra in magnonic antidot waveguides (MAWs) for two limiting cases (strong
and negligible) of the surface anisotropy at the ferromagnet/air interface. The MAWs under investigation have
the form of a thin stripe of permalloy with a single row of periodically arranged antidots in the middle. The
introduction of a magnetization pinning at the edges of the permalloy stripe and the edges of antidots is
found to modify the spin-wave spectrum. This effect is shown to be necessary for magnonic gaps to open in the
considered systems. Our study demonstrates that the surface anisotropy can be crucial in the practical applications
of MAWs and related structures and in the interpretation of experimental results in one- and two-dimensional
magnonic crystals. We used three different numerical methods, i.e., plane waves method (PWM), finite difference
method, and finite element method to validate the results. We showed that PWM in the present formulation
assumes pinned magnetization, while in micromagnetic simulations special care must be taken to introduce
pinning.
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I. INTRODUCTION

A relatively new and rapidly emerging field of physics,1–4

magnonics is mainly aimed at exploiting the properties of spin
waves (SWs) to harness them for technological applications
in a variety of fields. These include spintronics, microwave
systems, metamaterials for electromagnetic waves, and other
magnonic devices using spin waves for carrying and process-
ing information. Except for microwave technology, the other
three fields are new and their development is at the initial
stage.2,5–8

The possibility of tailoring metallic magnetic materials with
nanoscale precision provides a tool for miniaturization and
shaping the dispersion of high-frequency spin waves. This
can be done by periodic modulation in magnonic crystals
(MCs),1,9 the magnetic analogues of photonic crystals, in
which frequency gaps open in the spin-wave spectrum for cer-
tain structural and material parameters. Not until recently have
the first one-dimensional10 (1D) and two-dimensional11 (2D)
bicomponent MCs been realized at the nanoscale. In particular,
2D antidot lattices can be easily prepared experimentally by
creating periodic arrays of holes in ferromagnetic films. These
systems have been intensively studied in the past few years, on
various length scales and considering various antidot geometry
and crystallographic arrangement.12–16

This paper is focused on the boundary conditions imposed
on the dynamic components of the magnetization vector and
their effect on the spectrum of spin waves in magnonic
waveguides. These boundary conditions17 are additional to the
electromagnetic ones, which describe the degree of freedom of
the magnetization vector at the edges of the ferromagnetic ma-
terial. The effect of the boundary conditions on the spectrum of
SWs in uniform thin films has been investigated broadly.17–21

The general form of boundary conditions at external faces of
the ferromagnetic plane proposed by Guslienko18 takes into
account both dipolar pinning and pinning induced by uniaxial

surface anisotropy:

M ×
(
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ex

∂ M
∂n

+ 2Ks
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(M · na)na + Hdm2c

)
= 0, (1)

where λex and Ms denote exchange length and magnetization
saturation, respectively. The symbol ∂

∂n
stands for the direc-

tional derivative along the normal to the face. The uniaxial
surface anizotropy is defined by its strength Ks and orientation
na. The demagnetizing field Hdm taken at the given face
determines the contribution of dipolar pinning. Hdm depends
on the thickness 2c and in-plane sizes of the system R

(e.g., stripe width). It was shown18 that for small systems
(
√

Ru < λex) the magnetization pinning can be achieved only
in the presence of strong surface anisotropy. Therefore, in
the exchange limit the Rado-Weertman boundary condition,17

which neglects the dipolar pinning, is sufficient.
The research comparing the role of different types of

boundary conditions has not been conducted so far in pe-
riodic waveguides, in the form of antidot lattices. In these
structures the interfaces with air can play an important role
in the formation of magnonic bands.22,23 Only free boundary
conditions are assumed in the vast majority of papers dealing
with periodic waveguides. Thus there is a gap in the research,
which we attempt to fill in with this study. We decide to
explore two limiting cases: free boundary conditions and
strong pinning using different computational techniques. Note
that the surface anisotropy field [second term in the brackets
in Eq. (1)] depends monotonously on Ks. As a result, the
logarithmic derivate of the components of dynamical magne-
tization ( ∂

∂n
mα)/mα (α indicates the Cartesian components)

taken on the side faces of the waveguide also has monotonous
dependence on Ks in the regime of linear dynamics18 and
approaches the values ±∞ (pinned boundary conditions) and
�1 (unpinned boundary conditions) for high and low values of
Ks, respectively. Therefore, these two extreme cases limit the
area of investigation for the impact of boundary conditions on
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the spin-wave spectra in the confined geometry of a waveguide
close to the exchange regime.

In this paper we study the magnonic band structure in
waveguides, a basic element of any magnonic device.24,25

Waveguides for exchange spin waves have been recently
investigated theoretically with the use of micromagnetic
simulations;26–28 periodic waveguides have been demonstrated
to have filter properties due to the folding effect and the
opening of magnonic gaps in the spin-wave spectrum.29,30

Here we investigate a periodically modulated waveguide with
a series of antidots in the center. Aware of the fact that the
periodicity of the waveguide can be realized in many different
ways—by width or shape corrugation, or by applying a specific
magnetic field28–30—we are confident that the fundamental
features of this quasi-1D periodic system are conserved and
the conclusions drawn for the model considered will be of
general nature.

We show that a magnetization pinning introduced at the
edges of the waveguide can significantly change its spin-wave
spectrum. To cross-check our results we perform calculations
based on different methods: micromagnetic simulations and
the plane wave method (PWM). These techniques have already
been successfully used for the interpretation of experimental
data obtained for systems of various geometry in the formula-
tion used here.

We show that the pinning is intrinsic for PWM at the in-
terface of magnetic/nonmagnetic material. For micromagnetic
calculations the magnetic moments are not forced to be pinned
by default. We introduce pinning by placing on the interface a
thin layer for which the dynamics of magnetization is frozen
(with the amplitude of precession set to zero).

The paper is organized as follows. In Sec. II we describe the
structure under investigation and the calculation methods used.
In Sec. III we explain the effects that the boundary conditions
imposed on the dynamic magnetization components at the
edges of the ferromagnetic material have on the magnonic
spectrum. Our results are summarized in the closing Sec. IV.

II. WAVEGUIDE STRUCTURE AND THE
CALCULATION METHODS

The magnonic waveguide under consideration is shown in
Fig. 1. It has the form of a thin and infinitely long permalloy
stripe with a single row of square holes disposed periodically
along the central line. A bias magnetic field is applied along
the stripe and assumed to be strong enough (H0 = 1.01 T)
to saturate the sample. The following parameter values are
assumed in all the calculations: saturation magnetization in
Py 0.8 × 106 A/m, exchange constant 1.3 × 10−11 J/m, and
gyromagnetic ratio 175.9 GHz/T.

We use three methods of calculating the dispersion of spin
waves in the permalloy MAW: the finite difference method,
the finite element method, and the PWM, with OOMMF,31

Nmag,32 and a home-developed Fortran code, respectively.
All the methods solve the Landau-Lifshitz-Gilbert equation:

∂ M(r,t)
∂t

= γμ0 M(r,t) × Heff(r,t)

− α
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FIG. 1. (Color online) Magnonic antidot waveguide under inves-
tigation: a 3 nm thick and 45 nm wide infinite Py stripe with a
periodic series of 6 nm × 6 nm square antidots disposed centrally
along the x axis with a period of a = 15 nm. Bias magnetic field
μ0H0 = 1.01 T is oriented along the x axis. The 1.5 nm wide red
lines at the Py/air interfaces mark the regions in which pinning is
assumed in the OOMMF calculations. The dashed box shows the
supercell size used in PWM calculations.

with the first term on the right-hand side related to the
torque inducing precession and the second one describing the
damping process. The symbols γ and α denote gyromagnetic
ratio and damping constant, respectively. The effective field
Heff consists of the following terms:

Heff(r,t) = H0 + Hdm(r,t) + Hex(r,t), (3)

with H0, Hdm(r,t) = Hdm(r) + hdm(r,t), and Hex(r,t)
being external field, demagnetizing field, and exchange field,
respectively.

A. Micromagnetic simulation

The micromagnetic simulations (OOMMF, Nmag) are
performed in two steps. The magnetic ground state is obtained
first. We let the magnetization evolve in the presence of
damping to reach the static equilibrium orientation. In the
next step, with damping neglected (α = 0), a small pulse
of magnetic field was applied as given by Eq. (4) with a
small amplitude (which guarantees the linear regime of spin
dynamics). After recording the magnetization in each mesh
point for each time step, Fourier transformation is performed
in the time and space domains to obtain the SW dispersion,
i.e., the wave-vector dependence of the SW frequency.33,34

The excitation signal used to study the dynamics is of the
form

hz(t,x,y) = h0
zsinc[2πfcut(t − t0)]sinc

[
kcut

(
x − xmax

2

)]

×
N∑

n=1

sin

(
nπ

y

ymax

)
, (4)

where the sinc function is taken in the form sinc(θ ) = sin(θ )/θ .
The strength of the signal is defined by μ0h

0
z = 5 mT. The

parameter fcut = 490 GHz sets the upper limit of frequencies
of spin waves excited by the sinclike pulse. An offset t0 =
50 ps was given to avoid the high spikes close to the fcut

in the frequency domain of the signal. The kcut is a wave
number cutoff defined later. The symbols xmax = 3 μm and
ymax = 15 nm denote the sizes of the sample. The summation
in (4) was done for N = 30 subdivisions.
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The benefits for using such a signal and the procedure to
obtain the desired dispersion relation are described in further
detail in Ref. 34. In the case of an antidot lattice the effect of
convolution of the periodic array of holes will be observed in
the wave-vector domain. A wave-vector cutoff kcut, which is
an odd multiple of half the Brillouin zone (BZ) length (here
3π/a), may be used to mitigate this effect. Also, in order
to generate both symmetric and antisymmetric wave fronts
a suitable dependence (which, here, is a sum of symmetric
and antisymmetric excitations along the width) on y has been
applied to the signal.

The OOMMF simulations are performed with 1D periodic
boundary conditions applied along the x axis with the
formulation defined in Ref. 35. A 1.5 nm mesh is used in these
simulations. The correctness of the assumed discretization was
verified by comparing the results with those of simulations
using a 0.5 nm mesh.

The micromagnetic simulations do not assume by default
any torque acting on the external interfaces (numerical calcu-
lations are limited to the magnetic medium only). Therefore,
the spins are precessing freely on the systems boundaries with
dipolar effects taken fully into account.

We can force the pinning in all mesh cells located on
the interfaces between magnetic and nonmagnetic materials
(see the red-colored pinning area in Fig. 1). It can be done
by freezing the magnetization dynamics ∂

∂t
M(r,t) = 0 with

initial conditions Mz(r,t = 0) = 0 and My(r,t = 0) = 0 at the
beginning of the second stage of calculation when the system
managed to reach the ground state. From Eq. (2) follows that
the initial condition for z and y components of magnetization
will be sustained, if the conditions My(r,t = 0) = 0 and
Mz(r,t = 0) = 0 are set in the pinned layer. We checked that
for the strong external field that we used (μ0H0 = 1.01 T) the
magnetization in the ground state is uniform and parallel to
the direction of H0 even in the vicinity of the interfaces.

Because of the use of the finite difference method in
OOMMF simulations, space is discretized into small cuboids.
Nmag uses the finite element method, in which, in contrast,
the modeled object is discretized on a tetrahedral mesh. In
general, this allows for better modeling of arbitrarily shaped
objects, but for the considered antidot waveguide, this does not
provide an advantage because our simulating object consists
basically of orthogonal walls. For the mesh creation, we
use the open source generator “NETGEN”. When creating
the unstructured mesh, care must be taken in providing
the software with a proper value of the maximum-mesh-
size parameter. Only when this value is small enough is it
possible to calculate the exchange and magnetostatic fields
with reasonable accuracy. Unfortunately, as the maximum-
mesh-size parameter decreases, the number of tetrahedral
elements increases, making the computing time and memory
demands increase as well. The one way to partially overcome
this problem is to use adaptive mesh with the smaller cell
sizes in the vicinity of antidot edges. We must select a value
below the exchange length, which in the case of permalloy is
5.1 nm. Therefore, we selected a maximum size of 4.5 nm for
the edge length of all tetrahedra to achieve accurate results.
However, the average edge length was about 2.5 nm with
standard deviation equal to 0.6 nm. It was decided not to
use periodic boundary conditions in Nmag simulations but

instead use a finite segment of this waveguide of length
1.8 micrometer, containing 120 repetitions of the unit cell.
The waveguide is surrounded by nonmagnetic material, which
does not have to be discretized. This is because Nmag used a
hybrid finite elements/boundary elements method to calculate
the magnetostatic contribution.

The steps to obtain the dispersion relation are the same
as in OOMMF. As a first step, a high value of the Gilbert
damping parameter is chosen and the system is evolved under
the external field to find the energy-minimizing configuration
of the system. This state is used as the starting point during
the second part. Now damping is neglected and the system
is excited with a pulse containing a broad frequency range.
Using the Fourier transform, the resonating values of (k,ω)
are obtained as local maxima. These values constitute the
dispersion diagram.

B. Plane waves method

In the PWM, periodic Bloch conditions are applied both
along the MAW axis and in the direction perpendicular to
this axis. An artificial periodicity in the y direction creates
a periodic series of noninteracting copies of the original
waveguide—this is the supercell approach.36 We used the
supercell marked in Fig. 1 by dashed line. The assumed periods
are 15 nm (antidot period) and 100 nm (artificial supercell)
along the x and y axes, respectively.

The antidots and spacer areas were filled with artificial
material characterized by a high value of volume anisotropy
field and an extremely low value of magnetization saturation
that squeezed the magnetization dynamics in this region (effect
of the low magnetization saturation) and shifted the frequen-
cies of spurious modes appearing in the results into a very
high-frequency range (impact of the high volume anisotropy
field). Note that according to the Landau-Lifshitz equation
the increase of the effective field in the artificial material
(as a result of big volume anisotropy) will also decrease the
amplitudes of dynamical magnetization if one wants to keep
the spin-wave frequency constant. We have made sure that the
assumed 65 nm waveguide spacing is sufficient to neglect
the interactions between adjacent copies. We plotted the
dispersion relation in the 	-Y direction (i.e., for a propagation
direction perpendicular to the waveguide’s axis). The branches
that we obtained were flat which confirmed the localization of
spin waves in the Y direction and the lack of crosstalks between
adjacent copies of waveguides. We also checked the amplitude
of spin waves in the spacers separating waveguides, which
occurred to be canceled. The canceling of spin dynamics in the
air gaps (spacers and antidot areas) results in magnetization
pinning at the interface with magnetic material. In order to
simulate the system of planar geometry with partially pinned
magnetization on the interfaces with nonmagnetic material one
can artificially change the in-plane sizes of the system from
R to effective Reff to achieve a nonzero value of dynamical
magnetization when the position r coincides with R.19 We
used this procedure to perform PWM calculations in the
dipolar-exchange regime for 2D antidot lattices.37

We used in the calculation Eq. (3) with damping effects
neglected. We are considering the magnetization dynamics
in the linear approximation only. We are assuming that the

184433-3



J. W. KŁOS et al. PHYSICAL REVIEW B 86, 184433 (2012)

magnetization precesses around the x axis in a cone with small
angle (as it is presented in Fig. 1) with angular frequency ω.
Under this assumption we can write

Mx(r) ≈ Ms,

My(r,t) = my(r)eiωt , (5)

Mz(r,t) = mz(r)eiωt .

The exchange term can be expressed as38

Hex = ∇λ2
ex∇ M(r,t) (6)

and directly deviated from the Heisenberg model.39

To describe the demagnetizing field for a periodic slab
of finite thickness we used the ideas proposed by Kaczer40

and then developed in Ref. 41 where each component of
[static Hdm(r) and dynamic hdm(r,t)] the demagnetizing
field is depending, in general, on the spatial distribution of
all components of magnetization. The components of the
static and dynamic demagnetizing fields within the linear
approximation taken into account are

Hdm,x(r) =−
∑

G

Ms(G)

(
Gx

G

)2

[1 − C(z,G)] e−i(G·r‖),

(7)

hdm,z(r,t) =
∑

G

[
− mz(G)C(z,|G + k|)

+ imy(G)
|ky + Gy|
|G + k| S(z,|G + k|)

]

× eiωt e−i[(G+k)·r‖], (8)

hdm,y(r,t) =
∑

G

[
− my(G)

(ky + Gy)2

|G + k|2 [1 − C(z,|G + k|)]

+ imz(G)
|ky + Gy|
|G + k| S(z,|G + k|)

]

× eiωt e−i[(G+k)·r‖], (9)

where G = [Gx,Gy] and r‖ = [x,y] are the 2D recip-
rocal lattice vector and position vector in real space.
The symbols Ms(G) and mα(G) denote the coefficient of
Fourier expansion for magnetization saturation Ms(r‖) =∑

G M(G)e−i(G·r‖) and the periodic part of Bloch functions:
mα(r‖) = ∑

G mα(G)M(G)e−i[(G+k)·r‖], α = y,z, where k is
a wave vector. The functions C(z,κ) and S(z,κ) are defined as

C(z,κ) = sinh(zκ)

sinh(cκ) + sinh(cκ)
, (10)

S(z,κ) = cosh(zκ)

sinh(cκ) + sinh(cκ)
, (11)

where 2c is the thickness of MAW (in z direction). The
demagnetizing fields do not change a lot across the slab except
the regions in the close vicinity of the external surfaces (note
that the structure is uniform in z direction). Therefore, we
assumed that all fields Hdm(r‖) and hdm(r‖,t) are independent
on the z coordinate by taking its values from the top of the
slab. This simplification allowed us to consider the system as
a 2D one.

In the linearization procedure we take advantage of the
assumption mα(r) � Ms, α = y,z and drop all small terms

nonlinear with respect to mα(r). Then after applying the
Fourier transformation we were able to convert the linearized
differential equations for my(r), mz(r) into the set of algebraic
equations in the form of an eigenproblem with my(G), mz(G)
as eigenvectors and ω playing the role of eigenfrequency.

We checked that the sufficient convergence for the presented
dispersion plots (Fig. 3) is achieved for 11 × 91 plane waves
propagating in x and y direction, respectively (described by
different x and y components of reciprocal vectors G). The de-
tails of the PWM, its supercell formulation, and the application
of this technique are available in the literature.9,36,37,41

III. EFFECT OF PINNING ON THE
MAGNONIC SPECTRUM

Figure 2 shows the magnonic band structure obtained
form the OOMMF and Nmag simulations. The spin-wave
spectrum is very rich, with a clear evidence of periodicity
and folding effects. Three repetitions of the BZ, delimited by
vertical solid lines, are considered. Free boundary conditions
for the dynamic components of the magnetization vector
(unpinned magnetization) at the edges of Py were used in
these calculations. The lack of pinning is confirmed by the
mode profiles [bottom of Figs. 2(a) and 2(b)] computed with
the OOMMF and Nmag, where the nonzero values of |mz|2 at
the air/Py interfaces are observed. The profiles for the lowest
modes for the frequencies marked by red horizontal lines were
presented. The profiles calculated in OOMMF and Nmag show
some differences in the distribution of the amplitude |mz|2
along the waveguide. The maps of |mz|2 manifest also the
lack of periodicity in x direction, which is unexpected for a
Bloch function. This behavior is a result of the superposition
of Bloch waves having the same frequencies with different k

numbers. Note that in micromagnetic simulations the spatial
distribution of |mz|2 contains all contributions form different
bands intersecting the same frequency level. These bands
(eigenmodes) can be populated differently depending on
(1) the way the system was excited and (2) the peculiarities
of the computational methods (finite differences—OOMMF;
finite elements—Nmag). However, the amplitudes |mz|2 both
in Figs. 2(a) and 2(b) preserve the one important property
related to the mode quantization by constriction in the
y direction—the finite width of the waveguide. One can notice
that the successive modes (denoted by I, II, III, IV) have an
increased number of horizontal nodal lines. Surprisingly, the
results obtained by the PWM are different. The PWM spectra
are shown in Fig. 3 (red dashed lines). The bands are seen to
be shifted up in the frequency scale, and the modes seem less
numerous.

In search of an explanation for this discrepancy we
calculated the profiles of the dynamic components of the
magnetization vector in the PWM. The colored maps in Fig. 3,
bottom, represent the modulus |mz|2 of the z component for a
number of lowest-frequency modes; blue and red correspond
to low and high values of |mz|2, respectively. In all the
modes in question the magnetization is pinned at the Py/air
interfaces (thin white lines). Therefore, we will show that the
main reason for the discrepancy between the results of PWM
and the micromagnetic simulation are the different boundary
conditions applied in these two methods.
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FIG. 2. (Color online) Dispersion of spin waves in the MAW
presented in Fig. 1, as calculated with (a) OOMMF and (b) Nmag.
The vertical lines delimit the first Brillouin zone. The magnetization
is assumed to precess freely at the Py/air interface, i.e., unpinned
magnetization. Bottom in (a) and (b): maps of |mz(x,y)|2 for the
different values of frequency (I to IV) calculated with (a) OOMMF
and (b) Nmag. Note that each distribution of |mz(x,y)|2 obtained by
micromagnetic calculations contains contributions of the eigenmodes
differing in the wave numbers.

Unfortunately, no extension of the PWM method has
been developed yet to allow for unpinned magnetization at
the interfaces with nonmagnetic material. We can extend
the micromagnetic simulations, though, imposing specific
boundary conditions on the magnetization vector M. The
procedure described in the previous section allows one to
achieve m = 0 (i.e., pinning of the magnetization M) at the
interfaces with nonmagnetic material. Figure 3, top panel,
shows the results of the OOMMF simulations (gray lines)
and, superimposed, the PWM data. The agreement between
the OOMMF and PWM results is satisfactory now, and the
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FIG. 3. (Color online) Dispersion of spin waves in the MAW
presented in Fig. 1, as calculated with OOMMF with dynamic
magnetization pinned at the Py/air interfaces (gray lines). PWM
results are plotted with red dashed lines. Yellow bars represent
the magnonic gaps (in OOMMF calculations). Bottom: maps of
|mz(x,y)|2 at points (a) to (u) in the plot above. Green (a–h) and
blue (i–p) labels refer to modes originating from the first and second
dispersion parabolas, respectively, of each isolated subwaveguide at
the right and left of the central row of antidots. Brown labels denote
high-frequency modes localized in the row of antidots. The maps
plotted in full colors scale and hot colors scale present the results
calculated with OOMMF and Nmag, respectively. The horizontal
color lines in the dispersion plot mark the contributions from different
Bloch bands to the OOMMF profiles.

effect of the pinning on the magnonic spectrum of the MAW
can be explained in detail.

The changes in the spin-wave spectrum resulting from the
introduction of pinning are relatively simple in uniform thin
films. The main difference is the occurrence of an extra mode,
uniform across the film thickness, in the case of unpinned
surfaces; surface-localized modes (surface spin waves) can
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occur, too.21,42 The frequencies of the higher modes for pinned
and unpinned surfaces are quite similar. As we have shown
already, the changes in a MAW are more significant and
complex. Many additional modes are seen to occur in the
MAW spectrum calculated for unpinned magnetization (see
Fig. 2) compared to those obtained in the pinned case (see
Fig. 3). Due to the pinning in the row of antidots some modes
existing in an unpinned system (the modes with high amplitude
of |mz|2 in the center of the MAW—see modes I and III in
Fig. 2) can appear in a pinned system. The pinning in the
center of the MAW reduces the degrees of freedom of the spin
waves and practically divides the waveguide into two parallel
subwaveguides weakly coupled through the barrier formed
by the antidot series. This is due to the small edge-to-edge
distance between neighboring antidots, which results in a
minor crosstalk between the spin waves propagating in the
two subwaveguides. The confinement of the modes increases
their separation on the frequency scale in the case of an
MAW with pinned magnetization. Moreover, due to the minor
interaction between the subwaveguides, the eigenstates are
almost degenerate for frequencies up to 200 GHz in a wide
wave number range.

In the absence of pinning, spin waves spread freely over
the whole width of the waveguide. This is why the unpinned
modes are distributed more densely on the frequency scale. The
dispersion branches of some unpinned modes are reminescent
of the continuous parabolas in Fig. 2. In the low-frequency
range this behavior is seen in every second band, i.e., the
2nd, 4th, and 6th bands from the BZ center, where a nodal
line should appear in the center of the MAW. The lower
amplitude of the spin waves in the center of the MAW
results in a negligible impact of the antidot series on the
spin dynamics. The effect of the antidot series on the spin
dynamics is similarly small in (1) the dispersion branches of
unpinned modes with a nodal line in the center of the MAW
[see Fig. 2(c)] and (2) all the dispersion branches of pinned
modes. In spite of this, their frequencies are not equal due to
the different boundary conditions at the external edges of the
MAW. Therefore, no frequency agreement can be expected
between the unpinned and pinned modes in wires of the same
width.

Another important property of the magnonic band structure
of MAWs found in our study is that the magnetization pinning
at the edges of the MAW results in the opening of magnonic
gaps (yellow bars in Fig. 3). This means that even MAWs
with as little as 5% air can be used as filters with stop and
pass bands. As the first magnonic gap occurs at the border
of the BZ, its opening is clearly related to the periodicity of
the MAW. However, the second gap (between the 4th and 5th
bands) is seen to open inside the BZ. This indicates a different
origin of this gap.

The second gap results from the anticrossing between
two pairs of modes: modes with no nodal line within each
subwaveguide and modes with a nodal line in each half of the
MAW. In other words, the anticrossing occurs between two
parabolas (connected with the lower and higher harmonics
across the MAW width) of the spin-wave dispersion crossing
due to folding to the first BZ.

It is worth noting that the closing of the gaps in the
system with unpinned magnetization is due to the presence

of additional bands (1st, 3rd, 5th, . . .) corresponding to modes
with a significant magnetization amplitude in the center of
the MAW [see Figs. 2(a) and 2(b), first and third mode].
These modes are, in fact, more affected by antidots and more
separated from each other than the modes with a nodal line in
the center of the MAW, but their presence makes the spectrum
of the unpinned system denser and results in more effective
bands overlapping.

The relatively small width of the gaps in the system with
pinned magnetization is due to the less effective impact of
antidots on modes with low value of dynamical magnetization
in the center of the MAW.

The above discussion applies to the low-frequency range,
in which the mode quantization is related to the confinement of
spin waves between one edge of the waveguide and the central
row of antidots. In the high-energy range the following effects
can interfere with this simple mechanism: (1) spin waves can
be localized between antidots in the central region of the
MAW; (2) the crosstalk can be much more efficient in the
case of short spin waves, which can easily “leak out” from one
subwaveguide to the other.

Let us discuss in detail the profiles of the dynamic
magnetization component |mz|2 presented in the bottom panel
of Fig. 3. Three types of modes can be distinguished by
profile: (1) modes (a–h) originating from the first mode of
each subwaveguide (no nodal line inside each subwaveguide);
(2) modes (i–p) related to the second mode in the com-
pletely isolated subwaveguides (one nodal line in the MAW);
(3) modes (r–u), which are high-frequency excitations local-
ized mostly between antidots in the center of the MAW. The
modes are plotted for different BZ points, indicated in the top
panel of Fig. 3. The modes in the center of the BZ have no
nodal line perpendicular to the MAW axis, while the modes
at the edge of the BZ only have one such line in each BZ.
At intermediate points the nonzero amplitude oscillates more
smoothly along the MAW axis.

In the low-frequency range the spin-wave modes show the
following characteristics: (1) modes occur in pairs with in-
phase and out-of-phase correlation between excitations in the
two subwaveguides; (2) the frequency difference between
the modes in each pair increases with growing frequency;
(3) the mode splitting can be suppressed (even for relatively
high frequencies) in every second pair of modes at the edge
of the BZ, where the nodal line between antidots blocks the
crosstalk between subwaveguides (cf. modes o,p to m,n).

In order to verify the mode profiles calculated using PWM
we plotted also some profiles with the aid of micromagnetic
simulation (OOMMF). They are present in Fig. 3 in a hot
colors scale and their frequencies are marked by horizontal
lines to show from which bands they collect the contributions.
The labels a,b, e,f, and k,l,m,n present what kind of mixture
of Bloch states (calculated using PWM) exist in the profiles
calculated with the aid of OOMMF.

Helpful for practical realizations of MAWs is the insen-
sitivity of the magnonic gaps to the shape of the antidots
until its filling fraction and mirror symmetry of MAW is
unchanged. On such a small scale, with a feature size of a few
nanometers, the shape can be expected to play a minor role.
The situation will be different in the magnetostatic regime,
i.e., for smaller wave vectors and larger antidot periods where
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the demagnetizing field is strongly shape dependent and can
affect the spin-wave spectrum in the low-frequency regime.43

IV. CONCLUSIONS

We have shown that the boundary conditions for the
dynamic components of the magnetization vector at ferromag-
netic material/air interfaces are of much importance for the
SW spectra in nanoscale magnonic antidot waveguides. Our
results demonstrate that the magnetization pinning facilitates
the opening of magnonic gaps in magnonic antidot waveguides
with air filling fraction even as low as 5%. This indicates an
additional functionality of these types of waveguides as
filters with tunable stop and pass bands. Also, our results
show that the pinning will be an important factor to be
considered in the interpretation of experimental data obtained
for antidot lattices or designing new devices in which the
antidot arrangement is periodic in nanoscale. The pinning or
unpinning at the interfaces is usually related to the surface
magnetic anisotropy, determined by the shape of the atomic
orbitals modified at the interfaces by the surrounding material
and the reconstruction or relaxation processes. Thus the
surface anisotropy can depend on many factors, such as the

interface structure on the atomic or nanometer scale, the strain,
the crystallographic structure, or the chemical composition.44

In two-dimensional systems the investigation of these effects
can be regarded as an extension of the research in magnetic
bilayers and multilayers, which were in focus at the time of
the discovery of the GMR effect. We have also shown that
peculiar properties of computational methods often used in
the calculations are related to specific boundary conditions for
dynamical components of magnetization implicitly assumed
in each method.
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