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Anticollinear magnetic order induced by impurities in the frustrated Heisenberg model of pnictides
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We present Monte Carlo simulations for a classical antiferromagnetic Heisenberg model with both nearest
(J1) and next-nearest (J2) exchange couplings on the square lattice in the presence of nonmagnetic impurities.
We show that the order-by-disorder entropy selection, associated with the Ising-like phase transition that appears
for J2/J1 > 1/2 in the pure spin model, is quenched at low temperature due to the presence of nonmagnetic
impurities. Evidence that a new competing order is stabilized around the impurities and in turn induces a
reentrance phase transition is reported. Implications for local magnetic measurement of the parent compound of
iron pnictides are briefly discussed.
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I. INTRODUCTION

Unconventional superconductivity occurs in the proximity
of magnetically ordered states in many materials.1,2 Under-
standing the magnetic phase of the parent compound is an
important step towards understanding the mechanism of super-
conductivity. Unlike the case of the cuprates, magnetism and its
underlying electronic state in the iron pnictide superconductor
BaFe2As2

3 is still debated. Many low-energy probes such
as transport,4 scanning tunneling microscopy,5 and angle-
resolved photoemission spectroscopy6 have measured strong
in-plane anisotropy of the electronic states, but there is no
consensus on its physical origin. It was suggested from
first-principle calculations7 that the origin stems from orbital
order, but the obtained anisotropy in the resistivity is opposite
to the one found experimentally.8

A more likely scenario supported by recent neutron diffrac-
tion measurements9 is related to a spin density wave instability
due to the presence of electron and hole pockets around
k = (π,0) and k = (0,π ). The resulting magnetic order is of
nematic type and can be seen as a helicoidal magnetic state
with pitch vector Q = (0,π ) or Q = (π,0). Since the orbital
character of the electron and hole pockets depends on the wave
vector of the instability,10 the nematic order introduces in turn
an orbital polarization.

To describe the low-energy magnetic properties of this
system, it has been suggested early on that a local moment
picture may become relevant in the presence of moderately
large electronic correlations,11 leading to the Heisenberg
model with both nearest (J1) and next-nearest (J2) exchange
couplings defined by

Ĥ =
∑

〈i,j〉
J1Ŝi · Ŝj +

∑

〈〈i,j〉〉
J2Ŝi · Ŝj . (1)

In the collinear regime, both J1 and J2 are positive, and 2J2 >

J1.12 In this expression, Ŝi are O(3) spins on a periodic square
lattice with N = L × L sites. 〈i,j 〉 and 〈〈i,j 〉〉 indicate the sum
over nearest and next-nearest neighbors, respectively.13

The first attempt at fitting the experimental spin density
wave excitation spectra with a Heisenberg model suggested
that one should use very anisotropic values of J1.14 However,
it was later shown that the fits of the experimental data included

energy scales beyond 100 meV, which are not well described
by magnon excitations.15 A more careful study, including the
itinerant character of the electrons,16 led to the conclusion
that pnictides are indeed in the collinear regime with (Q =
(0,π ),(π,0)) magnetic instabilities, a conclusion supported
by first-principles calculations for selenium-based compounds
(KFe2Se2).17 We also note that it was also recently argued
that18 to get a proper description of magnetic interactions
and spin fluctuations in ferropnictides, additional biquadratic
interactions might be important.

In parallel, it has been suggested both experimentally19,20

and theoretically21 that impurities have a dramatic impact on
the magnetic and superconducting properties. In particular,
recent magnetic polarized x-ray measurements suggest that
a new type of magnetic order emerges due to the presence
of magnetic impurities in BaFe2As2.22 Furthermore, periodic
ordering of supercell structures of vacancies in TlFe1.6Se2

observed by electron microscopy was shown to induce a spin
reorientation in these structures.23,24 All these results, together
with results obtained a few years ago on a layered vanadium
oxide,25 call for an in-depth investigation of the effect of
impurities in the frustrated Heisenberg model of Eq. (1).

In this paper, we address the question of the interplay
between the frustration, induced by the exchange coupling,
and the disorder induced by the imperfections of the crys-
tallographic structure. Since density functional calculations,
and quite generally quantum-based calculations, are limited to
relatively small unit cells and cannot tackle the issue of large
supercell structures, we limit our calculations to a frustrated
classical model26 and carry out Monte Carlo calculations of
the Heisenberg J1-J2 model in the presence of impurities
using the same numerical approach as in Refs. 27 and 28.
We then extend the calculations to magnetic impurities.

II. DISTORTION AROUND A SINGLE IMPURITY

We first discuss the symmetry of the magnetic order for the
case of a single impurity. In the absence of disorder and at zero
temperature, the ground state has Néel order with magnetic
vector Q = (π,π ) for J2/J1 < 0.5, while for J2/J1 > 0.5 the
ground state is continuously degenerate and can be described
as two distinct antiferromagnetically ordered states on two
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FIG. 1. (Color online) Sketch of anticollinear order. The letters
i,j,k and l refer to the labeling of the sites of a plaquette used in the
definition of the Z2 and M90 order parameters.

sublattices, with a relative angle θ between their magnetization
axis. At finite temperature, the entropy selection reduces the
O(3) symmetry of the ground state to Z2 at finite temperature,
selecting the states with antiferromagnetic spin correlations
in one spatial direction and ferromagnetic correlations in
the other (Q = (0,π ),(π,0)). This is the so-called order
by disorder entropic selection, and the associated discrete
symmetry breaking drives a finite-temperature Ising-like phase
transition.27,29

To characterize this transition, it is useful to construct, from
the original spin variables Ŝi , an effective Ising variable on the
dual lattice:

M2(x) = (Ŝi − Ŝk) · (Ŝj − Ŝl), (2)

where (i,j,k,l) are the corners with diagonal (i,k) and (j,l)
of the plaquette centered at the site x of the dual lattice (see
Fig. 1), and we define its normalized counterpart as Z2(x) =
M2(x)/|M2(x)|. In this way, the two collinear states with Q =
(π,0) and Q = (0,π ) can be distinguished by the value of the
Ising variable, Z2(x) = ±1.

Our Monte Carlo calculations show that introducing a single
impurity lifts the former continuous degeneracy and selects
the state with θ = 90◦, as shown in Fig. 2(a) and in agreement
with a prediction by Chris Henley,30 who suggested the name

nonmagnetic impurity
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FIG. 2. (Color online) (a) Typical spin configuration obtained at
T = 10−6J1. The filled circle indicates the location of the impurity,
and the rectangle highlights the region around the impurity where the
spins deviate significantly from the 90◦ ordered state for J2/J1 =
0.55. (b) Angle of the spins connected to the impurity with the
horizontal axis as obtained from the Monte Carlo (squares) and with
a simple variational criteria where only the spins connected to the
impurity are tilted (line).
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FIG. 3. (Color online) Distortion angle α as a function of the
Manhattan distance d from the impurity (in units of the lattice spacing
a0) obtained by Monte Carlo for J2/J1 = 0.55 (circles) and J2/J1 =
0.8 (triangles). Power-law fits to the data with exponent λ = −2 are
shown for comparison (bold lines).

anticollinear to describe the state with θ = 90◦, as well as
with linear spin-wave calculations on small clusters.31 The
columnar states were also suggested as a stable phase of
ferropnictides16 in the itinerant picture. The anticollinear state
can be characterized similarly to the Ising order by the norm
of a pseudovector:

M90(x) = |(Ŝi − Ŝk) ∧ (Ŝj − Ŝl)|. (3)

This selection is induced by a local energy optimization
around the impurity site. Indeed, the four spins on the
impurity’s nearest-neighbor sites slightly rotate to acquire a
small common ferromagnetic component in order to optimize
locally the energy with their own neighbors once an impurity is
introduced into the 90◦ state. We show in Fig. 2(b) the resulting
deviation of the spins connected to the impurity from the bulk
90◦ magnetic state. This energetic optimization spreads further
through the lattice and affects the spins belonging to the same
sublattice, while the spins on the other sublattice are marginally
affected. We show in Fig. 3 the obtained deviation of the spins
from the bulk 90◦ magnetic state as a function of the distance
from the impurity. Clearly the distortion is large close to the
impurity, as confirmed by fits to the data, which are consistent
with a power-law decay with an exponent λ ≈ −2.

It is noteworthy that treating the distortion angle α as a
simple variational parameter and neglecting the distortion of
the spins which are not nearest neighbors of the impurity lead
to a very good estimate of the Monte Carlo result. The good
agreement between the two methods confirms that the energy
optimization around a single impurity is essentially local in
space, and thus the selection of the 90◦ magnetic state is driven
by a local energetic optimization process, in contrast to the
entropic order-by-disorder selection of the Q = (0,π ),(π,0)
states in the clean system.

Let us now turn to the discussion of the single-impurity
problem at small but finite temperature. The 90◦ spin order
around a single impurity is shown in Figs. 5(a) and 5(c).
Since the 90◦ order does not break discrete symmetry, in
contrast to the Ising symmetry broken by the Z2 Ising
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FIG. 4. (Color online) Color plot of M90(x) at T = 10−3J1

(blue and red are respectively the minimum and maximum). This
calculation is done for J2/J1 = 0.55.

parameter, it is not a stable thermodynamic phase. At finite
temperature, the anticollinear order characterized by Eq. (3)
has a finite correlation length. Interestingly, the anticollinear
order remains strong within a finite region around the impurity
(see Fig. 4), and outside this region the collinear (0,π ),(π,0)
states are recovered.

Thus, the 90◦ order does not develop long-range corre-
lations but is rather stabilized around the impurity within a
finite region: At finite temperature, there is a competition in
the free energy F = E − T S between, on the one hand, the
local energy optimization in the vicinity of the impurity which
favors the 90◦ spin order, and on the other hand the entropy
selection which favors the Ising Q = (0,π ),(π,0) states.
Notwithstanding that the 90◦ state is energetically favored and
is stabilized at short distances from the impurity, we indeed find
that thermal fluctuations screen the impurity at long distances,
and that the system recovers the entropically selected Ising
states far from the impurity. Since the entropic mechanism
is temperature dependent, so is the size of the 90◦ cluster: It
increases when the temperature decreases, as can be seen from
Fig. 5(a) obtained at T = 10−3J1 and Fig. 5(c) obtained at a
smaller temperature T = 10−4J1. In addition, we note that the
shape of the 90◦ cluster is highly asymmetric. To understand
this point, we measured the Ising order parameter M2 in the
same calculation [see Figs. 5(b) and 5(d)]. As expected, we
observe a concomitant reduction of the Ising order in the region
where the 90◦ order is large, but more remarkably, we find that
the shape of the 90◦ cluster correlates with the Ising order: The
cluster is an ellipsoid with a large axis �1 in the direction along
which the spins are parallel and a small axis �2 in the direction
along which the spins are antiparallel. Furthermore, the spins
along �1 (�2), highlighted by the white stripes in Fig. 4,
correspond to the ferromagnetically (antiferromagnetically)
aligned spins of the collinear (0,π ),(π,0) states. Hence, due
to the antiferromagnetic J1 coupling, the deviations from the
pure Ising state are energetically favorable along �1, and costly
along �2, which explains why the screening of the impurity is
more effective in one direction than the other.

III. FINITE CONCENTRATION

Let us now extend the discussion to the averaged physical
observables with a finite concentration of impurities δ [see
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FIG. 5. (Color online) Spatially resolved order parameter (a) for
the 90◦ spin order [M90(x)] and (b) for the Ising order [M2(x)]
obtained at T = 10−3J1. The respective order parameters evaluated
at a lower temperature T = 10−4J1 are shown in (c) and (d). In
all the calculations above the cluster contains L × L = 120 × 120
sites and the impurity is located at the center of the cluster at
(x,y) = (60,60).

Fig. 6(a)]. We carried out Monte Carlo calculations for a
L × L = 40 × 40 cluster with different magnetic impurities
dilutions δ, and we averaged the physical observables over
32 random configurations of impurities. We find for small
concentration δ = 0.125% only a weak effect on the Ising
order. In particular, we observe the Ising-like crossover at
T ≈ 0.2J1, as shown by the sharp drop of the order parameter
at this temperature, and a very small dip in the Z2 order
parameter at T ≈ 0.005J1. The phase diagram of Fig. 6(b)
is consistent with earlier numerical calculations by Henley
and Prakash.30 In particular, the re-entrance of the Ising order,
reported for the XY version model in that reference, is also
present in the Heisenberg model [see Fig. 6(a)].

We note that transitions belonging to the Ising universality
class (ν = 1 and the dimension d = 2) do not satisfy the well-
known Harris criteria,32 which assess that phase transitions
with νd > 2 are unaffected by the disorder. So it is not obvious
a priori whether the transition into the collinear phase is a true
phase transition or a crossover. While numerical studies have
shown that the simple 2D Ising model is weakly affected by
disorder,33 it has been argued in Ref. 30 for the XY model
that the disorder induced by vacancies does not induce a
genuine order in 2D. A formal proof would require a detailed
finite size scaling analysis and goes beyond the scope of this
work.

At larger concentrations 0.125% < δ < 11%, we find a
steady decrease of the Ising order at small temperatures, as
highlighted by the dashed lines in Fig. 6(a). For instance, at δ =
2% we observe a quench of the Ising order for T < 0.025J1,
and the entropic selection kicks in for 0.025 < T < 0.19
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FIG. 6. (Color online) (a) Temperature dependence of the spa-
tially averaged Ising order parameter Z2 for various impurity
concentrations δ obtained for a L × L = 40 × 40 lattice. The Ising
order is suppressed at low temperature by the presence of impurities,
and at large temperature by strong thermal fluctuations. The dashed
lines are guide to the eyes to track the Ising crossovers at low and high
temperatures. (b) Corresponding phase diagram in impurity density δ

and temperature T. Calculations above were averaged over 32 random
configurations of disorder.

where we obtain the Ising ordered phase, and finally at higher
temperatures T > 0.19 the system is a paramagnet. So we
are in the presence of a reentrance phase transition. We
note that the impurities mainly affect the Ising order at low
temperatures, and the Ising-like transition near T ≈ 0.2J1

is moderately affected by impurities at small and moderate
dilutions. Beyond a critical dilution δc ≈ 20%, we do not
observe the presence of the collinear or anticollinear states.
Indeed, in two dimensions and for an impurity dilution δc =
1/9, there is one impurity on average connected to every spin
of the lattice, so that the local distortions and subsequent local
energy optimizations start to prevail over both the Ising phase
and the 90◦ local spin order. The phase diagram is summarized
in Fig. 6(b). Note that the reentrant behavior of the Ising phase
agrees with the prediction of Ref. 30. However, the rest of
the phase diagram of Ref. 30 cannot be compared to the
present results. Indeed, in the case of the XY model studied
in Ref. 30, the local chirality of the anticollinear order defines
naturally an Ising variable, and the anticollinear phase must be
separated from the paramagnetic phase by a phase transition.
By contrast, here the low-temperature phase below the Ising
phase can be smoothly connected to the paramagnetic phase.
Nonetheless, the long-range order for the vector chirality at
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FIG. 7. (Color online) Real-space map of M90 obtained for a
given configuration of 15 nonmagnetic impurities in a L × L =
160 × 160 lattice (δ = 0.06%) for J2/J1 = 0.55 at (a) T = 10−3J1,
(b) T = 10−4J1. The colors range from black (minimum) to red
(maximum).

finite temperature for Heisenberg spins could accommodate
an order parameter built upon vortices,34 and we cannot rule
out a true phase transition at small but finite temperature. To
study this crossover would require studying larger dilutions
and performing a systematic finite size scalings, which goes
beyond the scope of the present work.

The reentrance phenomena observed in Fig. 6(a) can
be explained at small impurity concentration on the basis
of the single-impurity results at finite temperature. To see
this, we now consider a given configuration of impurities
for a small but finite impurity dilution of δ = 0.06% at
T = 10−3,10−4,10−5J1 and J2/J1 = 0.55 [see respectively
Figs. 7(a), 7(b), and 7(c)]. The 90◦ order stays localized
around the impurities at high temperature [Fig. 7(a)], but
forms superstructures connecting the impurities [Fig. 7(b)]
upon lowering the temperature until it finally spreads through
the whole lattice [Fig. 7(c)]. This process is very similar to a
percolation transition, and can be captured within a very simple
argument: The anticollinear order spreads through the whole
system when the size of the 90◦ clusters is of the order of the
mean distance λ between the impurities. More precisely, since
the 90◦ cluster is an ellipsoid, we obtain a lower and upper
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FIG. 8. (Color online) (a) Critical dilution δc as a function
of temperature obtained from the Monte Carlo data of Fig. 6(a)
(triangles), and by a simple criteria comparing the length of the short
(dark gray circles) and long (light gray circles) ellipsoidal axis of the
90◦ order cluster (see discussion in the text). (b) �1 (the long axis of
the 90◦ order ellipsoid) in units of a0 as a function of r = Simp/Slat,
where Simp is the spin of the magnetic impurity, and Slat is the spin of
the correlated element of the compound.

bound on the critical dilution, by comparing the long (�1)
and short (�2) axis respectively to the mean impurity-impurity
distance. We compare in Fig. 8(a) the critical dilution obtained
from the Monte Carlo data of Fig. 6(a) with the critical
dilutions obtained by this simple argument. We find that this
argument provides a reliable estimate of the critical dilution.
This confirms that the reentrance of the Ising order can be
accounted for by comparing length scales associated with the
competition between Ising and 90◦ order on one hand and with
the impurity concentration on the other hand. Interestingly,
this is reminiscent of a recently reported study where the
authors obtained a reentrance transition in a discrete spin
model that describes a completely different system, namely
hydrogen-bond physics for water layers.35

IV. EXTENSION TO MAGNETIC IMPURITIES

We generalized our calculations to magnetic impurities with
nonzero spin [see Fig. 8(b)]. Remarkably, we find that the
90◦ order cluster around a single impurity is not significantly
affected by the spin of the impurity Simp, as long as the
ratio of the spin of the impurity to the magnetic element of
the compound r = Simp/Slat remains smaller than ≈0.6. This
suggests that the reentrance phase transition does not strictly
require nonmagnetic impurities but could also be present for
instance in the case of Ni impurities in BaFe2As2, where the
spin of Ni is ≈40% of the spin of Fe.36 So it will be very
interesting to see whether the order proposed in this paper
can lead to an alternative interpretation of the NMR results in
BaFe2As2 and maybe help clarify the origin of the line shapes
in Ni- and Zn-doped samples.36 We note that the magnetic
distortion around a single impurity was also studied in the
context of magnetic frustration in the triangular lattice.37 For
magnetic impurities in noncollinear magnets, the authors of
Ref. 37 find that there is only a partial screening of the impurity
magnetic moment, leading to a fractional Curie response at
low temperatures in the 2D case. How this compares to the
frustrated Heisenberg model on the square lattice will be
interesting to be clarified in future work.

V. DEPENDENCE ON J2/J1

Finally, we extended the calculations to other values of
J2/J1, in order to assess the range of parameters where
our theory is valid. In order to estimate the range of J2/J1

parameters where the anticollinear order is stabilized, we
compute the energy gain obtained by the distortion α near
the impurity site at zero temperature for the case of a single
impurity. Since the distortion α is mostly local, we neglect the
distortion for the spins which are not nearest neighbors of the
impurity. This can be obtained straightforwardly:

E(λ = J2/J1,α)/J1 = 4 cos(π/2 − α) + 8λ cos(π − α)

+ 4λ cos(π − 2α) + 8 cos(π/2 + α) + 12λ. (4)

As shown in Fig. 9(a), the energy gain at zero temperature
decreases monotonically when J2/J1 increases, and becomes
small for J2/J1 > 1.5. The latter is confirmed by Monte Carlo
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FIG. 9. (Color online) (a) Energy gain E(α) − E (α = 0) at zero
temperature as a function of J2/J1 computed with a simple variational
argument where only the nearest-neighbor sites of the impurity distort
from the 90◦ order. (b) Anticollinear order obtained by Monte Carlo
at finite temperature T = 0.001J1 and spatially resolved at a given
distance d from the impurity as a function of J2/J1.
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FIG. 10. (Color online) Real-space map of M90 obtained for a
given configuration of 15 nonmagnetic impurities in a L × L =
160 × 160 lattice (δ = 0.06%) for J2/J1 = 0.8 at (a) T = 10−3J1,
(b) T = 10−4J1, and (c) T = 10−5J1. The colors range from black
(minimum) to red (maximum).

calculations at finite temperature T = 0.001J1 [see Fig. 9(b)],
where we resolve spatially the anticollinear order at a fixed
distance from the impurity, and compute how it evolves when
J2/J1 increases. Indeed, we find that for all distances from the
impurity, the anticollinear order is suppressed for J2/J1 > 1.1.

It is noteworthy that the anticollinear order is strikingly
increasing with J2/J1 at large distances from the impurity
(18 lattice spacings and more) and for J2/J1 < 0.8. We
attribute this effect to the fact that the collinear order is
competing with the antiferromagnetic Néel order near J2/J1 =

0.5, which leads to large thermal fluctuations in the critical
regime. Indeed, the latter was shown to suppress the Ising
phase transition and the critical temperature Tc goes to zero at
J2/J1 = 0.5.27 The larger fluctuations, which give a small Tc

near J2/J1 = 0.5, are hence expected to also reduce in turn the
anticollinear order far from the impurity, since the local energy
optimization is screened faster by large entropic contributions.

This is also confirmed by calculations done for a finite
concentrations of impurities δ = 0.06% (see Fig. 10). We find
that for J2/J1 = 0.8 [see respectively Figs. 10(a), 10(b), and
10(c)] the anticollinear order parameter is larger at all tem-
peratures T = 10−3,10−4,10−5J1 than for the corresponding
temperatures at J2/J1 = 0.55.

VI. CONCLUSION

In conclusion, we have carried out a systematic study of the
effect of nonmagnetic impurities in a frustrated Heisenberg
model. We reported that for J2/J1 > 0.5 the continuous
degeneracy of the ground state induced by the frustration is
lifted due to a local optimization in the vicinity of a single
impurity. The energy gain favors anticollinear order, which
consists of bipartite lattices supporting Néel states entangled
with a 90◦ angle. This order, energetically favored, competes
with the Ising order, entropically favored, and at long distance
we find that the impurity is screened by thermal fluctuations.
This results in a rich phase diagram with a reentrant collinear
phase upon increasing the temperature for a finite dilution.

Moreover, we have shown that the structure around the
impurity locally departs from the purely anticollinear order.
This effect is large when J2/J1 is close to 1/2, as in the
pnictides, and should be detectable by local probes such
as NMR. It would also be interesting to investigate the
implications of these results in the context of vanadates.25

An extension of these calculations to the itinerant picture will
be interesting in the near future, by using variational Monte
Carlo based methods38,39 in the presence of noncollinear
magnetism.40
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A. Läuchli for interesting discussions at an early stage of
the project. One of us (C.W.) acknowledges very interesting
discussions with D. Inosov. We are especially indebted to
I. Eremin, C. Henley, and A. Läuchli for quite insightful
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