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Thermodynamics of two-dimensional ideal ferromagnets: Three-loop analysis

Christoph P. Hofmann*

Facultad de Ciencias, Universidad de Colima, Bernal Dı́az del Castillo 340, Colima, C.P. 28045, Mexico
(Received 23 August 2012; published 9 November 2012)

Within the effective Lagrangian framework, we explicitly evaluate the partition function of two-dimensional
ideal ferromagnets up to three loops at low temperatures and in the presence of a weak external magnetic
field. The low-temperature series for the free energy density, energy density, heat capacity, entropy density, and
magnetization are given and their range of validity is critically examined in view of the Mermin-Wagner theorem.
The calculation involves the renormalization and numerical evaluation of a particular three-loop graph, which is
discussed in detail. Interestingly, in the low-temperature series for the two-dimensional ideal ferromagnet, the
spin-wave interaction manifests itself in the form of logarithmic terms. In the free energy density the leading such
term is of order T 4 ln T : remarkably, in the case of the three-dimensional ideal ferromagnet no logarithmic terms
arise in the low-temperature series. While the present study demonstrates that it is straightforward to consider
effects up to three-loop order in the effective field theory framework, this precision seems to be far beyond the
reach of microscopic methods such as spin-wave theory.
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I. INTRODUCTION

In a very recent article on the thermodynamic properties
of two-dimensional ideal ferromagnets,1 the general structure
of the low-temperature series for the free energy density has
been discussed using the method of effective Lagrangians. In
particular, it has been argued that the spin-wave interaction
does not yet manifest itself at order T 3 in the free energy
density; it only shows up at order T 4 ln T . The explicit
evaluation of the various Feynman graphs contributing at this
order, however, has not been performed in that reference; this
is the subject of the present article. The calculation involves
a particular three-loop graph whose renormalization and
subsequent numerical evaluation—although quite elaborate—
is rather straightforward within the effective field theory
framework. While Ref. 1 focused on the low-temperature
series for the free energy density, here we also consider the
magnetization and critically examine the range of validity of
the corresponding low-temperature series; indeed, in view of
the Mermin-Wagner theorem, one has to be very careful by
taking the limit of a zero external magnetic field H .

Interestingly, these logarithmic contributions T n ln T in
the partition function are restricted to two-dimensional
ferromagnets and do not show up in the case of three-
dimensional ideal ferromagnets. There the low-temperature
series of the various thermodynamic quantities consist of
integer and half-integer powers of the temperature.2–5 Actually,
the occurrence of such logarithmic contributions is well
known in the domain of particle physics; the low-temperature
expansion of, e.g., the free energy density in quantum chro-
modynamics also involves the logarithmic term T 8 ln T (see
Ref. 6). The term T 8 ln T also occurs in the low-temperature
expansion of the free energy density of the three-dimensional
antiferromagnet,7 which obeys a linear, i.e., relativistic,
dispersion law. Furthermore, logarithmic contributions in
temperature expansions of thermodynamic quantities also
occur in the context of one-dimensional condensed matter
systems, such as in antiferromagnetic spin chains.8–13

We also examine our series obtained within the effective
Lagrangian framework with the relevant literature and point

out that our approach is much more efficient than conventional
condensed matter methods such as spin-wave theory or
Schwinger-Boson mean field theory. In particular, while all
these different studies were restricted to the idealized picture
of the free magnon gas, in the present article we discuss
in detail how the spin-wave interaction manifests itself in
the low-temperature behavior of the two-dimensional ideal
ferromagnet.

The rest of the paper is organized as follows. In Sec. II
we briefly discuss some essential aspects of the effective
Lagrangian method; detailed accounts can be found in the
references provided below. The evaluation of the partition
function up to three-loop order in the low-temperature ex-
pansion is presented in Sec. III. While the renormalization
up to order p6 ∝ T 3 turns out to be straightforward, the
handling of ultraviolet divergences at order p8 is more involved
and is considered in detail in Sec. IV. The low-temperature
expansions for the free energy density, energy density, heat
capacity, and entropy density of the two-dimensional ideal
ferromagnet are given in Sec. V. The low-temperature series
for the magnetization is discussed in Sec. VI and the range
of validity of this series is critically examined in view of the
Mermin-Wagner theorem. Here we also compare our results
with the condensed matter literature. While our conclusions are
presented in Sec. VII, the numerical evaluation of a specific
three-loop graph, the logarithmic renormalization of effective
constants, the representation of the pressure at zero magnetic
field, and the explicit low-temperature series are relegated to
four separate Appendices.

Unfortunately, the systematic and model-independent
effective Lagrangian method is still not very well known
within the condensed matter community. Therefore we would
like to provide the reader with a brief list of references in
which condensed matter problems have been successfully
solved within the effective field theory framework. These
include antiferromagnets and ferromagnets in two and three
spatial dimensions,4,5,7,14–25 as well as two-dimensional an-
tiferromagnets which are the precursors of high-temperature
superconductors.26–35
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Many different tests—both analytical and numerical
studies—unambiguously confirm that the effective Lagrangian
technique represents a rigorous and systematic framework to
address condensed matter systems which exhibit a sponta-
neously broken symmetry. On the one hand, the correctness of
the effective Lagrangian approach was demonstrated explicitly
in Ref. 36 by comparing the microscopic results of an
analytically solvable model for a hole-doped ferromagnet in
1 + 1 dimensions with the effective theory predictions. On
the other hand, in a series of high-accuracy investigations of
the antiferromagnetic spin- 1

2 quantum Heisenberg model on a
square lattice using the loop-cluster algorithm,37–40 the Monte
Carlo data were confronted with the analytic predictions of
the effective Lagrangian theory and the low-energy constants
were extracted with per mille accuracy.

II. ESSENTIAL ASPECTS OF EFFECTIVE LAGRANGIANS

The present article deals with the explicit evaluation of the
partition function of the two-dimensional ideal ferromagnet
at three-loop order and the subsequent discussion of various
thermodynamic quantities—including the magnetization—at
low temperatures. It is an extension of the work presented in a
recent article,1 where the evaluation was restricted to two-loop
order. The basic principles of the effective Lagrangian method
and the perturbative evaluation of the partition function are
outlined in Sec. II of that reference and are not repeated here
in detail. The interested reader may also find a detailed account
of finite-temperature effective Lagrangians in Appendix A in
Ref. 5 and in the various references given therein. In addition,
for pedagogic introductions to the effective Lagrangian tech-
nique, we refer to Refs. 41–45. In this section, we just focus
on some essential aspects of the effective Lagrangian method
at finite temperature.

The effective Lagrangian or, more precisely, the effective
action

Seff =
∫

d3xLeff (2.1)

of the two-dimensional ideal ferromagnet must share all the
symmetries of the underlying Heisenberg model, i.e., the
spontaneously broken spin rotation symmetry O(3), parity, and
time reversal. The basic degrees of freedom of the effective
Lagrangian are the two real magnon fields—or the physical
magnon particle—which emerge due to the spontaneously
broken spin symmetry O(3) → O(2).

A conceptual remark is in order here. On the microscopic
level, the magnetic field �H explicitly breaks the symmetry
O(3) of the Heisenberg Hamiltonian down to O(2),

H = −J
∑
n.n.

�Sm · �Sn − μ
∑

n

�Sn · �H, J = const. (2.2)

In particle physics, such a situation is referred to as an
approximate spontaneously broken symmetry, as opposed to
an exact spontaneously broken symmetry. Using this language,
the spontaneously broken symmetry O(3), due to the magnetic
field, no longer is exact, but only approximate, and the
Goldstone bosons turn into pseudo-Goldstone bosons, as they
are now characterized by an energy gap. This is the situation

we are considering in the present study: the magnetic field is
different from 0.

But a subtlety arises. Although the underlying Hamiltonian,
(2.2), is only invariant under O(2), the effective action, (2.1),
is still invariant under O(3). The detailed justification can be
found in the pioneering article.17 Here we just mention that this
is because in the effective field theory framework, the global
symmetry O(3) is promoted to a local one, in order to be able
to account for the Ward identities, which reflect the symmetry
properties of the theory on a local level. In particular, in that
formalism, called the external field technique, the effective
action, (2.1), is invariant under local O(3) transformations.

The various pieces in the effective Lagrangian are organized
according to the number of space and time derivatives which
act on the magnon fields. This derivative expansion—or
expansion in powers of momentum—is completely systematic:
At low energies, terms in the effective Lagrangian which
contain only a few derivatives are the dominant ones, while
terms with more derivatives are suppressed.46–48 The leading-
order effective Lagrangian for the ideal ferromagnet is of
momentum order p2 and takes the form17

L2
eff = �

εab∂0U
aUb

1 + U 3
+ �μHU 3 − 1

2
F 2∂rU

i∂rU
i. (2.3)

The two real components of the magnon field, Ua(a = 1,2),
are the first two components of the three-dimensional unit
vector Ui = (Ua,U 3). The quantity H is the third component
of the magnetic field �H = (0,0,H ). While the derivative struc-
ture of the above terms is unambiguously determined by the
symmetries of the underlying theory, the two a priori unknown
low-energy constants—the spontaneous magnetization at zero
temperature � and the constant F—have to be determined
by experiment, numerical simulation, or comparison with the
microscopic theory. Note that one time derivative (∂0) is on the
same footing as two space derivatives (∂r∂r ), i.e., two powers of
momentum count as only one power of energy or temperature:
k2 ∝ ω,T .

The next-to-leading-order Lagrangian for the ideal ferro-
magnet is of order p4 and amounts to4

L4
eff = l1(∂rU

i∂rU
i)

2 + l2(∂rU
i∂sU

i)
2 + l3�Ui�Ui, (2.4)

where � denotes the Laplace operator in two spatial dimen-
sions, ds = 2, and the quantities l1, l2, and l3 are effective
coupling constants.

A crucial point underlying the perturbative evaluation
of the partition function concerns the suppression of loop
diagrams in the effective field theory framework. In two spatial
dimensions, ferromagnetic loops are suppressed by two powers
of momentum. This suppression rule lies at the heart of the
organization of the Feynman graphs of the partition function
for the two-dimensional ferromagnet depicted in Fig. 1. For
example, the two-loop diagram 8d with an insertion from L4

eff ,
containing four magnon fields, is of order p8, as it involves
L4

eff (p4) and two loops (p4).
An inspection of the diagrams in Fig. 1 reveals that

insertions from L6
eff only appear in the one-loop graph 8g. The

only term we need for the present evaluation is thus quadratic
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FIG. 1. Feynman graphs related to the low-temperature expansion
of the partition function for a two-dimensional ferromagnet up to
order p8. The numbers attached to the vertices refer to the piece
of the effective Lagrangian they come from. Vertices associated
with the leading term L2

eff are denoted by a filled circle. Note that
ferromagnetic loops are suppressed by two powers of momentum in
two spatial dimensions, ds = 2.

in the magnon field,

L6
eff = c1U

i�3Ui, (2.5)

where c1 is an additional effective low-energy constant.
Lattice anisotropies do not yet manifest themselves in the

leading-order effective Lagrangian L2
eff ; expression (2.3) is

invariant under continuous space rotations, even though the un-
derlying lattices (square, honeycomb, triangular, and Kagomé,
to name the most prominent ones) are only invariant under
discrete space rotations. Although this accidental symmetry
is restricted to L2

eff , in the present analysis we assume that
the higher-order pieces L4

eff and L6
eff are O(3) space rotation

invariant as well. The conclusions of the present paper are not
affected by this idealization.

III. PARTITION FUNCTION UP TO THREE LOOPS

While the evaluation of the partition function of the two-
dimensional ideal ferromagnet up to order p6 was presented in
Ref. 1, here we go one step farther and consider the evaluation
up to order p8, where three-loop graphs start to appear. This
calculation is rather involved due to the renormalization and
numerical evaluation of the three-loop graph 8c.

As depicted in Fig. 1, there are only four Feynman diagrams
that contribute to the partition function up to order p6 or,
equivalently, up to order T 3. The evaluation of these diagrams
can be found in Ref. 1; the final expression for the free energy

density amounts to

z = −�μH − 1

4πγ
T 2

∞∑
n=1

e−μHnβ

n2

− l3

π�γ 3
T 3

∞∑
n=1

e−μHnβ

n3
+ O(p8), (3.1)

where β ≡ 1/T and H is the external magnetic field. The
terms of order T 2 and T 3 arise from one-loop graphs
and thus represent contributions to the free energy density
originating from noninteracting spin waves. While the former
term is exclusively determined by the leading-order effective
constants � and F (γ = F 2/�), the term of order T 3, on
the other hand, involves the next-to-leading-order effective
constant l3 from L4

eff . What is quite remarkable is that the
spin-wave interaction does not yet manifest itself at this order
in the low-temperature expansion of the free energy density.
The only potential candidate, the two-loop diagram 6a of order
T 3, turns out to be 0 due to parity.1

Before we evaluate the partition function at order p8, we
have to recall that, at finite temperature, the propagator is given
by

G(x) =
∞∑

n=−∞
�(�x,x4 + nβ), (3.2)

where �(x) is the Euclidean propagator of ferromagnetic
magnons at zero temperature,

�(x) =
∫

dk4d
2k

(2π )3

ei�k�x−ik4x4

γ �k2 − ik4 + μH
. (3.3)

Let us stress the fact that it is advantageous here to
work within the real-space imaginary-time representation for
the propagators, rather than within the momentum-frequency
representation. This will become more evident in Sec. IV,
where we analyze the ultraviolet divergences that occur in the
limit x → 0 in terms of Taylor expansions around that limit
and perform the renormalization at the three-loop level.

For other condensed matter applications it would be more
convenient to use the momentum-frequency representation
for the propagators. The discrete sums in the imaginary
time coordinate then show up as Matsubara frequencies.
The connection between the two representations is given
by a Fourier transform, the thermal Matsubara propagator
G(�k,ω + 2πn/β) in two spatial dimensions given by

G(�k,ωn) =
∫ β

0
dx4

∫
d2xeiωnx4−i�k�x�(�x,x4), (3.4)

with

ωn = 2πn/β. (3.5)

An explicit representation for the thermal propagator G(x),
dimensionally regularized in the spatial dimension ds , is

G(x) = 1

(4πγ )
ds
2

∞∑
n=−∞

1

x
ds
2

n

e
− �x2

4γ xn
−μHxn
(xn), (3.6)

with

xn ≡ x4 + nβ. (3.7)
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Also, it is convenient to introduce the notation,

G1 ≡ [G(x)]x=0, G� ≡ [�G(x)]x=0,

G�n ≡ [�nG(x)]x=0, (3.8)

where � represents the Laplace operator in the spatial
dimensions; note that the quantity �(x), on the other hand,
stands for the zero-temperature propagator.

The quantities G1 and G�, as well as thermal propagators
involving even higher-order space derivatives, can be split into
a finite piece, which is temperature dependent, and a divergent
piece, which is temperature independent:

G1 = GT
1 + G0

1, G� = GT
� + G0

�. (3.9)

The explicit dimensionally regularized expressions are

GT
1 = 1

(4πγ )
ds
2

∞∑
n=1

e−μHnβ

(nβ)
ds
2

,

(3.10)

G0
1 = 1

(4πγ )
ds
2

[
1

x4
ds
2

e
− �x2

4γ x4 
(x4)

]
x=0

,

and

GT
� = 1

(4πγ )
ds
2

(
− ds

2γ

) ∞∑
n=1

e−μHnβ

(nβ)
ds
2 +1

,

G0
� = 1

(4πγ )
ds
2

[
1

x4
ds
2 +1

{−ds

2γ
+ �x2

4γ 2x4

}

× exp

(
− �x2

4γ x4

)

(x4)

]
x=0

. (3.11)

The temperature-independent pieces G0
1,G

0
�, . . . can be cast

in the form

exp[−x4μH ]

(γ x4)m+ ds
2

�

(
m + ds

2

)
, m = 0,1,2, . . . , (3.12)

and rewritten as integrals over momentum,∫
dds k(�k2)m exp[−γ x4�k2 − x4μH ]
(x4). (3.13)

In the limit x4 → 0 we are interested in, we are thus
left with integrals over a polynomial. Now in dimensional
regularization such expressions vanish altogether. The explicit
proof can be found, e.g., in Ref. 62 [see formula (4.24b)
there]. We thus conclude that the quantities G0

1, G0
�, and

zero-temperature propagators involving higher order space
derivatives do not contribute in the limit ds → 2. The only
contributions we are thus left with here are those which involve
the temperature-dependent pieces.

We add a remark regarding regularization. Within the
context of effective Lagrangians it is most natural to use dimen-
sional regularization, since in this scheme the symmetries of
the theory are preserved. In the renormalization process, as we
discuss in detail in Sec. IV and in Appendix B, the ultraviolet
divergences occurring here can be absorbed into next-to-
leading-order coupling constants, and most importantly, the
resulting final expressions for the physical quantities do not
depend on the renormalization scale μ̃ (see Appendix B).

In the underlying theory, on the other hand, a more natural
regularization for Heisenberg ferromagnets is the lattice

regularization, where ultraviolet divergences are absent. Still,
a systematic three-loop calculation within the microscopic
framework—the analog of the calculation presented here
using effective field theory—seems to be presently out of
sight. Note that spin-wave theory, Schwinger-boson mean field
theory, and Green’s function approaches make use of ad hoc
assumptions or approximations and thus cannot be considered
fully systematic.

According to Fig. 1, there are seven diagrams at order p8

we need to evaluate. We first consider the two one-loop graphs
which contain vertices from L4

eff and L6
eff . For graph 8g, which

only involves an insertion from L6
eff , we obtain

z8g = −2c1

�
G�3 , (3.14)

yielding the temperature-dependent contribution

zT
8g = 3c1

π�γ 4
T 4

∞∑
n=1

e−μHnβ

n4
. (3.15)

Graph 8f , which contains two insertions from L4
eff , is

proportional to an integral over the torus T = Rds × S1, with
circle S1 defined by −β/2 � x4 � β/2, and involves a product
of two thermal propagators,

z8f = −2l2
3

�2

∫
T

dds+1x�2G(x)�2G(−x). (3.16)

Integrals of this type, as shown in Ref. 4, can be converted into
an expression displaying one propagator only,

−
∫
T

dds+1y�mG(−y)�nG(y) =
[
�(m+n) ∂G(x)

∂(μH )

]
x=0

,

(3.17)

such that one ends up with

z8f = 2l2
3

�2

[
�4 ∂G(x)

∂(μH )

]
x=0

. (3.18)

Accordingly, the temperature-dependent part of graph 8f
amounts to

zT
8f = − 12l2

3

π�2γ 5
T 4

∞∑
n=1

e−μHnβ

n4
. (3.19)

We now turn to the two-loop graphs which involve
insertions from L2

eff and L4
eff . Graph 8d contributes with

z8d = − 2

3�2
(8l1 + 6l2 + 5l3)G�G� − 2l3

�2
G1G�2 . (3.20)

The evaluation of graph 8e yields

z8e = 2l3

�2
G1G�2 , (3.21)

and cancels the second term in z8d . For the temperature-
dependent part originating from the two-loop graphs of order
p8, we thus end up with

zT
8[de] = −8l1 + 6l2 + 5l3

24π2�2γ 4
T 4

{ ∞∑
n=1

e−μHnβ

n2

}2

. (3.22)
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Finally, we consider the three-loop graphs. Note that they
exclusively contain vertices from the leading-order Lagrangian
L2

eff . Graph 8a factorizes into a product of three thermal
propagators (and space derivatives thereof), to be evaluated
at the origin:

z8a = −F 2

�3
G�(G1)2. (3.23)

Remarkably, the three-loop graph 8b turns out to be 0,

z8b = 0. (3.24)

Much like the two-loop graph 6a, the three-loop graph 8b does
not contribute to the partition function.

We are left with the cateye graph 8c, which leads to

z8c = − F 4

2�4
K + F 2

�3
G�(G1)2. (3.25)

The quantity K denotes the following integral over the torus
involving a product of four thermal propagators:

K =
∫
T

dds+1x∂rG∂rG∂sG̃∂sG̃. (3.26)

Here we have used the notation

G = G(x), G̃ = G(−x). (3.27)

The second term in Eq. (3.25) cancels the contribution from
graph 8a; hence the overall contribution from the three-loop
graphs is just the one proportional to the integral K . Note that,
unlike all other pieces in the free energy density up to order
p8, this quantity is not a product of thermal propagators (or
derivatives thereof) to be evaluated at the origin; its structure
is much more complicated. In the next section, as well as in
Appendices A and B, we address in detail the renormalization
and numerical evaluation of this integral, which contains a
total of four infinite sums.

IV. RENORMALIZATION OF THE CATEYE GRAPH

Regarding the renormalization of the three-loop graph 8c,
we follow the method outlined in Ref. 6, where the same
graph was considered in a Lorentz-invariant framework. In
order to isolate the ultraviolet divergences and to perform the
renormalization, it is essential that we work here within the
real-space imaginary-time representation for the propagators,
rather than within the momentum-frequency representation.

The relevant integral from the three-loop contribution is
given by

K =
∫
T

dds+1x∂rG∂rG∂sG̃∂sG̃

and involves a product of four thermal propagators. In order
to analyze the limit ds → 2, the thermal propagators are split
into two pieces:

G(x) = GT (x) + �(x). (4.1)

While the zero-temperature propagator �(x) contains the
ultraviolet singularities, the temperature-dependent part GT (x)
is finite as ds → 2. Note that, if we restrict ourselves to the
origin, we reproduce the first relation in Eq. (3.9).

With the above decomposition, the integral K yields nine
terms that can be grouped into the following six classes. For
simplicity we do not display the derivatives.

A : GT (x)GT (x)GT (−x)GT (−x),

B : �(x)GT (x)GT (−x)GT (−x),

GT (x)GT (x)�(−x)GT (−x),

C : �2(x)GT (−x)GT (−x), GT (x)GT (x)�2(−x),
(4.2)

D : �(x)GT (x)�(−x)GT (−x),

E : �2(x)�(−x)GT (−x), �(x)GT (x)�2(−x),

F : �2(x)�2(−x).

As the product �(x)�(−x) of zero-temperature propagators
involves the combination 
(x4)
(−x4), terms of classes D, E,
and F vanish identically. The maximum number of 
 functions
a given term can contain—- in order not to be 0—is two. Also,
the arguments of the two 
 functions have to coincide as is
the case with the terms of class C. We conclude that we only
have to consider cases A, B, and C.

Contributions from classes A and B are related to integrals
over the torus,

∫
T

dds+1x(∂rG
T ∂rG

T ∂sG̃
T ∂sG̃

T + 4∂r�∂rG
T ∂sG̃

T ∂sG̃
T ),

(4.3)

which are not singular at ds = 2.
Terms of class C, on the other hand, do lead to an ultraviolet-

divergent integral. Consider, e.g., the term

∂r�(x)∂r�(x)∂sG
T (−x)∂sG

T (−x), (4.4)

where we now have included the derivatives. In the limit ds →
2, the zero-temperature piece ∂r�(x) amounts to

∂r�(x) ∝ xr

x4
2

exp

[
− �x2

4γ x4

]
. (4.5)

The Taylor series of the function ∂sG
T (−x), evaluated at the

origin, starts with a term linear in �x:

∂sG
T (−x) = ∂αsG

T (−x)|x=0x
α + O(�x3). (4.6)

Inserting this term into Eq. (4.4), in the limit ds → 2, we end
up with the following contribution in K ,

K ∝
∫

d2xdx4

( �x
x4

2

)2

e−�x2/2γ x4 �x2 ∝
∫

dx4
1

x4
, (4.7)

which is logarithmically divergent in the ultraviolet. One can
also readily check that this is the only term that has to be
subtracted: The cubic Taylor term in the expansion of ∂sG̃

T ,
Eq. (4.6), leads to a convergent contribution to the integral K .
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In order to isolate the ultraviolet singularity in Eq. (4.7),
we first cut out a sphere S of radius |S| � β/2 around the
origin and decompose the integral involving the contributions
of class C as∫

T
dds+1x∂r�∂r�∂sG̃

T ∂sG̃
T

=
∫
S

dds+1x∂r�∂r�∂sG̃
T ∂sG̃

T

+
∫
T \S

dds+1x∂r�∂r�∂sG̃
T ∂sG̃

T . (4.8)

In the limit ds → 2, the integral over the complement T \ S of
the sphere is not singular. The divergence is contained in the
integral over the sphere. Here we subtract the singular term,
(4.7), which leads us to∫

S
dds+1x∂r�(x)∂r�(x)∂sG

T (−x)∂sG
T (−x)

=
∫
S

dds+1x∂r�(x)∂r�(x)Qss(x)

+
∫
S

dds+1x∂r�(x)∂r�(x)

× ∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ, (4.9)

where Qss(x) is defined as

Qss(x) = ∂sG
T (−x)∂sG

T (−x)

− ∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ. (4.10)

The first integral on the right-hand side of Eq. (4.9) is now
convergent. The second integral, however, is divergent in the
ultraviolet. The last step in the isolation of this divergence
consists in decomposing the singular integral as follows:∫
S

dds+1x∂r�(x)∂r�(x)∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ

=
∫
R

dds+1x∂r�(x)∂r�(x)∂αsG
T (−x)|x=0

× ∂βsG
T (−x)|x=0x

αxβ −
∫
R\S

dds+1x∂r�(x)∂r�(x)

× ∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ. (4.11)

Now the ultraviolet singularity is contained in the integral over
all Euclidean space, which can be written as∫
R

dds+1x∂r�(x)∂r�(x)∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ

= ds(ds + 2)

23ds+5π
3ds

2 γ
3ds+4

2

T ds+2(μH )
ds−2

2

{ ∞∑
n=1

e−μHnβ

n
ds+2

2

}2

×�

(
1 − ds

2

)
. (4.12)

In the limit ds → 2, the above regularized expression is
divergent because the � function develops a pole. Finally,
we subtract this divergent expression from the integral K and
define the renormalized integral K̄ as

K̄ = K − 2
∫
R

d3x∂r�(x)∂r�(x)∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ

=
∫
T

d3x(∂rG
T ∂rG

T ∂sG̃
T ∂sG̃

T + 4∂r�∂rG
T ∂sG̃

T ∂sG̃
T ) + 2

∫
T \S

d3x∂r�∂r�∂sG̃
T ∂sG̃

T + 2
∫
S

d3x∂r�∂r�Qss

− 2
∫
R\S

d3x∂r�∂r�∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ. (4.13)

While the numerical evaluation of the finite expression K̄

poses no problems and is considered in Appendix A, here
we proceed with our discussion regarding the divergent piece
in K . The point is that this divergence originating from
the three-loop graph 8c can be canceled by an identical
divergence in the two-loop graph 8d. More precisely, the
divergence in the three-loop graph 8c can be absorbed into
the next-to-leading-order effective constants l1 and l2 which
come along with the two-loop graph 8d. This logarithmic
renormalization of higher order effective constants is standard
in a Lorentz-invariant framework. Indeed, the absorption of
ultraviolet divergences occurring in loop graphs into next-to-
leading-order effective constants was discussed a long time
ago in the context of chiral perturbation theory, i.e., the
low-energy effective theory of quantum chromodynamics.47

Since the issue is rather technical, we do not present it
in the main body of the paper; rather we relegate it to
Appendix B.

Collecting all terms contributing to the free energy density
up to order p8, and writing the integral K̄ as

K̄(σ ) = T 4 k(σ )

γ 5
, σ = μHβ = μH

T
, γ = F 2

�
, (4.14)

the low-temperature expansion of the free energy density for
the two-dimensional ideal ferromagnet finally takes the form

z = −�μH − 1

4πγ
T 2

∞∑
n=1

e−σn

n2
− l3

π�γ 3
T 3

∞∑
n=1

e−σn

n3

− 3
(
4l2

3 − c1�γ
)

π�2γ 5
T 4

∞∑
n=1

e−σn

n4
− 8l1 + 6l2 + 5l3

24π2�2γ 4
T 4

×
{ ∞∑

n=1

e−σn

n2

}2

− k(σ )

2�2γ 3
T 4 + O(p10). (4.15)
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The quantities l1 and l2 are the renormalized next-to-leading-
order effective constants (see Appendix B). Note that the
next-to-leading-order effective constant l3, much like the
next-to-next-to-leading-order effective constant c1, does not
require renormalization; both quantities are finite as they stand.

While this series has been investigated before,49–60 within
both spin-wave theory and Schwinger-Boson mean field the-
ory, we want to emphasize that all these references dealt with
free magnons. The manifestation of the spin-wave interaction
in the low-temperature expansion for the free energy density
of the two-dimensional ideal ferromagnet is considered here.
Furthermore, our rigorous approach is completely systematic
and does not resort to any kind of approximations or ad hoc
assumptions.

V. THERMODYNAMICS OF TWO-DIMENSIONAL
IDEAL FERROMAGNETS

Using representation (4.15) for the free energy density we
now discuss the thermodynamic properties of two-dimensional
ideal ferromagnets. Let us first consider the low-temperature
series for the pressure. Because the system is homogeneous,
the pressure can be obtained from the temperature-dependent
part of the free energy density:

P = z0 − z. (5.1)

Accordingly, up to order p8, the low-temperature series for the
pressure takes the form

P = η0T
2 + η1T

3 + η2T
4 + O(p10), (5.2)

where the coefficients ηi are given by

η0 = 1

4πγ

∞∑
n=1

e−σn

n2
, η1 = l3

π�γ 3

∞∑
n=1

e−σn

n3
,

η2 = 3
(
4l2

3 − c1�γ
)

π�2γ 5

∞∑
n=1

e−σn

n4
+ 8l1 + 6l2 + 5l3

24π2�2γ 4

×
{ ∞∑

n=1

e−σn

n2

}2

+ 1

2�2γ 3
k(σ ). (5.3)

Note that these coefficients depend on the dimensionless
ratio σ = μH/T . Remarkably, the spin-wave interaction starts
manifesting itself only at order p8 ∝ T 4 through the last two
terms in the coefficient η2. While the former contribution,
which involves the renormalized effective constants l1 and
l2, originates from a two-loop graph, the latter contribution,
proportional to the dimensionless function k(σ ), comes from
a three-loop graph. All other contributions in the pressure
are related to one-loop graphs, i.e., to graphs that describe
noninteracting magnons. In the above series for the pressure
they contribute at order T 2, T 3, and T 4.

The ratio σ = μH/T in the series for the pressure can take
any value, provided that the temperature and the magnetic
field are both small with respect to the intrinsic scale of the
underlying theory. In the present case of the two-dimensional
ideal ferromagnet, this scale may be identified with the
exchange integral J of the Heisenberg model. In the following
we are interested in the limit T � μH , which we implement
by holding T fixed and sending the magnetic field to 0. By

0 0.2 0.4 0.6 0.8 1
σ

-0.0004

-0.0002

0

0.0002

k(
σ)

FIG. 2. The function k(σ ), where σ is the dimensionless param-
eter σ = μH/T .

keeping the fixed temperature low compared to the scale J , we
thus never leave the domain of validity of the low-temperature
effective expansion.

Formally, the limit σ → 0 poses no problems for the
one-loop contributions in the pressure. The corresponding
coefficients in Eq. (5.3) become temperature independent and
the sums reduce to Riemann ζ functions. However, one has
to be very careful by taking this limit in the interaction part
contained in the coefficient η2. In order to address this issue,
we first take a closer look at the dimensionless function k(σ ),
which is depicted in Fig. 2.

In the limit σ → 0, this function can be parametrized
as

k(σ ) = k0 ln σ + k1 + k2σ ln2 σ + k3σ ln σ + k4σ

+O(σ 2 ln3 σ ), (5.4)

where the coefficients ki are pure numbers. Here we only need
k0 and k1, which take the values

k0 = π

4608
= 6.818 × 10−4, k1 = 2.18 × 10−3. (5.5)

The function k(σ ) thus diverges logarithmically, indicating
that the limit σ → 0 in the above representation for the
pressure is rather subtle. In Appendix C it is shown that the
sum of the two-loop and the three-loop contributions in
the pressure,

8l1 + 6l2 + 5l3

24π2�2γ 4

{ ∞∑
n=1

e−σn

n2

}2

T 4 + 1

2�2γ 3
k(σ )T 4, (5.6)

remains finite in the limit σ → 0 and can be written as

k0

2�2γ 3
T 4 ln

(
�p

T

)
+ 5l3

24π2�2γ 4
ζ (2)2T 4. (5.7)

The quantity �p is a scale which depends on the renormalized
next-to-leading-order effective constants l1 and l2, as well as
on the coefficients k0 and k1. In the absence of a magnetic
field, the low-temperature expansion for the pressure of the
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two-dimensional ideal ferromagnet hence takes the form

P = ζ (2)

4πγ
T 2 + l3ζ (3)

π�γ 3
T 3 + 3

(
4l2

3 − c1�γ
)
ζ (4)

π�2γ 5
T 4

+ 5l3ζ (2)2

24π2�2γ 4
T 4 + k0

2�2γ 3
T 4 ln

(
�p

T

)
+ O(p10).

(5.8)

Interestingly, we are not dealing with a simple power series. At
order p8, where the spin-wave interaction sets in, a logarithmic
contribution T 4 ln T emerges. Although this term contains a
scale related to next-to-leading-order effective constants of
L4

eff , the coefficient of this term is fixed by the effective
constants � and F of the leading-order Lagrangian L2

eff and
by the quantity k0, which is a pure number.

In a Lorentz-invariant setting, the occurrence of such loga-
rithmic terms is well known. The low-temperature expansion
of the pressure in quantum chromodynamics involves the term
T 8 ln T in the chiral limit6. In fact, the term T 8 ln T also
occurs in the low-temperature expansion of the pressure of
the three-dimensional antiferromagnet in the absence of a
staggered field.7 Note that antiferromagnetic magnons, much
like pions in quantum chromodynamics, display a linear, i.e.,
relativistic dispersion law.

While the limit H → 0 in the interaction contribution
turned out to be rather subtle, one may have doubts in general
about switching off the magnetic field. After all, we are dealing
with a planar system, where we are facing the Mermin-Wagner
theorem. However, as shown in Ref. 1, switching off the
magnetic field in the low-temperature series for the pressure
does not really numerically affect the series. We discuss
the issue in more detail in the next section, where we consider
the magnetization.

For the reader’s convenience, in Appendix D we provide the
low-temperature series for the energy density u, the entropy
density s, and the heat capacity cV of the two-dimensional
ideal ferromagnet. We want to stress that the structure of
the various low-temperature series derived in this section
and in Appendix D is an immediate consequence of the
symmetries of the two-dimensional ideal ferromagnet. Unlike
spin-wave theory or Schwinger-Boson mean field theory, the
effective Lagrangian technique does not resort to any ad hoc
assumptions or approximations but is completely systematic.
Moreover, the manifestation of the spin-wave interaction
in the low-temperature series of the partition function of
the two-dimensional ideal ferromagnet is studied here. In
particular, addressing this problem with spin-wave theory or
Schwinger-Boson mean field theory up to the order considered
in the present analysis appears to be beyond reach.

At the end of this section, we compare the low-temperature
expansions for the free energy density of the ideal ferromagnet
in two and three spatial dimensions. In the absence of an
external magnetic field they exhibit the general structure

zds=2 = −η̃0T
2 − η̃1T

3 − η̃A
2 T4 + η̃B

2 T4lnT + O(p10),

zds=3 = −h̃0T
5
2 − h̃1T

7
2 − h̃2T

9
2 − h̃3T5 − h̃4T11/2 +O(p12),

(5.9)

where we have boldfaced all contributions which are related
to the spin-wave interaction. Note that in the case of the

two-dimensional ideal ferromagnet, the coefficient η̃2 has
two parts. The former one, η̃A

2 , contains the free magnon
part as well as the interaction contribution proportional to
l3. The latter one, η̃B

2 , is exclusively due to the spin-wave
interaction, which involves the renormalized next-to-leading-
order effective constants l1 and l2.

In three dimensions, the term of order T 5 ∝ p10 in the
free energy density is the famous Dyson interaction term; in
the effective framework this is a two-loop effect (see Ref. 4).
Corrections to the Dyson term were considered in Ref. 5,
pointing out that the leading correction is of order T 11/2 ∝ p11

and originates from a three-loop graph. Interestingly, in the
case of the three-dimensional ideal ferromagnet, the two-loop
and the three-loop contributions occur at different orders in
the low-temperature expansion. As we have outlined in the
present article, the same two-loop and three-loop graphs,
in the case of the two-dimensional ideal ferromagnet, all
contribute at the same order p8 and lead to a logarithmic
term T 4 ln T in the free energy density. As argued in Ref. 1,
the different organization of Feynman diagrams in three and
two spatial dimensions is a consequence of the suppression
of ferromagnetic loops in Feynman graphs: In three spatial
dimensions, each loop in a Feynman diagram is suppressed by
three powers of momentum. In two dimensions, on the other
hand, ferromagnetic loops are only suppressed by two powers
of momentum.

VI. MAGNETIZATION AND MERMIN-WAGNER
THEOREM

Let us now consider the magnetization. With the expression
for the free energy density, (4.15), the low-temperature
expansion for the magnetization,

�(T ,H ) = − ∂z

∂(μH )
, (6.1)

of the two-dimensional ideal ferromagnet takes the form

�(T ,H )

�
= 1 − α̂0T − α̂1T

2 − α̂2T
3 + O(p8). (6.2)

The coefficients α̂i depend on the dimensionless ratio σ =
μH/T and are given by

α̂0 = 1

4πγ�

∞∑
n=1

e−σn

n
, α̂1 = l3

π�2γ 3

∞∑
n=1

e−σn

n2
,

α̂2 = 3
(
4l2

3 − c1�γ
)

π�3γ 5

∞∑
n=1

e−σn

n3
+ 8l1 + 6l2 + 5l3

12π2�3γ 4

×
∞∑

m=1

e−σm

m

∞∑
n=1

e−σn

n2
− 1

2�3γ 3

dk(σ )

dσ
. (6.3)

Obviously this series has a problem if we want to switch off
the magnetic field, as the leading coefficient α̂0 then diverges.
The point is that it is completely inconsistent to take the limit
σ → 0 in the low-temperature expansion of the magnetization,
as we now discuss.

We should keep in mind that the present effective cal-
culation is based on the assumption that the internal spin
symmetry O(3) is spontaneously broken. While this as-
sumption is fulfilled at zero temperature, at finite tempera-

184409-8



THERMODYNAMICS OF TWO-DIMENSIONAL IDEAL . . . PHYSICAL REVIEW B 86, 184409 (2012)

ture spontaneous symmetry breaking in the two-dimensional
Heisenberg ferromagnet cannot occur according to the
Mermin-Wagner theorem.61 Rather, at finite temperature, the
low-energy spectrum of the two-dimensional ideal ferromag-
net exhibits a nonperturbatively generated energy gap and the
correlation length of the magnons, although still exponentially
large,63

ξnp = CξaS− 1
2

√
T

JS2
exp

[
2πJS2

T

]
, (6.4)

is no longer infinite.
We have mentioned before that these nonperturbative

effects are so tiny that they cannot manifest themselves in the
low-temperature series for the free energy density. Likewise,
the series for the pressure, the energy density, the entropy
density, and the heat capacity derived in the previous section
are also valid as they stand; the subtleties raised by the Mermin-
Wagner theorem are not relevant for these thermodynamic
quantities.

However, for the magnetization, matters are quite different.
There, the nonperturbatively generated energy gap does not
lead to tiny corrections in the low-temperature expansion;
rather these effects become the dominant ones. We can easily
see this by expanding the series in the small parameter
σ = μH/T . While the free energy density amounts to

z = −�μH − T 2

4πγ

{
ζ (2) + σ ln σ − σ − σ 2

4
+ O(σ 3)

}
+O(T 3), (6.5)

the magnetization takes the form

�(T ,H ) = � + T

4πγ

{
ln σ − σ

2
+ σ 2

24
+ O(σ 4)

}
+ O(T 2).

(6.6)

In the effective theory perspective, the quantity �EH ,

�EH = μH, (6.7)

is the energy gap induced by the weak external magnetic field;
this is the quantity that appears in the parameter σ . However,
there is a further mechanism contributing to the energy
gap, the one that generates a gap nonperturbatively. In analogy
to the definition of the correlation length, related to the energy
gap �EH ,1

ξ =
√

γ

μH
=

√
γ

�EH

, (6.8)

the nonperturbatively generated energy gap �Enp is connected
to the correlation length ξnp by

�Enp = γ

ξ 2
np

. (6.9)

In our low-temperature series, so far only the energy gap �EH

is accounted for in the parameter σ .
We have to remember that we implement the limit T � μH

by holding T fixed and sending the magnetic field to 0. Keeping
the fixed temperature low compared to the underlying scale
given by the exchange integral J , we never leave the domain of
validity of the effective low-temperature expansion. Now for a

fixed value of the temperature, the nonperturbatively generated
energy gap �Enp is just a constant. However, unlike the energy
gap induced by the external magnetic field, the generation
of �Enp is a dynamical effect that we cannot control. In
particular, while we can switch off the magnetic field and thus
�EH , we cannot switch off �Enp; it would be inconsistent
to consider values for σ smaller than σnp = �Enp/T in the
effective low-temperature series.

At very low temperatures—let us say T/J = 1/100—
relations (6.4) and (6.8) imply that the condition

�Enp = �EH (6.10)

is satisfied if the ratio μH/T takes the value

μH

T
= 104

16C2
ξ

e−100π ≈ 10−131

(
S = 1

2

)
. (6.11)

This tiny ratio thus leads to a negligible contribution to
the free energy density, (6.5); here, although conceptually
inconsistent, taking the limit σ → 0 does not numerically
affect the series. However, in the magnetization, (6.6), the
effect of the nonperturbatively generated energy gap is rather
large because of the logarithm ln σ ; taking the limit σ → 0 in
the magnetization would be completely inconsistent.

In conclusion, at nonzero temperature the nonperturbatively
generated correlation length is finite and there is always an
energy gap �Enp in the spectrum of the two-dimensional
ideal ferromagnet. The question is whether or not this gap
is numerically relevant in the low-temperature series: For the
thermodynamic quantities it is irrelevant; for the magnetiza-
tion, however, it is indeed relevant.

The low-temperature expansion of the magnetization of
two-dimensional ideal ferromagnets has been considered
before within the formalism of double-time-temperature
Green’s functions and spin-wave theory. The explicit expres-
sions given in Refs. 59 and 60, respectively, are consistent with
our effective analysis provided that we express the effective
constants γ and l3 in terms of microscopic constants as1

γ = JSa2, l3 = JS2a2

32
. (6.12)

Here J is the exchange integral of the Heisenberg model and
a is the distance between the sites on the square lattice.

We have to emphasize, however, that Refs. 59 and 60
were restricted to free magnons. The effect of the spin-
wave interaction on the low-temperature expansion of the
magnetization of two-dimensional ideal ferromagnets has been
considered for the first time in the present work.

VII. CONCLUSIONS

Using the method of effective Lagrangians, we have evalu-
ated the partition function of the two-dimensional ideal ferro-
magnet up to three loops and have derived the low-temperature
series for various thermodynamic quantities including
the magnetization. In particular, we have shown that in
the absence of an external magnetic field, the spin-wave
interaction starts manifesting itself in the form of a logarithmic
term T 4 ln T in the free energy density. To obtain this result,
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we had to renormalize and numerically evaluate a specific
three-loop graph which turned out to be the piece of resistance.
Much like in the case of three-dimensional ideal ferromagnets,
the spin-wave interaction is also very weak in two-dimensional
ideal ferromagnets.

We have discussed in detail the implications of the Mermin-
Wagner theorem for the low-temperature series derived in the
present work. While the series for the free energy density,
pressure, internal energy density, entropy density, and heat
capacity are also valid if the magnetic field is switched off,
one has to be careful in the case of the magnetization, where
the effect of the nonperturbatively generated energy gap cannot
be neglected.

Although various authors have considered the low-
temperature properties of two-dimensional ideal ferromagnets
before within spin-wave theory, Schwinger-Boson mean field
theory, and double-time-temperature Green’s functions, to
the best of our knowledge, they all restricted themselves to
free magnons. In particular, none of those authors identified
logarithmic terms in the low-temperature expansion of the
partition function. The systematic effective field theory method
thus proves to be more powerful than conventional condensed
matter methods, where a three-loop analysis appears to be
beyond reach.

Such logarithmic terms are well known in particle physics,
i.e., in chiral perturbation theory which is the effective
field theory of the strong interaction described by quantum
chromodynamics. They also occur in the context of the three-
dimensional antiferromagnet, whose spin waves obey a linear
(relativistic) dispersion law. These logarithmic terms are a con-
sequence of the structure of the ultraviolet divergences in the
Goldstone boson propagator. In quantum chromodynamics,
in the case of three-dimensional antiferromagnets as well as
two-dimensional ideal ferromagnets, these divergences can be
absorbed into next-to-leading-order effective constants by log-
arithmic renormalization. Interestingly, in the case of the three-
dimensional ideal ferromagnet, the ultraviolet divergences of
the propagator do not require logarithmic renormalization:5

The low-temperature series for the thermodynamic quantities
and the magnetization simply involve integer and half-integer
powers of the temperature.

The present study regarding the low-temperature properties
of two-dimensional ideal ferromagnets is on the same footing
as the analysis performed in Ref. 5, which dealt with three-
dimensional ideal ferromagnets. In both cases a complete and
systematic analysis of the partition functions was given up
to three-loop order. In the three-dimensional case, the effect
of the spin-wave interaction on the partition function has
been considered by numerous authors before, in particular,
by Dyson, in his monumental work.2 The effective three-loop
analysis presented in Ref. 5 went one step beyond Dyson.
And the present article has discussed the effect of the spin-
wave interaction on the partition function in the case of the
two-dimensional ideal ferromagnet.
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APPENDIX A: NUMERICAL EVALUATION OF THE
CATEYE GRAPH

In this Appendix, we consider the numerical evaluation
of the three-loop graph 8c. The various terms in the relevant
expression K̄ , defined in Eq. (4.13), only involve the variables
r = |�x| and t = x4, such that the integrals in fact become
two-dimensional:

d3x = 2πrdrdt. (A1)

A very welcome consistency check on the numerics is provided
by the fact that the result has to be independent of the radius
of the sphere S.

It is convenient to introduce the dimensionless integration
variables η and ξ ,

η = T x4, ξ = 1

2

√
T

γ
|�x|. (A2)

In the integrals over the torus which involve quartic and triple
sums—the first two terms in Eq. (4.13)—we first integrate over
all two-dimensional space, ending up with one-dimensional
integrals in the variable η. For the quartic sum we obtain∫

T
d3x∂rG

T (x)∂rG
T (x)∂sG

T (−x)∂sG
T (−x)

= 1

32π3γ 5
T 4

∫ 1/2

−1/2
dη

∞∑
n1...n4=1

e−σ (n1+n2+n3+n4)

× Q̂(η,n1,n2,n3,n4),

Q̂(η,n1,n2,n3,n4)

=
(

1
η+n1

+ 1
η+n2

+ 1
−η+n3

+ 1
−η+n4

)−3

((η + n1)(η + n2)(−η + n3)(−η + n4))2 , (A3)

while for the triple sum we get∫
T

d3x∂r�(x)∂rG
T (x)∂sG

T (−x)∂sG
T (−x)

= 1

32π3γ 5
T 4

∫ 1/2

0
dη

∞∑
n2...n4=1

e−σ (n2+n3+n4)

× Q̂(η,0,n2,n3,n4),

Q̂(η,0,n2,n3,n4)

=
(

1
η

+ 1
η+n2

+ 1
−η+n3

+ 1
−η+n4

)−3

(η(η + n2)(−η + n3)(−η + n4))2 , (A4)

where

σ = μH

T
, γ = F 2

�
. (A5)

In the case of the triple sums the integration over η only extends
over the interval [0, 1

2 ], due to the 
 function contained in the
zero-temperature propagator �(x).

Note that the quantities Q̂(η,n1,n2,n3,n4) and
Q̂(η,0,n2,n3,n4) depend in a rather nontrivial manner
on the summation variables. The slowest convergence for
expressions (A3) and (A4) is observed for σ = 0, because
no exponential damping occurs. The numerical summation
has been performed in a “Cartesian” way as follows. We first
define the vector �Ni = (n1,n2,n2,n4). The first partial sum S1
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in the quartic series simply corresponds to the combination
�N1 = (1,1,1,1) of indices. The second partial sum S2 then

contains all combinations of indices in the vector �N2 with at
least one index equal to 2: (2,1,1,1), . . . ,(2,2,2,2), etc. For
large values of i and for σ = 0, the partial sums Si converge
according to 1/Si

2. Proceeding in an analogous manner for the
triple sums, the asymptotic behavior turns out to be the same.

Expressions suitable for the numerical evaluation of the
remaining three integrals in Eq. (4.13) involving double sums
are ∫

T \S
d3x∂r�(x)∂r�(x)∂sG

T (−x)∂sG
T (−x)

= 1

32π3γ 5
T 4

∫ S

0
dη

∫ ∞
√

S2−η2
dξξ 5

×
∞∑

n1,n2=1

e−σ (n1+n2) P̂ (ξ,η,n1,n2),

P̂ (ξ,η,n1,n2) = e
−ξ 2( 2

η
+ 1

−η+n1
+ 1

−η+n2
)

{η2(−η + n1)(−η + n2)}2 , (A6)

∫
S

d3x∂r�(x)∂r�(x)Qss(x)

= 1

32π3γ 5
T 4

∫ S

0
dη

∫ √
S2−η2

0
dξξ 5

×
∞∑

n1,n2=1

e−σ (n1+n2+2η) Q̂(ξ,η,n1,n2,σ ), (A7)

with

Q̂(ξ,η,n1,n2,σ ) = e
−ξ 2( 2

η
+ 1

−η+n1
+ 1

−η+n2
)

×
e2ησ

{(−η+n1)(−η+n2)}2 − e
ξ2( 1−η+n1

+ 1−η+n2
)

n2
1n

2
2

η4
,

(A8)

and, finally,∫
R\S

d3x∂r�(x)∂r�(x)∂sαGT (−x)|x=0x
α∂sβGT (−x)|x=0x

β

= 1

32π3γ 5
T 4

∫ ∞

S

dη

∫ ∞

0
dξξ 5

×
∞∑

n1,n2=1

e−σ (n1+n2+2η) R̂(ξ,η,n1,n2)

+ 1

32π3γ 5
T 4

∫ S

0
dη

∫ ∞
√

S2−η2
dξξ 5

×
∞∑

n1,n2=1

e−σ (n1+n2+2η) R̂(ξ,η,n1,n2),

R̂(ξ,η,n1,n2) = e−2ξ 2/η

{η2n1n2}2 . (A9)

In the above integrals the radius of the sphere has been chosen
as S = 1

2 . For large values of i and for σ = 0, the partial sums
Si related to the above three expressions involving double sums
converge according to 1/Si

2, i.e., the asymptotic behavior is
the same as for the triple and quartic sums.

APPENDIX B: LOGARITHMIC RENORMALIZATION OF
THE EFFECTIVE CONSTANTS l1 AND l2

In this Appendix we discuss how the ultraviolet divergence
in ∫

R
dds+1x∂r�(x)∂r�(x)∂αsG

T (−x)|x=0∂βsG
T (−x)|x=0

× xαxβ = ds(ds + 2)

23ds+5π
3ds

2 γ
3ds+4

2

T ds+2(μH )
ds−2

2

×
{ ∞∑

n=1

e−μHnβ

n
ds+2

2

}2

�

(
1 − ds

2

)
, (B1)

originating from the three-loop graph 8c (Fig. 1), can be
absorbed into the next-to-leading effective constants l1 and
l2 which show up in the two-loop contribution zT

8[de]:

zT
8[de] = −8l1 + 6l2 + 5l3

24π2�2γ 4
T 4

( ∞∑
n=1

e−μHnβ

n2

)2

. (B2)

The singularity in Eq. (B1) is due to the � function, which
contains a pole at ds = 2,

�

(
1 − ds

2

)
= − 2

ds − 2
− γE + O(ds − 2), (B3)

where γE is Euler’s constant.
Now the two expressions (B1) and (B2) have the same

structure. They both involve the same infinite series and are
both proportional to four powers of the temperature. Taking
into account the prefactor of the integral K̄ from Eq. (3.25),
they add up to

− 1

24π2�2γ 3

{
8l1 + 6l2 + 5l3

γ

+ 3

32π
�

(
1 − ds

2

)
(μH )

ds−2
2

}
T 4

( ∞∑
n=1

e−μHnβ

n2

)2

. (B4)

The pole in the � function can thus be absorbed into the
combination 8l1 + 6l2 + 5l3 of next-to-leading-order effective
constants. Note, however, that l3 does not require renormaliza-
tion. This effective constant already occurred in the one-loop
result for the free energy density, (3.1), and is perfectly finite.
The combination 8l1 + 6l2, on the other hand, is divergent and
absorbs the pole in the � function as we now show explicitly.

Introducing an arbitrary renormalization scale μ̃, which
should not be confused with the symbol μ denoting the
magnetic moment, the divergent quantity λ,

λ = �

(
1 − ds

2

)
(μH )

ds−2
2 , (B5)

can be decomposed into

λ = �

(
1 − ds

2

)
μ̃

ds−2
2 + �

(
1 − ds

2

)[
(μH )

ds−2
2 − μ̃

ds−2
2

]
.

(B6)

The first term contains the singularity. Note that it does
not involve the magnetic field but depends on the arbitrary
renormalization scale μ̃. The second term is not singular in the
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limit ds → 2 but approaches the finite value

− ln

(
μH

μ̃

)
, (B7)

such that the sum, (B4), takes the form

− 1

24π2�2γ 3

{
8l1(μ̃) + 6l2(μ̃) + 5l3

γ
− 3

32π
ln

(
μH

μ̃

)}

× T 4

( ∞∑
n=1

e−μHnβ

n2

)2

. (B8)

The quantities l1(μ̃) and l2(μ̃) are the renormalized, i.e.,
finite, effective constants which depend on the renormalization
scale μ̃. It is important to note, however, that the curly
brace is independent of this scale. Moreover, if we choose
the renormalization scale as

μ̃ = μH ≡ J

10
, (B9)

then the logarithm drops out and it is understood that l1(μ̃)
and l2(μ̃) are the renormalized effective constants evaluated
at this specific choice of the scale. The choice that μ̃ be one-
tenth of the underlying scale given by the exchange integral
J is motivated by comparison with chiral perturbation theory.
There, in order for the logarithm to drop out, the scale is to be
identified with the pion mass M , which is about one order of
magnitude smaller than the underlying scale �QCD.

From a more practical point of view we can say that the net
effect of this whole renormalization procedure is simply this:
The divergence in Eq. (B1) can be taken care of by rewriting
the expression zT

8[de] in terms of the two renormalized effective
constants l1 and l2 evaluated at the renormalization scale μ̃ =
μH as

zT
8[de] = −8l1 + 6l2 + 5l3

24π2�2γ 4
T 4

( ∞∑
n=1

e−μHnβ

n2

)2

. (B10)

APPENDIX C: PRESSURE AT ZERO MAGNETIC FIELD

In this Appendix, we discuss the low-temperature expan-
sion for the pressure at zero magnetic field. While this limit
in the one-loop contributions formally poses no problems,
switching off the magnetic field in the interaction contribution

of order p8,

8l1 + 6l2 + 5l3

24π2�2γ 4

{ ∞∑
n=1

e−σn

n2

}2

T 4 + 1

2�2γ 3
k(σ )T 4, (C1)

is rather subtle. Using representation (5.4) for the dimension-
less function k(σ ), the interaction contribution, in the limit
H → 0, amounts to

k0

2�2γ 3

{
π2(8l1 + 6l2 + 5l3)

432γ k0
+ ln

(
μH

T

)
+ k1

k0

}
T 4. (C2)

The effective constants l1, l2, and l3 have the same dimension as
γ = F 2/�. For reasons which become obvious in a moment,

we write the renormalized effective constants as

l1 ≡ γ c ln

(
�1

μH

) 1
16

, l2 ≡ γ c ln

(
�2

μH

) 1
12

, c ≡ 432k0

π2
,

(C3)

where we have introduced the two scales �1 and �2, which are
independent of the magnetic field. Inserting this representation
for l1 and l2 into the first term in the curly brace in expression
(C2), one obtains

k0

2�2γ 3

{
ln

(
�p

μH

)
+ ln

(
μH

T

)
+ 5π2l3

432γ k0

}
T 4, (C4)

where the scale �p is given by

�p =
√

�1�2 ek1/k0 ≈ 24.5
√

�1�2. (C5)

The essential point is that in the sum, (C4), the magnetic field
drops out. We conclude that, if one switches off the magnetic
field in the low-temperature expansion for the pressure, the
interaction contribution does not just manifest itself in the form
of a simple power of the temperature; rather, it also involves a
logarithmic contribution, which reads

k0

2�2γ 3
T 4 ln

(
�p

T

)
. (C6)

APPENDIX D: LOW-TEMPERATURE SERIES FOR
ENERGY DENSITY, ENTROPY DENSITY,

AND HEAT CAPACITY

In this final Appendix, let us derive the low-temperature
series for the energy density u, the entropy density s, and the
heat capacity cV of the two-dimensional ideal ferromagnet.
They are readily worked out from the thermodynamic relations

s = ∂P

∂T
, u = T s − P, cV = ∂u

∂T
= T

∂s

∂T
(D1)

and amount to

u = 1

4πγ
T 2

{ ∞∑
n=1

e−σn

n2
+ σ

∞∑
n=1

e−σn

n

}
+ l3

π�γ 3
T 3

{
2

∞∑
n=1

e−σn

n3
+ σ

∞∑
n=1

e−σn

n2

}
+ 3

(
4l2

3 − c1�γ
)

π�2γ 5
T 4

×
{

3
∞∑

n=1

e−σn

n4
+ σ

∞∑
n=1

e−σn

n3

}
+ 8l1 + 6l2 + 5l3

24π2�2γ 4
T 4

{
3

∞∑
m=1

e−σm

m2

∞∑
n=1

e−σn

n2
+ 2σ

∞∑
m=1

e−σm

m

∞∑
n=1

e−σn

n2

}

+ 1

2�2γ 3
T 4

{
3k(σ ) − σ

dk(σ )

dσ

}
+ O(p10),
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s = 1

4πγ
T

{
2

∞∑
n=1

e−σn

n2
+ σ

∞∑
n=1

e−σn

n

}
+ l3

π�γ 3
T 2

{
3

∞∑
n=1

e−σn

n3
+ σ

∞∑
n=1

e−σn

n2

}
+ 3

(
4l2

3 − c1�γ
)

π�2γ 5
T 3

×
{

4
∞∑

n=1

e−σn

n4
+ σ

∞∑
n=1

e−σn

n3

}
+ 8l1 + 6l2 + 5l3

12π2�2γ 4
T 3

{
2

∞∑
m=1

e−σm

m2

∞∑
n=1

e−σn

n2
+ σ

∞∑
m=1

e−σm

m

∞∑
n=1

e−σn

n2

}

+ 1

2�2γ 3
T 3

{
4k(σ ) − σ

dk(σ )

dσ

}
+ O(p8),

cV = 1

4πγ
T

{
2

∞∑
n=1

e−σn

n2
+ 2σ

∞∑
n=1

e−σn

n
+ σ 2

∞∑
n=1

e−σn

}
+ l3

π�γ 3
T 2

{
6

∞∑
n=1

e−σn

n3
+ 4σ

∞∑
n=1

e−σn

n2
+ σ 2

∞∑
n=1

e−σn

n

}

+ 3(4l2
3 − c1�γ )

π�2γ 5
T 3

{
12

∞∑
n=1

e−σn

n4
+ 6σ

∞∑
n=1

e−σn

n3
+ σ 2

∞∑
n=1

e−σn

n2

}
+ 8l1 + 6l2 + 5l3

12π2�2γ 4
T 3

×
{

6
∞∑

m=1

e−σm

m2

∞∑
n=1

e−σn

n2
+ 6σ

∞∑
m=1

e−σm

m

∞∑
n=1

e−σn

n2
+ σ 2

∞∑
m=1

e−σm

m

∞∑
n=1

e−σn

n
+ σ 2(eσ − 1)−1

∞∑
n=1

e−σn

n2

}

+ 1

2�2γ 3
T 3

{
12k(σ ) − 6σ

dk(σ )

dσ
+ σ 2 d2k(σ )

dσ 2

}
+ O(p8). (D2)

In the above series, the spin-wave interaction manifests itself in the last two terms, which originate from two-loop and three-loop
graphs. While the former involves the renormalized next-to-leading-order effective constants l1 and l2, the latter is proportional
to the dimensionless function k(σ ) and its derivatives.

If we switch off the magnetic field, these low-temperature series turn into

u = ζ (2)

4πγ
T 2 + 2l3ζ (3)

π�γ 3
T 3 + 9

(
4l2

3 − c1�γ
)
ζ (4)

π�2γ 5
T 4 + 5l3ζ (2)2

8π2�2γ 4
T 4 + k0

2�2γ 3
T 4

{
3 ln

(
�p

T

)
− 1

}
+ O(p10),

s = ζ (2)

2πγ
T + 3l3ζ (3)

π�γ 3
T 2 + 12

(
4l2

3 − c1�γ
)
ζ (4)

π�2γ 5
T 3 + 5l3ζ (2)2

6π2�2γ 4
T 3 + k0

2�2γ 3
T 3

{
4 ln

(
�p

T

)
− 1

}
+ O(p8), (D3)

cV = ζ (2)

2πγ
T + 6l3ζ (3)

π�γ 3
T 2 + 36

(
4l2

3 − c1�γ
)
ζ (4)

π�2γ 5
T 3 + 5l3ζ (2)2

2π2�2γ 4
T 3 + k0

2�2γ 3
T 3

{
12 ln

(
�p

T

)
− 7

}
+ O(p8).

Again, the interaction part does not lead to a simple power of the temperature in the limit H → 0; rather, it also involves a piece
logarithmic in the temperature.
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