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Numerical test of the Cardy-Jacobsen conjecture in the site-diluted Potts model in three dimensions
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We present a microcanonical Monte Carlo simulation of the site-diluted Potts model in three dimensions
with eight internal states, partly carried out on the citizen supercomputer Ibercivis. Upon dilution, the pure
model’s first-order transition becomes of the second order at a tricritical point. We compute accurately the critical
exponents at the tricritical point. As expected from the Cardy-Jacobsen conjecture, they are compatible with their
random field Ising model counterpart. The conclusion is further reinforced by comparison with older data for the
Potts model with four states.
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I. INTRODUCTION

When two ordered phases compete, even a tiny amount of
disorder is significant. Consider, for instance, the antiferro-
magnetic insulator LaCuO4. A small La ↔ Sr substitution
turns it into a high-temperature superconductor. Also for
colossal magnetoresistance oxides the importance of the
combination of phase coexistence and chemical disorder has
been emphasized.1

These examples suggest a simple yet general question:
What are the effects of quenched disorder on systems that
undergo a first-order phase transition in the ideal limit of a pure
sample? (Quenched disorder models impurities that remain
static over experimental time scales.2) In fact, this question has
been relevant in a large number of physical contexts. A nonex-
haustive list includes nanoscale ferroelectricity,3 tilt ordering,4

ferroelectric thin films,5,6 random block copolymers,7 ferro-
electric nanodisks,8 topological phases in correlated electron
systems,9 effects of multiplicative noise on electronic RLC
circuits,10 and surface waves.10,11

Unfortunately, only for two spatial dimensions (D = 2)
do we have a good understanding of the effects of quenched
disorder on phase coexistence: The slightest concentration of
impurities switches the transition from first order to second
order.12–14

In D = 3 we lack a general description. One should
consider two different possibilities: Disorder may couple
either to the order parameter, as in the random field Ising
model (RFIM),15,16 or it may couple to the energy, as
in the disordered Potts model.17 In both cases, quenched
disorder is unreasonably efficient at softening the transition.
It has been surprisingly difficult to show that the transition
actually remains of the first order for some range of impurity
concentration.18–20

Actually, the Cardy and Jacobsen conjecture relates the
two types of disorder by means of a mapping between the
RFIM and the disordered Potts model.13 The conjecture reads
as follows. Consider a ferromagnetic system undergoing a
first-order phase transition for a pure sample.21 Let T be the
temperature while p is the concentration of magnetic sites (see
the generic phase diagram in Fig. 1). A transition line, Tc(p),
separates the ferromagnetic and the paramagnetic phases in
the (T ,p) plane. In D = 3 a critical concentration is expected

to exist, 1 > pt > 0, such that the phase transition is of the first
order for p > pt and of the second order for p < pt (at pt one
has a tricritical point). When p approaches pt from above, the
latent heat and the surface tension vanish while the correlation
length diverges. The corresponding critical exponents can be
obtained from those of the RFIM (see below).

However, the Cardy-Jacobsen mapping relates two prob-
lems unsolved in D = 3. In particular, the RFIM (the
supposedly well-known partner in the conjecture) suffers
from severe inconsistencies between analytical, experimental,
and numerical work. On the experimental side, mutually
inconsistent results for the correlation-length exponent ν were
obtained,22,23 due to the uncertainties in the parametrization of
the scattering line shape. Also, the estimate of the anomalous
dimension η violates hyperscaling bounds.22 Numerical deter-
minations of exponent ν are scattered on a wide range,24–35

and hyperscaling-violating results have been reported.35 The
order parameter’s critical exponent β ∼ 0.01 is so small (yet,
see Ref. 23) that it has even been conjectured that the transition
could be of the first order.36,37

On the other hand, the investigation of the disordered Potts
model has been mostly numerical up to now. In the conven-
tional approach, one averages over disorder the free energy at
fixed temperature.2 It works nicely for the second-order part of
the critical line Tc(p),38–43 but the first-order piece is plagued
by huge sample-to-sample fluctuations of the specific heat or
the magnetic susceptibility.40 Fortunately, these wild fluctua-
tions can be avoided by averaging over disorder the entropy
obtained from microcanonical Monte Carlo44 at fixed energy.19

We investigated in this way the site-diluted Potts model with
Q = 4 states. A delicate extrapolation to infinite system size
showed that pt < 1. Unfortunately, the relevance of the RFIM
universality class for the tricritical point (the core of the Cardy
and Jacobsen conjecture) could not be addressed up to now.

Here we show that the Cardy-Jacobsen conjecture is verified
to high numerical accuracy in the site-diluted Potts model
with Q = 4 and 8 states. This result follows from a finite-size
scaling analysis of old Q = 4 data19 and new, extensive Monte
Carlo simulations for Q = 8, partly carried out on the Ibercivis
citizen supercomputer.45 Our analysis benefits from a recent
computation of the RFIM critical exponents24 that also exploits
the redefinition of the disorder average.19
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FIG. 1. (Color online) Phase diagram of the three-dimensional
diluted Potts model for Q � 3. For small dilutions we have a first-
order phase transition line which ends up in a tricritical point [at
(Tt ,pt)], and below this tricritical point, the phase transition line
continues as a second-order one. PM and FM denote a paramagnetic
and ferromagnetic phase, respectively.

In Sec. II we summarize the main implications of the
Cardy-Jacobsen conjecture and define our specific model. Our
methodology, including details on simulation and statistical
analysis, is presented in Sec. III. In Sec. IV we present our
main numerical evidence for the validity of the conjecture.
We give our conclusions in Sec. V. Finally in the Appendix
we describe how the control variates technique improves the
determination of some important quantities.

II. THE CARDY-JACOBSEN CONJECTURE

Specifically, we consider the D = 3 site-diluted Potts
model with Q internal states.17 The spins, σi = 1, . . . ,Q,
occupy the nodes of a cubic lattice of linear size L, with
periodic boundary conditions. Each spin interacts with its
nearest neighbors through the Hamiltonian

H spin = −
∑
〈i,j〉

εiεj δσiσj
. (1)

The quenched randomness is represented by the occupation
variables εi = 0,1 (εi = 1 means that the ith spin is present).
We choose each εi independently, setting εi = 1 with proba-
bility p. Each specific disorder realization is called a sample.
The pure system is recovered for p = 1, where it undergoes a
generally regarded as very strong first-order phase transition
for Q � 3.40,44 We show in Fig. 1 the full phase diagram of
this model.

The Cardy and Jacobsen mapping relates the large-Q limit
of the disordered Potts model to the RFIM.13 At the tricritical
point pt of the Potts model, we encounter three relevant scaling
fields (see, e.g., Ref. 46). The dilution field lies along the
critical line Tc(p). We name its scaling dimension yp. The
thermal scaling field has dimension yT and is responsible for
the ferromagnetic transition when varying the temperature.
Finally, the magnetic scaling field is related to an external
magnetic field in Eq. (1). The mapping to the RFIM is

yp = yRFIM
hR/J = 1

νRFIM
, (2)

yT = yRFIM
H − θ = 1

2 (D − θ + 2 − ηRFIM), (3)

where νRFIM is the correlation-length exponent,47 ηRFIM is the
anomalous dimension, while θ is the hyperscaling-violations
exponent.15 Furthermore, the exponent of the surface tension
μ verifies a modified Widom law: μ = D − θ − 1. Cardy
and Jacobsen predicted as well that, upon approaching the
tricritical point pt, the latent heat in the diluted Potts model
vanishes with the same exponent βRFIM that rules the vanishing
of the order parameter in the RFIM.

III. METHODOLOGY

A. The microcanonical ensemble

For the simulation of the model described by Eq. (1) we
have used an extended microcanical method which is suitable
to study the first-order part of the transition line.44

We will briefly review the main facts of this simulation
approach. Using a mechanical analogy, each spin is comple-
mented with one conjugated momentum. The total energy
is the sum of a kinetic term K (the halved sum of the
squared momenta) and the potential energy, namely the spin
Hamiltonian of Eq. (1).

We consider the microcanonical ensemble, where the
energy (kinetic plus potential) is kept fixed to the total value
Ne, where N = ∑

i εi is the total number of spins. The
momenta can be explicitly integrated out. The entropy density
s(e) and the microcanonical weight ω(e,N ; {σi}) turn out to be

exp[Ns(e,N )] = (2πN )N/2

N�(N/2)

∑
{σi }

ω(e,N ; {σi}), (4)

ω(e,N ; {σi}) =
(

K

N

)(N−2)/2

θ (K ), (5)

K = Ne − H spin. (6)

The role of the Heaviside step function in Eq. (5) is preventing
the kinetic energy from becoming negative.

The Monte Carlo simulation of the weight in Eq. (4) is
straightforward. Both Metropolis and cluster methods are
feasible and efficient.19,44 In the present work we have used the
Swendsen-Wang algorithm44 (see Ref. 19 for implementation
details). One obtains in this way mean values at fixed e that
will be denoted 〈(· · · )〉e.

A particularly important mean value comes from the
fluctuation-dissipation relation

ds

de
= 〈β̂〉e, (7)

where

β̂ = N − 2

Ne − H spin
. (8)

On the view of Eq. (7), it might be inspiring to think of 〈β̂〉e
as the inverse temperature corresponding to energy density e.
The connection between the canonical and the microcanonical
ensembles is discussed in Ref. 48. Finally, our main observable
will be β(e), defined as

β(e) = 〈β̂〉e , (9)

where the overline stands for the disorder average as computed
at fixed e.
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B. The Maxwell construction

A standard way of studying phase coexistence in a micro-
canonical setting is the Maxwell construction. This allows us
to compute from the curve β(e) several important magnitudes:
the critical inverse temperature βc, the energies of the two
coexisting phases, and the surface tension. Furthermore, one
may apply the very same method to the sample-dependent
〈β̂{εi }〉e, as shown in Fig. 2. We follow the numerical methods
described in Refs. 44 and 19. We briefly summarize them now,
for the sake of completeness.

Consider the equation

β(e) = β, or (single sample) 〈β̂{εi }〉e = β. (10)

In normal situations, β(e) is monotonically decreasing with
e, so that Eq. (10) has a unique solution. However, at phase
coexistence β(e) is no longer monotonically decreasing; see
Fig. 2. Therefore, Eq. (10) has three important solutions,
named eo, e∗, and ed (eo < e∗ < ed):

(1) The rightmost root of (10), ed
L,β , corresponds to the

“disordered phase.”
(2) The leftmost root of (10), eo

L,β , corresponds to the
“ordered phase.”

(3) The second rightmost root of (10), e∗
L,β , is a saddle point

among the two phases.
Note that these three solutions do depend on L, although

we shall not explicitly indicate it unless necessary.
We compute the inverse critical temperature βc from the

equal-area rule:

0 =
∫ ed

βc

eo
βc

de [β(e) − βc] ; (11)

see Fig. 2. Note that the βc computed from Eq. (11) does
depend on the system size. In fact, in the thermodynamic
limit, Eq. (11) is a mere consequence of the continuity of
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FIG. 2. (Color online) Example of Maxwell construction (data
from a single sample of a Q = 8 Potts model in three dimensions,
with L = 24 and p = 0.95). The horizontal line corresponds to the
inverse critical temperature, obtained through Maxwell’s equal-area
rule, Eq. (11). Consider the region limited by the horizontal line
β = βc and the curve 〈β̂〉e. The (negatively signed) area in the region
eo < e < e∗ equals the absolute value of the (positively signed) area
in the region e∗ < e < ed.

the free-energy density (as a function of temperature) at the
phase transition. In fact, recall that the free-energy density can
be expressed in terms of the inverse temperature and of the
internal energy and entropy densities: f = e − s/β. Now, if
we recall Eq. (7), we see that the equality of the free-energy
densities of the ordered and the disordered phases at the critical
temperature can be recast as

βc
(
ed
βc

− eo
βc

) = s
(
ed
βc

) − s
(
eo
βc

)
(12)

=
∫ ed

βc

eo
βc

de β(e). (13)

This textbook reasoning can be extended to the more compli-
cated case of a finite system. In fact, it is easy to show, see
Refs. 44 and 49, that Eq. (11) is identical to the criterion of
equal height in the energy histogram.50 Such a finite-system
indicator of the critical temperature suffers from finite-size
corrections of order ∼ 1/LD .51

Once we know βc, we may compute the latent heat as

�e = ed
βc

− eo
βc

. (14)

Finally, the surface tension, Σ , is calculated as

Σ(L) = N

2LD−1

∫ ed
βL

c

e∗
βL

c

de
[
β(e) − βL

c

]
. (15)

Note that in order to compute integrals such as the one in
Eq. (11), we interpolate β(e) (which is numerically computed
over a grid in the e line) through a cubic spline. Statistical errors
are computed using a jackknife method (see, e.g., Ref. 44). In
the case of the sample-averaged β(e), the jackknife blocks are
formed from the microcanonical mean values obtained on the
different samples. On the other hand, when one performs the
Maxwell construction for a single sample as in Fig. 2, the
jackknife blocks are formed from the Monte Carlo history.

It is interesting to compare the curves β(e) for fixed L = 48,
as the disorder increases (i.e., as p decreases); see Fig. 3. In
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1.00

-2.0 -1.5 -1.0 -0.5

β

e

p=1
p=0.95
p=0.90
p=0.85
p=0.80

FIG. 3. (Color online) Maxwell construction, see Eq. (11), as
obtained for the sample-averaged β(e). Data for L = 48 and several
values of the spin concentration. The transition becomes smoother as
p decreases (from bottom to top). In fact, for p = 0.8 the Maxwell
construction can no longer be done [because the corresponding β(e)
is monotonically decreasing with e].
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the limit of a pure system, p = 1, β(e) displays the expected
cusps and steps for a system with well-developed geometric
and condensation transitions.52 As soon as the system becomes
disordered, the transition becomes smoother: Both the latent
heat, see Eq. (14), and the surface tension, Eq. (15), are sizably
smaller for p = 0.95 than for p = 1. This trend is maintained
for decreasing p, to the point that the phase transition is clearly
of the second order at p = 0.8 [for that dilution, β(e) is mono-
tonically decreasing with e]. We note as well that the curve
β(e) for p < 1 is remarkably featureless, specially if compared
to its p = 1 counterpart. Actually, geometric transitions are
also found for individual samples at p = 0.95. However, the
energies at which this singular behavior arise depend on the
considered sample, which results in a smooth averaged β(e).

C. Finite-size scaling near a tricritical point

In the following we will discuss some relevant facts about
the scaling near a tricritical point; see, e.g., Ref. 46. Consider
some quantity O that, in the thermodynamic limit, scales as
O(L=∞) ∼ ξx , where ξ is the correlation length. The finite-size
scaling (FSS) ansatz tells us how the same quantity behaves
in a finite system of size L. Close to the tricritical point at
(pt,Tt = Tc(pt))

O(L,pt + δp,Tt + δT ) = LxG(LyT uT ,Lypup) , (16)

where G is a scaling function, and we have neglected scaling
corrections. As stated in Eqs. (2) and (3), there are two relevant
scaling fields, the thermal field uT and the disorder field up.
Both uT and up are functions of δp and δT , the deviations from
the tricritical point. If we work at uT = 0, we should expect
that, at linear order, up|uT =0 ∝ δp . Then the phase transition is
of the second order if δp < 0, and of the first order if δp > 0.

Our main assumption will be that the Maxwell construction,
see Ref. 44 and the previous subsection, enforces the constraint
uT = 0 to an accuracy of order O(L−D) (this expectation is
well founded in the first-order part of the critical line50). Hence,
Eq. (16) simplifies to

O(L,p,Maxwell) = LxG̃(Lyp (p − pt))(1 + O(LyT −D)).

(17)

So, the Maxwell construction allows us to employ standard
FSS,46 with an effective scaling-corrections exponent ω =
D − yT . The combination of Eqs. (2) and (3), standard RFIM
scaling relations,15 and the numerical estimates in Ref. 24 yield
ω = θ + βRFIM/νRFIM = 1.48(2).

A further irrelevant scaling field uQ = 1/ log Q with
exponent −θ is also present.13 Numerically, θ = 1.468(2),24

while we expect ω = 1.48(2). These two exponents are so
similar that, given our limited numerical accuracy, we shall
not attempt to distinguish them. However, we remark that one
expects a larger amplitude of the scaling corrections for Q = 4,
which is confirmed by our data (see Fig. 6).

D. Numerical simulations and thermalization checks

We considered concentration values 0.65 � p � 1 and
lattice sizes 12 � L � 64. The precise values are indicated
in Table I. The p resolution becomes denser close to the
L-dependent position of the tricritical point. For all pairs (p,
L) we simulated 500 samples, with the obvious exception of
p = 1.

Each sample was simulated on a e grid fine enough to allow
for a correct spline interpolation; see Fig. 4. The simulations
at the different e values were mutually independent. Hence,
we faced an embarrassingly parallel computational problem,
suitable for Ibercivis (with a caveat; see below).

All samples were simulated for the same number of Monte
Carlo steps, at every e value. However, the number of Monte
Carlo steps did depend on e, as we explain now. First, we ran
all samples at a given e value for a fixed amount of Swendsen-
Wang steps (e.g., 3 × 105 for L = 64, or 2 × 105 for L = 48);
then we assessed thermalization.

The thermalization check was the standard logarithmic data
binning: For any given value of e, we computed different
estimates of the sample-averaged β(e), using disjoint pieces
of the Monte Carlo history. On the first bin, we included only
the second half of the Monte Carlo history (i.e., our safest
data from the point of view of thermalization). The second bin
contained only the second quarter of the Monte Carlo history,
etc. We checked for statistical compatibility, at least, among
the first and second bins; see Fig. 4. If for a given value of e

TABLE I. For each of the lattice sizes L, we indicate the values of p (the concentration of magnetic sites)
for which we carried out simulations. We shall need to regard the various quantities defined as continuous
functions of the density of magnetic sites, p. We shall need as well the corresponding p derivatives. As a rule,
we have obtained these functions of p through a cubic-spline interpolation of the data computed at these p

values. In fact, some of them were chosen in order to minimize the interpolation errors at some particularly
important values of p; see Tables II and III. Derivatives with respect to p were computed simply by derivating
the cubic-spline interpolating function. The error estimates where obtained through a jackknife (see for instance
Ref. 46) over the sample averages.

L Simulated p values

12 0.65, 0.675, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.832, 0.85, 0.875, 0.9, 0.925, 0.9375, 0.95

16 0.65, 0.675, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.85, 0.854, 0.875, 0.9, 0.925, 0.9375, 0.95

24 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.832, 0.845, 0.85, 0.875, 0.9, 0.925

32 0.75, 0.775, 0.8, 0.825, 0.85, 0.854, 0.8625, 0.875, 0.886, 0.8875, 0.9, 0.925, 0.9375, 0.95, 0.975

48 0.75, 0.775, 0.8, 0.825, 0.85, 0.8625, 0.875, 0.877, 0.8875, 0.9, 0.925, 0.9375, 0.95

64 0.8, 0.825, 0.85, 0.86875, 0.875, 0.8875, 0.9, 0.925, 0.9375, 0.95

184428-4



NUMERICAL TEST OF THE CARDY-JACOBSEN . . . PHYSICAL REVIEW B 86, 184428 (2012)
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FIG. 4. (Color online) In order to ascertain thermalization, we
use the standard logarithmic data binning [data corresponding to
β(e), as computed for L = 64, p = 0.95]. Bin 1 was computed from
the sample average of the last half of the Monte Carlo history on
each sample (bin 2 corresponds to the second quarter of the Monte
Carlo history, bin 3 to the second eighth, and so forth). Statistical
compatibility among the different bins is a strong thermalization
check. Lines are cubic-spline interpolations for each bin. In order to
demonstrate the importance of having a dense enough simulation grid
(in particular, close to high-curvature regions), the spline interpolation
in the blue line ignores the data at e = −0.2875.

the thermalization criterion was not met, the total simulation
time was doubled. The procedure was cycled until convergence
was achieved. We note that for the concentrations nearest to
p = 1, we encountered strong metastabilities that prevented
us from simulating L = 128 (that could instead be simulated
for Q = 4 in Ref. 19).

The thermalization protocol is not well suited for Ibercivis,
because the simulation of a given sample at some difficult
energy may last up to some days. Yet, Ibercivis relies on
volunteers’ computers that frequently switch from on-line to
off-line. To minimize the number of unfinished simulations,
we have implemented a continuity system. It divides every
simulation, no matter how long it is, into small time steps
(typically 30 minutes). After every step, consistency checks are
performed and the current system configuration is sent again
to the simulation queue. This solved the problem for relatively
long (5–6 hours) simulations but the few more demanding
simulations were completed on local clusters. Altogether, this
work has consumed (the equivalent of) 3 × 106 hours of a
single Intel Core2 duo at 2.5 GHz.

We should also mention that we have performed some new,
short simulations for Q = 4 at p = 0.95, complementary to
those reported in Ref. 19. The simulated sizes were L = 24
and L = 48 (128 samples each). Our goal was to improve the
accuracy of the interpolations described below.

IV. RESULTS

To check the Cardy-Jacobsen conjecture we have performed
numerical simulations for Q = 8, hence further approaching
the large-Q limit where the mapping becomes exact.13
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FIG. 5. (Color online) Latent heat �e (top) and surface tension Σ

(middle) as a function spin concentration, p, for each lattice size (lines
are linear interpolations). Lines end at the smallest p that allowed
performing the Maxwell construction for each L. Bottom: Scaled
surface tension using θ = 1.469(20) (Ref. 24) (the lines joining the
data are cubic splines). The vertical gray line shows the infinite-
volume extrapolation for pt.

Consider the p and L evolution of the latent heat and
the surface tension in Fig. 5. If p < pt (i.e., if we are in
the second-order piece of the critical line), both �e and
Σ vanish in the large-L limit (the two are positive for
p > pt). However, for small lattices, both �e and Σ decrease
gently upon decreasing p which suggests that dilution merely
smoothed the first-order transition. However, the curve for �e

becomes sharper upon increasing L. Indeed the Potts-RFIM
mapping13 implies �e ∝ (p − pt)β with β = βRFIM ∼ 0.01,15

which is barely distinguishable from a discontinuous jump.
Furthermore, the L-dependent position of the tricritical point
pL

t (for instance, the point of sharpest drop of �e in Fig. 5,
top) grows quickly with L. On the view of the D = 2 no-go
theorems,12 one could be afraid that pL

t → 1 for large L also
in D = 3. We know that this is not the case,19 but it is clear
that a careful scaling analysis is needed.

Equation (17) tells us that L2−θΣ is scale invariant, and
thus allows us to locate the tricritical point [because xΣ = θ −
D + 1 = θ − 2, θ = 1.469(20)24]. Indeed, in Fig. 5, bottom,
we see that the curves for system sizes L1 < L2 cross at pL1,L2

t :

L2−θ
1 Σ(L1,p

L1,L2
t ) = L2−θ

2 Σ(L2,p
L1,L2
t ), (18)

(pL1,L2
t → pt when L1 diverges). We recall that a similar

method was used recently in a spin-glass context.53 There
are two main consequences of choosing a wrong estimate of
exponent θ in Fig. 5, bottom, and Eq. (18). First, in the limit of
large lattice sizes, the height of the crossing point diverges (or
goes to zero) if θ is underestimated (overestimated). Second,
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TABLE II. Quotient method for Q = 8. For each pair of lattices
(L1,L2), we extract the crossing point p

L!,L2
t , see Eq. (18), and the

height of the crossing point, Σ(L1,p
L1,L2
t )L2−θ

1 . The effective critical
exponents yp and βyp are obtained using the quotients method,
Eq. (19). For each datum, we indicate two error bars. The first error is
statistical. The second error is due to the uncertainty in θ = 1.469(20)
(Ref. 24).

(L1,L2) p
L1,L2
t yp L2−θ

1 Σ cross βyp

(12, 16) 0.8947(38)(17) 0.89(23)(2) 0.108(5)(3) 0.095(9)(5)
(12, 24) 0.8942(16)(15) 0.82(8)(2) 0.107(3)(3) 0.075(3)(4)
(16, 24) 0.8939(28)(14) 0.79(18)(3) 0.107(6)(4) 0.061(5)(3)
(16, 32) 0.8966(13)(11) 0.85(13)(3) 0.111(3)(4) 0.050(2)(2)
(24, 32) 0.8989(28)(10) 0.94(26)(3) 0.118(8)(5) 0.035(5)(2)
(24, 48) 0.9031(14)(10) 0.80(6)(05) 0.128(4)(6) 0.027(2)(2)
(32, 48) 0.9057(21)(9) 0.84(10)(1) 0.139(8)(7) 0.021(4)(2)
(32, 64) 0.9040(11)(8) 0.86(5)(1) 0.134(5)(7) 0.023(3)(1)
(48, 64) 0.9026(21)(5) 0.99(14)(3) 0.126(10)(8) 0.024(6)(1)

the size corrections to the crossing points are larger for a wrong
θ . Specifically, p

L1,L2
t − pt = O(L

−yp

1 ). The amplitude for
these scaling corrections cancels only for the exact choice of θ .

The critical exponent for a quantity O is obtained from its
quotients at p

L1,L2
t :54,55

O(L2)

O(L1)

∣∣∣∣
p

L1 ,L2
t

=
(

L2

L1

)xO
[

1 + AO

(
1

Lω
2

− 1

Lω
1

)]
. (19)

Above, we included only the leading scaling corrections
(AO is an amplitude). We use Eq. (19) for the logarithmic
p derivative of Σ (scaling dimension x = yp), and for the
latent heat (scaling dimension x = βyp, which should be
βRFIM/νRFIM, according to Cardy and Jacobsen13). Our results
are in Table II (Q = 8) and Table III (Q = 4). In both cases
we see that the convergence of p

L1,L2
t to the thermodynamic

limit is very fast. The height of the crossing point seems also
stable with growing sizes.

The results in Tables II and III need to be extrapolated
to the limit of infinite system sizes. This can be done by
considering leading order scaling corrections, as in Eq. (19).
The extrapolation greatly improves by imposing on Q = 4 and
8 a common extrapolation and the same scaling-corrections
exponent ω, as required by the universality predicted in Ref. 13.

TABLE III. Quotient method for Q = 4 (data from Ref. 19,
improved through control variates and the addition of new runs near
pt). Same notations as Table II.

(L1,L2) p
L1,L2
t yp L2−θ

1 Σ cross βyp

(16, 24) 0.9249(30)(8) 1.40(46)(3) 0.0113(6)(5) 0.285(11)(6)
(16, 32) 0.9324(19)(8) 1.11(20)(5) 0.0125(5)(6) 0.230(6)(6)
(24, 32) 0.9400(30)(6) 1.22(33)(1) 0.0159(12)(8) 0.175(12)(4)
(24, 48) 0.9455(19)(9) 0.83(8)(3) 0.0179(9)(8) 0.135(5)(4)
(32, 48) 0.9506(27)(8) 0.79(18)(3) 0.0215(17)(10) 0.112(7)(3)
(32, 64) 0.9489(13)(7) 0.78(9)(2) 0.0206(9)(11) 0.095(4)(3)
(48, 64) 0.9473(31)(5) 0.92(24)(3) 0.0191(25)(12) 0.070(10)(3)
(48, 128) 0.9491(9)(5) 0.77(8)(2) 0.0204(10)(13) 0.048(4)(3)
(64, 128) 0.9497(14)(5) 0.71(13)(2) 0.0213(17)(14) 0.038(6)(3)

 0

 0.1

 0.2

 0.3

 0  0.01  0.02

β
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p

(L1
-ω– L2

-ω)/log(L2/L1)

ω=1.53

Q=8

Q=4

FIG. 6. (Color online) Determination of the scaling correction
exponent ω, from the size-dependent effective exponent βyp for the
vanishing latent heat at the tricritical point as computed with the
quotients method; see Tables II and III. A common extrapolation
βyp = 0.0119(4) (Ref. 24) is imposed in the joint fit for the Q = 4
and Q = 8 data. The figure of merit χ 2 = 14/15 is computed with
the full covariance matrix.

In this way, we obtain βyp = 0.0022(48)(3) and ω =
1.36(8)(1), where the second parentheses indicate the uncer-
tainty induced by the error in θ .24 The fit quality is assessed
through the χ2 test. We obtain χ2/dof = 8.5/14, which is
almost too good (dof stands for the number of degrees of
freedom of the fit). Indeed the probability of getting such a low
value of χ2 with 14 degrees of freedom is only 14%. We note
as well that βyp = 0.0022(48)(3) is only barely compatible
with the best RFIM estimate βyp = 0.0119(4)24 (since the
discrepancy is as large as two standard deviations).

At this point, we can try to disprove universality. We make
the assumption that βyp takes exactly the RFIM value, redo
the fit, and see the outcome of the χ2 test. This second fit,
with βyp fixed to 0.0119, turns out to be perfectly reasonable
(χ2/dof = 14/15; see Fig. 6). Hence we conclude that our
data set is statistically compatible with universality.

A second, unexpected bonus of fixing βyp in the fit to
the RFIM value is a remarkable increase in the accuracy of
ω = 1.53(5)(3), in excellent agreement with our expected ω =
1.48(2) (remember that ω = D − yT = θ + βRFIM/νRFIM; see
Sec. III C). Furthermore, from this value of ω, we obtain
yT = D − ω = 1.47(8), in nice agreement with the large-Q
computation yT = 1.49(9).20

Following the same approach for yp, which is expected
to coincide with 1/νRFIM, we obtain yp = 0.775(46)(1) if
we impose ω = 1.36 [we get yp = 0.779(41)(1) by taking
ω = 1.53]. Both fits are fair (χ2/dof = 13.6/15 and χ2/dof =
13.2/15, respectively).

Our yp is in the lower range of previous numerical and
analytical estimates: 0.73 � 1/νRFIM � 1.12.24–35,56 Hyper-
scaling and our yp implies a slightly positive specific-heat ex-
ponent α = (2yp − D + θ )/yp = 0.03(10), in agreement with
experimental claims of a (possibly logarithmic) divergence.57

We warn however that severe hyperscaling violations [namely
α = −0.63(7)] have been reported in numerical work.35

One may compute as well the exponent θ , by fitting
Σ(L,p

L,2L
t ) = AQLθ (1 + BQL−ω) (only the amplitudes AQ

and BQ are Q-dependent on the fit). Taking ω = 1.5(1), we ob-
tain θ = 1.52(11)(2), with an acceptable fit (χ2/dof = 4.9/3).
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The result is compatible with, but less accurate than, the latest
RFIM result θ = 1.469(20).24

V. CONCLUSIONS

In summary, we have presented a finite-size scaling analysis
of the tricritical point of the site-diluted Potts model in three
dimensions for Q = 4 and 8 internal states. By considering
leading-order scaling corrections we were able to show that
the relevant universality class for the tricritical point is the
one of the RFIM. We have thus verified the Cardy-Jacobsen
conjecture.13

Three technical ingredients were crucial to obtain this
achievement: the use of the microcanonical Monte Carlo,44

a new definition of the disorder average,19 and the use of the
citizen supercomputer Ibercivis.45

ACKNOWLEDGMENTS

We have been partly supported through Research Contracts
No. FIS2009-12648-C03 and No. FIS2010-16587 (MICINN),
No. GR10158 (Junta de Extremadura), and No. ACCVII-08
(UEX), and by UCM-Banco de Santander. We thank Ibercivis
for the equivalent of 3 × 106 CPU hours. The simulations
were completed in the clusters Terminus (BIFI) and Horus (U.
Extremadura). We also thank N. G. Fytas for a careful reading
of the manuscript.

APPENDIX: CONTROL VARIATES

The statistical quality of data may sometimes be signifi-
cantly increased by means of a very simple trick, named control
variates (see, e.g., Ref. 58).

In short, we want to improve our estimation of a stochastic
variable A through its correlations with another random
variable B (B is named a control variate). If B = 0 and
Â = A + αB, then the expectation value does not change:

Â = A. However, depending on the arbitrary election of α,
we can get var(Â) < var(A). The α election minimizing the

 0.860682

 0.860684

 0.860686

0.949 0.950 0.951

β
c

p

FIG. 7. (Color online) Scatter plot of each sample’s inverse
critical temperature vs the concentration of magnetic sites,

∑
i εi/V .

Data for 500 samples of L = 64 and p = 0.95. The correlation
coefficient that gives the optimal coupling to the control variate, see
Eq. (A1), is α∗ = 0.956.
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β
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FIG. 8. (Color online) Inverse critical temperature βc,L as a
function of an inverse lattice volume, 1/L3. Data obtained for
p = 0.95. The error reduction obtained with control variates is
significant (blue points). In the linear fit we considered only data
with L � 16 and improved through control variates.

variance var(Â) is

α∗ = cov(A,B)√
var(A)var(B)

, (A1)

which coincides with the correlation coefficient rAB . The
optimal variance is

var(Â∗) = var(A)
(
1 − r2

AB

)
. (A2)

Hence, the stronger the statistical correlation (or anticorrela-
tion) between A and B, the more effective the control variate is.

In our case, a rather obvious control variate is

B = 1

V

∑
i

εi − p , (A3)

namely the difference among the real and the nominal concen-
trations of magnetic sites. It is clear that the disorder average
B vanishes. We will employ B to improve the determination
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 0  0.0002  0.0004  0.0006

Δ 
e

L-3

χ2/dof = 5.4/3
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FIG. 9. (Color online) The size-dependent latent heat for p =
0.95, as a function of the inverse lattice volume. The linear fit includes
only data with L � 16 that were improved through control variates.
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of the sample-averaged β(e). Note that although the value of
B does not depend on the considered energy (it is fixed by the
{εi}), its correlation coefficient with 〈β̂〉e needs to be computed
for all energies in the e grid.

B is extremely effective as a control variate for the
computation of the inverse critical temperature βc, as suggested
from Fig. 7. The correlation coefficient in that plot is so high,
0.956, that the expected error reduction factor is 3.4. However,
the alert reader will note that this is a hasty conclusion. In
fact, the βc obtained from β(e) is not exactly the average of
the inverse critical temperatures found for each sample. The
reason for this nonlinearity in the Maxwell rule, see Eq. (11),

is that the energies ed,o are not the same for β(e) and for the
〈β̂〉e in a given sample. Yet, the dependency on ed,o of the
integral in Eq. (11) is extremely weak [recall the stationarity
condition with respect to e in Eq. (10)].

In fact, the correct computation with β(e) does show a
significant error reduction, see Fig. 8, close to the factor 3.4
anticipated by the naive analysis in Fig. 7. We note in Fig. 9
an equally significant reduction of the statistical errors for the
latent heat. Therefore, our computation of these quantities,
obtained with only 500 samples, has been made equivalent to
a 5000-sample computation. This is a remarkable reward for
such a simple analysis.
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