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First-principles investigation of the magnetic anisotropy and magnetic properties
of Co/Ni(111) superlattices
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We used first-principles methods to calculate the electronic and magnetic structure of Co/Ni(111) superlattices
with a thickness of the Co and Ni layers ranging from one to four monolayers. We give a detailed database on the
magnetocrystalline anisotropy energy induced by interfaces and on the total magnetic anisotropy energy including
the shape anisotropy of the superlattices. The magnetic anisotropy is analyzed in terms of the anisotropy of the Co
and Ni orbital magnetic moments and in terms of the electron states of the superlattices. Most of our results apply
to superlattices with an fcc stacking of the atomic layers, but we also study the influence of stacking faults on the
anisotropy. We describe the magnetization, and the density of states and spin polarization at the Fermi level of
all these superlattices. The database which we provide should help researchers who aim to design Co/Ni–based
magnetic or spintronic devices with suitable physical properties.
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I. INTRODUCTION

Magnetic multilayers with perpendicular magnetic
anisotropy (PMA) have been the subject of numerous studies
because of their interesting potential applications in high-
density magnetic recording and spintronic devices. They allow
going beyond the superparamagnetic effect, which is a limit for
longitudinal recording, giving access to magnetic media with
smaller magnetic domains and a higher density.1 Multilayers
with PMA can also be used as magnetic electrodes in spin
valves, the magnetic configuration of which can be changed
by the spin-torque effect, using a spin-polarized electric
current.2–7 Taking advantage of this phenomenon should
enable the design of spintronic devices in which the magnetic
information would be written with local electric currents
instead of magnetic fields. The spin transfer torque effect
was first studied in spin valves based on magnetic layers with
in-plane magnetization.8–10 Recent research has shown that the
critical current needed for switching a spin valve is lower for
electrodes with out-of-plane than those with in-plane magnetic
anisotropy.11–15 This is due to the different roles played by the
shape anisotropy and demagnetizing field in these two kinds
of systems, for which the energy barriers between parallel
and antiparallel states have different heights. The materials
which have been the most intensively studied for their PMA
properties are Co/Pd16–21 and Co/Pt20,22,23 multilayers.

Co/Ni multilayers have recently attracted attention as good
candidates for PMA applications. Interest in these systems
started with first-principles calculations which predicted that
Co/Ni(111) superlattices may possess PMA.24,25 These the-
oretical studies have also emphasized the importance of dxy

and dx2−y2 electron states for the magnetic anisotropy of the
superlattices. Experimental investigations have confirmed that
Co/Ni sandwiches and superlattices with PMA can exist, and
the maximum anisotropy has been found when the Co layers
contain only one or two monolayers (MLs); the critical Co
thickness above which the magnetic anisotropy is in-plane
takes typical values near three or four MLs, depending on the
sample quality and on the thickness of the Ni layers.26–31

Nanopillars containing spin valves with Co/Ni multilayers
as magnetic electrodes have been used to study the spin

transfer torque effect. The magnetization switching induced
by an electric current has been demonstrated using Co/Ni
electrodes with perpendicular anisotropy. It has, in particular,
been shown that the critical current density is three or four
times lower for Co/Ni electrodes terminated by Pt cap layers
than for Co/Pt electrodes. The critical current is even lower
when the Pt cap layers are not inserted during the growth
process.13,32 The efficiency of spin transfer torque in Co/Ni
multilayers could be optimized by changing both the relative
Co and Ni contents and the Co/Ni interface density. This
would allow the control of the different parameters governing
the torque.13 The most important of these parameters are the
magnetic anisotropy, which can be chosen either in-plane or
out-of-plane, depending on the stacking; the Gilbert damping
parameter α, which is relatively small in these materials29,33,34

and does not depend strongly on the magnetic anisotropy, but
on the relative concentration of Co and Ni atoms;35 the density
of states (DOS) and spin polarization at the Fermi level, which
can be high in these materials36 and should depend on the
average composition and on the modification of the electronic
structure induced by interfaces; and the magnetization of the
superlattices, which can be chosen between that of bulk Ni
and that of bulk Co. Recent studies have shown that the
giant magnetoresistance of spin valves with Co/Ni electrodes
is relatively high.37 Co/Ni multilayers are also interesting
because they can be used to reach PMA with only 3d transition
metals, avoiding the use of heavy elements like Pt and Pd,
which are responsible for high spin-orbit coupling.

Assessment of recent studies on Co/Ni multilayers
clearly shows that these systems have mostly been studied
experimentally.26–31,38 Theoretical investigations which could
help the interpretation of experimental data and of measured
properties in terms of the electronic structure are rather rare.
They mainly consist in a recent paper which compares the
spin and orbital magnetic moments calculated ab initio and
measured experimentally39 and in two articles which describe
the magnetic anisotropy energy (MAE) of only three different
Co/Ni superlattices,24,25 which is far from exhaustive. Sys-
tematic information on the most important parameters which
must be known to understand the physical behavior of Co(n
MLs)/Ni(p MLs) superlattices must be provided for the most
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simple of these systems, for instance for n = 1–4 and p = 1–4.
In this article we supply a detailed database on the MAE,
magnetization, DOS and spin polarization at the Fermi level
for a wide range of cobalt and nickel layer thicknesses in
Co/Ni(111) superlattices. We also provide an interpretation
of the magnetic anisotropy of these superlattices in terms of
electron states and orbital magnetic moments. This database
could further be used by researchers to interpret experimental
data and to design devices with the required behavior.

II. COMPUTATIONAL DETAILS

We have calculated the electronic structure of Co(n
MLs)/Ni(p MLs) superlattices with a (111) stacking axis using
the first-principles code WIEN2K.40 This code, which is based
on the density functional theory (DFT), allows us to solve the
Kohn-Sham equation with a linearized augmented plane-wave
basis for expanding the one-particle wave functions. We used
the parametrized equation proposed by Perdew and Wang41

to express the exchange and correlation potential within the
local spin density approximation. This approximation can
indeed be considered as more efficient than the generalized
gradient approximation for calculation of the MAE.42 The
maximum wave vector Kmax, which has been used for the
plane-wave expansion of the Kohn-Sham wave functions in
the interstitial area between atomic spheres, is given by the
dimensionless parameter RKmax = 10, where R = 0.124 nm
is the radius which has been chosen for all the atoms of all the
superlattices. The first Brillouin zone has been sampled with
a typical number of 10 000 wave vectors. Previous studies
have shown that such a dense mesh must be used to calculate
the magnetocrystalline anisotropy energy (MCAE; which we
define as the difference in the superlattice energies calculated
with the magnetization parallel versus perpendicular to the
interfaces) with a reasonable accuracy,24 and we checked that
this accuracy is, in our case, about 0.05 meV/unit cell. The
same k-mesh fineness has been used when the magnetization is
parallel or perpendicular to interfaces, even if the superlattice
space group and explicit list of wave vectors depend on the
direction of the magnetization. The electronic structure is first
calculated without including spin-orbit coupling effects. The
result of this initial calculation is further used to compute the
energy correction induced by the spin-orbit interaction within
the scalar relativistic approximation [we chose to include
unoccupied states up to a maximum energy of 7 Rydbergs
(Ryd) above the Fermi level in this calculation based on the
second-order perturbation theory].

For most of the Co(n MLs)/Ni(p MLs) superlattices, we
considered a face-centered cubic (fcc) stacking of atomic
layers,43 with the same distance between all the succes-
sive atomic layers and a lattice parameter a = (n

√
2aCo +

paNi)/(n + p) given by the Vegard law, using the lattice
constants aNi = 0.352 nm and aCo = 0.251 nm of bulk fcc
Ni and bulk hcp Co. We performed atomic layer relaxation
on some of these superlattices: the calculated relaxation is so
small (the distance between atomic layers being nearly the
same in bulk Ni and bulk Co) that it does not significantly
change the values of the spin magnetic moments or of the
MAE. In the following we consider the Ox, Oy, and Oz

axes as, respectively, parallel to the [1̄10], [1̄1̄2], and [111]
directions of the fcc stacking.

III. MAGNETIC ANISOTROPY ENERGY OF THE
Co/Ni(111) SUPERLATTICES

Two phenomena contribute to the MAE of magnetic
multilayers. The first contribution is the magnetocrystalline
anisotropy (MCA), which expresses the fact that the matrix el-
ements of the spin-orbit coupling Hamiltonian and the ground-
state energy of the crystal depend on the direction of the
magnetization with respect to the crystal axes. The MCA exists
in bulk magnetic crystals and can be strongly enhanced by
interfaces. The second contribution to the magnetic anisotropy
is due to interaction between magnetic dipoles located at
different atomic sites. This contribution, also called shape
anisotropy since it depends on the shape of the sample, must
be calculated by summing all the dipole-dipole interaction
energies. It gives a negative contribution to the MAE and favors
in-plane magnetization in the case of thin magnetic layers and
multilayers. The shape anisotropy energy can be calculated
considering explicitly discrete dipoles, as shown by Daalderop,
who obtained a contribution of −0.08 meV per Co atom and
−0.01 meV per Ni atom of the Co/Ni superlattices.24 It can
also be calculated considering that the magnetic layers are
made of uniform materials; in this case, the shape anisotropy
energy is given by

EShape = −tCo

(
1

2
μ0M2

Co

)
− tNi

(
1

2
μ0M2

Ni

)
, (1)

where tCo, tNi, MCo, and MNi are, respectively, the Co and the
Ni total thicknesses and magnetizations in the superlattices.
For compact stackings like Co/Ni(111) superlattices with an
fcc structure, Eq. (1) gives numerical values in very good
agreement with those calculated by Daalderop for discrete
dipoles. In the following, the shape anisotropy is always
calculated using the numerical results of Daalderop.

Before describing in detail our results on the MAE of Co(n
MLs)/Ni(p MLs) superlattices, we compare in Table I some of
these energies with the few theoretical and some of the exper-
imental data available in the literature. The MCAE which we
calculated for Co(1 ML)/Ni(2 MLs), Co(1 ML)/Ni(5 MLs),
and Co(2 MLs)/Ni(1 ML) is of the same order of magnitude
as those calculated by Daalderop24 and Kyuno:25 the MCAE
is stronger and positive for Co(1 ML)/Ni(2 MLs), smaller
for Co(1 ML)/Ni(5 MLs), and slightly negative for Co(2
MLs)/Ni(1 ML). The differences which appear between our
results and those from the literature are mainly due to the fact
that we used a code based on the linearized augmented plane-
wave method, while Daalderop and Kyuno used codes based
on the linearized muffin-tin orbital method. The MCAE that we
calculated for Co(1 ML)/Ni(3 MLs), Co(2 MLs)/Ni(3 MLs),
Co(3 MLs)/Ni(3 MLs), and Co(4 MLs)/Ni(3 MLs) is positive
and of the same order of magnitude as the MCAE deduced
from experimental measurements,31 except maybe for the
superlattice Co(2 MLs)/Ni(3 MLs), for which the calculated
MCAE is smaller than the experimental result (a possible
explanation for this small discrepancy is given in Sec. VI).

Figure 1(a) shows the MCAE per Co(n MLs)/Ni(p MLs)
superlattice unit cell, calculated as a function of the Co layer
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TABLE I. Magnetocrystalline anisotropy energy (MCAE; in meV/unit cell) for the superlattices Co(1 ML)/Ni(2 MLs), Co(1 ML)/Ni(5
MLs), and Co(2 MLs)/Ni(1 ML), for which our results are compared to those calculated by Daalderop24 and Kyuno,25 and for the superlattices
Co(1 ML)/Ni(3 MLs), Co(2 MLs)/Ni(3 MLs), Co(3 MLs)/Ni(3 MLs), and Co(4 MLs)/Ni(3 MLs), for which our results are compared to
those deduced from magnetometry experiments.31

Calculated MCAE

Superlattice Daalderop24 Kyuno25 Measured MCAE: Gottwald31 Our results

Co(1 ML)/Ni(2 MLs) 0.31 0.35 – 0.45
Co(1 ML)/Ni(5 MLs) 0.14 – – 0.25
Co(2 MLs)/Ni(1 ML) − 0.04 – – − 0.12
Co(1 ML)/Ni(3 MLs) – – 0.32 0.4
Co(2 MLs)/Ni(3 MLs) – – 0.34 0.11
Co(3 MLs)/Ni(3 MLs) – – 0.35 0.29
Co(4 MLs)/Ni(3 MLs) – – 0.34 0.29

thickness and for several Ni layer thicknesses. The MCAE
is positive and does not depend strongly on the Ni layer
thickness when tNi � 2 MLs. The situation is different for
Co(n MLs)/Ni(1 ML) superlattices, which show lower MCAE
values and a strong tendency towards in-plane magnetic
anisotropy. In any cases, the MCAE is maximum when the
Co layers only contain one atomic plane, and the maximum is
obtained for Co(1 ML)/Ni(2 MLs) and Co(1 ML)/Ni(3 MLs).
The MCAE shows slight oscillations as a function of the Co
layer thickness, with a minimum value when tCo = 2 MLs.

The total MAE per unit cell of the same superlattices is
described in Fig. 1(b). The MAE decreases rapidly with the
Co thickness, the negative contribution of the shape anisotropy
becoming more and more important. All the superlattices show
in-plane anisotropy when tCo � 4 MLs.

The results presented in Fig. 1 describe the MAE per
unit cell of different Co/Ni(111) superlattices. The energies
reported in that figure describe superlattices with different

FIG. 1. (Color online) (a) Magnetocrystalline anisotropy energy
per unit cell and (b) magnetic anisotropy energy per unit cell for
Co(n MLs)/Ni(p MLs) superlattices as a function of the Co layer
thickness tCo and for several Ni layer thicknesses tNi.

periods; it also seems pertinent to compare the Keff values
calculated for the different multilayers and shown in Fig. 2.
Keff is the MAE per surface unit and per thickness unit of
the superlattices. In real Co/Ni superlattices, an additional
magnetocrystalline contribution would appear because of the
interfaces between the superlattices and the substrate and cap
layers. Figure 2 shows that positive values of Keff are mostly
obtained for Co(1 ML)/Ni(p MLs) superlattices, for which the
MCA contribution to Keff is the highest. The shape anisotropy
contribution to Keff is of course always negative and suppresses
the perpendicular anisotropy when the relative content of
Co atoms is high enough. Keff is slightly negative for most
of the superlattices, except for Co(2 MLs)/Ni(1 ML), Co(4
MLs)/Ni(1 ML), and Co(3 MLs)/Ni(1 ML), which possess a
strong in-plane anisotropy, and for Co(1 ML)/Ni(2 MLs), Co(1
ML)/Ni(3 MLs), Co(1 ML)/Ni(4 MLs), and Co(1 ML)/Ni(1
ML), which show strong perpendicular anisotropy. The latter
superlattices have, at the same time, a high interface density
and a high Ni content.

IV. INTERPRETATION OF THE MCAE IN TERMS
OF ORBITAL MOMENTS

The physical origin of the MCAE of Co/Ni(111) super-
lattices is not obvious and must be studied in detail. The

FIG. 2. (Color online) Magnetic anisotropy energy Keff per
surface unit and per thickness unit of Co(n MLs)/Ni(p MLs)
superlattices, as a function of the interface density 2

tCo+tNi
and relative

Ni content tNi
tCo+tNi

.
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FIG. 3. (Color online) Spin and orbital magnetic moments of the
Co and Ni atoms in a period of the Co(1 ML)/Ni(3 MLs) superlattice:
(a), (b) when the magnetization is perpendicular to interfaces and
(c), (d) when the magnetization is parallel to interfaces.

values presented in the previous section show that the MCAE
is considerably higher for Co/Ni superlattices than for bulk
fcc Ni and hcp Co.44 This enhancement of the MCAE is due
to the Co/Ni interfaces which modify the interaction between
the electron angular momentum and the crystal.45

Figure 3 shows the values of the spin and orbital magnetic
moments of the different atoms in the period of the Co(1
ML)/Ni(3 MLs) superlattice, for different directions of the
magnetization and as a function of the atomic layer index.
These spin magnetic moments have been calculated from
the difference between the number of majority- and the
number of minority-spin electrons inside muffin-tin spheres.
The spin magnetic moments show negligible anisotropy, while
the orbital magnetic moments are clearly higher where the
magnetization is perpendicular to the interfaces. This is in
agreement with the theoretical model developed by Bruno46

for magnetic metals with the majority-spin d bands below
the Fermi level. This model expresses the MCAE of Co(n
MLs)/Ni(p MLs) superlattices in terms of the anisotropy of
the Ni and Co orbital magnetic moments. It can be described
by the following equation:

MCAE = p

4μB

ξNi[M
↓
orb(Ni)(⊥) − M↓

orb(Ni)(‖)]

+ n

4μB

ξCo[M↓
orb(Co)(⊥) − M↓

orb(Co)(‖)], (2)

where ξNi = 100 meV, ξCo = 86 meV,47,48 and μB is the
Bohr magneton. M↓

orb(Ni)(⊥), M↓
orb(Ni)(‖), M↓

orb(Co)(⊥), and
M↓

orb(Co)(‖) give the contribution of minority-spin electrons to
the averaged orbital magnetic moment of Ni and Co atoms in
the superlattices, for magnetization perpendicular and parallel
to interfaces, respectively. Details on the calculation of the
orbital magnetic moments have been published recently.39

Figure 4 compares the values of the MCAE of Co(n
MLs)/Ni(3 MLs) superlattices, calculated from the difference
between the ground-state energies when magnetization is per-
pendicular and parallel to interfaces and the ground-state ener-
gies calculated with the Bruno model. The agreement between
the MCAEs calculated by these two methods is surprisingly
good. Moreover, the Bruno model shows that the contribution

FIG. 4. (Color online) Magnetocrystalline anisotropy energy of
Co(n MLs)/Ni(3 MLs) superlattices, obtained from the difference
between the ground-state energies calculated for magnetization per-
pendicular and parallel to interfaces (�E–DFT) and those calculated
from the Bruno model (�E–Bruno). The contributions of Ni and Co
atoms are also shown.

of Ni atoms to the MCAE is higher than that of Co atoms, even
when the number of Co atomic layers becomes high.

V. INTERPRETATION OF THE MCAE IN TERMS
OF ELECTRON STATES

We have analyzed the modification of the electronic
structure induced by spin-orbit coupling as a function of
the direction of the magnetization, in order to establish a
correlation between the MCA and the electron states of
the Co/Ni(111) superlattices. First, we have inspected the
magnetization dependence of the superlattice band structure,
to search for the most important degeneracy lifting which
may lower the ground-state energy for a given orientation
of the magnetization. Degeneracy lifting between d bands can
contribute to the magnetic anisotropy if several conditions
are fulfilled: the degenerated d bands must have an energy
very close to the Fermi level (this condition ensures that their
occupation changes after degeneracy lifting), if possible with
a weak dispersion along one of the high-symmetry directions
of the first Brillouin zone.49 We have calculated the band
structure of several Co(n MLs)/Ni(p MLs) superlattices and
searched for possible degeneracy lifting at EF . For most of
the superlattices, the lifting occurs either above or below EF ,
which does not strongly affect the ground-state energy, and
degeneracy lifting at the Fermi level is very rare.

Figure 5 shows the band structure of the superlattice
Co(2 MLs)/Ni(4 MLs) when the magnetization is in-plane
[Fig. 5(a)] and out of plane [Fig. 5(b)]. The energy and
wave vectors at which degeneracy lifting can be observed
depend on the magnetization direction. The degeneracy lifting
mostly happens between bands which would simply cross each
other if spin-orbit coupling were ignored. The most important
lifting can be observed for magnetization perpendicular to
the interfaces. In this case, the degeneracy between flat d

bands is lifted along the whole �-A direction. One of these
lifting occurs exactly at EF when the magnetization is out of
plane, lowering the energy of one band while the other band
becomes unoccupied. The corresponding two bands (which
are linear combinations of Ni dxz and dyz atomic orbitals)
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FIG. 5. (Color online) Band structure of the Co(2 MLs)/Ni
(4 MLs) superlattice for magnetization (a) parallel and (b) perpen-
dicular to the interfaces. The (red) circles and squares show the most
important degeneracy lifting induced by spin-orbit coupling.

are degenerated with a very low negative energy for in-plane
magnetization. Even for this superlattice, which shows a clear
band lifting at EF , the sign of the MCAE cannot, however, be
predicted only from the analysis of the band degeneracy lifting
induced by spin-orbit coupling.

To better understand the sign of the MCAE, we must calcu-
late the ground-state energy correction induced by spin-orbit
coupling in the second-order perturbation theory and identify
the electron states which make the most important contribution
to this correction. The ground-state energy correction is given
by

�E =
∑

Enk<EF

∑
En′k>EF

|〈ψnk|ĤSO|ψn′k〉|2
Enk − En′k

. (3)

The matrix elements of the spin-orbit-coupling Hamiltonian
which appear in Eq. (3) couple occupied and unoccupied Bloch
states with the same Bloch vector k. The value of �E depends
on the magnetization direction, and the virtual transitions
which appear in this equation strongly contribute when they
couple occupied and unoccupied states close to the Fermi
level. The Bloch states coupled by these virtual transitions
can be linear combinations of the same or of different d

atomic orbitals. They can have the same (majority or minority)
or different spin states. Each of these Bloch states can be
characterized by the value of its magnetic quantum number ml

(|ml| being equal to 0 for dz2 , 1 for dxz and dyz, and 2 for dxy

and dx2−y2 orbitals) and spin quantum number ms = ±1/2;
a virtual transition can be described by the variations �ml

and �ms of these quantum numbers. The virtual transitions
which actually contribute to �E are those with nonvanishing
〈ψnk|ĤSO|ψn′k〉 and with particular values of �ms and �ml .
The sign and the amplitude of the contribution of a virtual
transition depend on the magnetization direction, parallel or
perpendicular to the atomic layers. Daalderop50 proposed
simple rules which can be used to understand which virtual
transitions favor in-plane or out-of-plane magnetization (see
also the Appendix). The virtual transitions which favor in-
plane anisotropy are those between states with �|ml| = 0
and different spin or between states with �|ml| = ±1 and the
same spin. The virtual transitions which favor perpendicular
anisotropy are those between states with �|ml| = 0 and same
spin or between states with �|ml| = ±1 and opposite spin.

Previous studies used these simple rules to identify the
electron states responsible for the magnetic anisotropy of thin
Co layers from the peaks in the ml-resolved majority- and
minority-spin DOS curves.50,51 Such an analysis turns out to
be difficult in our case because we can, at the same time,
identify DOS peaks involved in virtual transitions favoring
in-plane anisotropy, and DOS peaks favoring out-of-plane
anisotropy. To obtain unambiguous information on the most
important electron states which are responsible for the actual
anisotropy, we must focus on the most important of the virtual
transitions mentioned above. The transitions which give the
highest contribution have been identified in the article by
Kyuno et al.25 (see also the Appendix). Among all the virtual
transitions favoring in-plane anisotropy, the most important
are those between states with ml = 0 and |ml| = 1 with the
same spin and those between states with |ml| = 2 and different
spin. Conversely, the most important transitions favoring
perpendicular anisotropy are those between states with ml = 0
and states with |ml| = 1 and different spin and those between
states with |ml| = 2 and the same spin. These restricted rules
can, for instance, be used to understand, from partial DOS
curves, why the magnetic anisotropy is perpendicular for
Co(1 ML)/Ni(2 MLs) and in-plane for Co(2 MLs)/Ni(1 ML).
The ml-resolved DOS curves for a Co atom of these two
superlattices are shown in Figs. 6 and 7, respectively. For
Co(1 ML)/Ni(2 MLs), we can identify important {ml = 0 →
|ml| = 1} and {|ml| = 1 → ml = 0} virtual transitions from
majority-spin states at −0.7 eV to minority-spin states near
0.55 eV; these transitions promote perpendicular anisotropy.
Similar virtual transitions can also be observed for Co(2
MLs)/Ni(1 ML), but they will give a lower contribution since
the density of unoccupied minority-spin states is lower and at a
slightly higher energy (near 0.9 eV). Similarly, we can identify
important virtual transitions between occupied majority-spin
(near −0.7 eV) and unoccupied minority-spin (near 1.0 eV)
states with |ml| = 2. These virtual transitions promote in-plane
anisotropy for the superlattice Co(2 MLs)/Ni(1 ML). Figure 6
shows that similar virtual transitions would have a lower
contribution in Co(1 ML)/Ni(2 MLs) because the unoccupied
minority-spin DOS peak is lower for this superlattice. Similar
conclusions could be drawn from the partial DOS curves
calculated for Ni atoms, which emphasize the importance of
atomic orbitals with quantum numbers |ml| = 1 and |ml| = 2
for explaining the magnetic anisotropy of the Co/Ni(111)
superlattices. We have checked, in the band structure of these
two superlattices, shown in Figs. 8 and 9, respectively, that
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FIG. 6. (Color online) ml-resolved density of states (DOS) for a
Co atom of the superlattice Co(1 ML)/Ni(2 MLs), for majority spin
(black curves) and minority spin [light (red) curves].

all the DOS peaks mentioned above correspond to virtual
transitions with the same Bloch vector. The most important
Bloch vectors contributing to the virtual transitions are near
M and between K and �.

VI. INFLUENCE OF THE ATOMIC LAYER STACKING
ON THE MCAE

In Sec. III, we mentioned that the MCAE calculated by
first-principles methods is in rather good agreement with
values deduced from experimental measurements,31 except
when the thickness of the Co layers is 2 MLs (the calculated
MCAE is, in this case, smaller than the experimental value).
We tried to understand if this small disagreement could be due
to the atomic layer stacking, and we calculated the MCAE for
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FIG. 7. (Color online) Same as Fig. 6, but for the superlattice
Co(2 MLs)/Ni(1 ML).

FIG. 8. Majority spin (lower panel) and minority spin (upper
panel) band structure of the superlattice Co(1 ML)/Ni(2 MLs).

Co(n MLs)/Ni(3 MLs) superlattices with several possible
atomic structures, ranging from pure fcc to pure hcp.

Figure 10 shows the value of the MCAE calculated for
these superlattices, as a function of the thickness of the
Co layers, for pure fcc superlattices (ABC stacking of
the atomic layers), pure hcp superlattices (AB stacking),
and intermediate stacking (labeled fcchcp), in which the
crystal structure is fcc for all the Ni and hcp for all
the Co atomic layers; this corresponds, for instance, to
the stacking NiANiBNiCCoANiCNiBNiACoC for Co(1
ML)/Ni(3 MLs), to the stacking NiANiBNiCCoACoC

for Co(2 MLs)/Ni(3 MLs), or to the stacking
NiANiBNiCCoACoCCoANiCNiBNiACoCCoACoC for Co(3
MLs)/Ni(3 MLs). The stackings with the lowest MCAE
are those with the lowest ground-state energy [i.e., fcc
stacking for Co(1 ML)/Ni(3 MLs), and fcchcp stacking for
Co(2 MLs)/Ni(3 MLs), Co(3 MLs)/Ni(3 MLs), and Co(4
MLs)/Ni(3 MLs)]. Figure 10 shows that the variations in
the MCAE as a function of the Co layer thickness are made
smoother when we only consider the superlattice structure
with the lowest ground-state energy: in the case of fcchcp
stacking, the MCAE regularly decreases with Co thickness
and does not show the oscillation which was observed for a Co
thickness of 2 MLs for the pure fcc structure. Consequently,
the small disagreement between calculated and measured
values of the MCAE may be due to the fact that some of the
samples used in experiments could possess stacking faults.
We mention that the ground-state energy of the different
superlattices has been represented in Fig. 10 after subtraction
of the energy which would be that of the Co and Ni atoms
in bulk fcc Ni and bulk hcp Co, in order to represent the
ground-state energy of all the superlattices in the same figure.
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FIG. 9. Same as Fig. 8, but for the superlattice Co(2 MLs)/Ni
(1 ML).

VII. MAGNETIZATION, DENSITY OF STATES AND SPIN
POLARIZATION AT THE FERMI LEVEL

First-principles calculations and x-ray magnetic circular
dichroism experiments have recently been used to get in-
formation on the values of the spin and orbital magnetic
moments in Co/Ni(111) superlattices.39 This study showed

FIG. 10. (Color online) (a) Magnetocrystalline anisotropy energy
for Co(n MLs)/Ni(3 MLs) superlattices, as a function of the Co layer
thickness and for different stackings of the atomic layers (pure fcc,
pure hcp, and an intermediate situation where the stacking is fcc for
Ni and hcp for Co layers). (b) Ground-state energy per unit cell of
the same superlattices; in order to represent all the results in the same
graph, the energy of three Ni atoms in bulk fcc Ni and n Co atoms in
bulk hcp Co has been subtracted from the ground-state energy of the
Co(n MLs)/Ni(3 MLs) superlattices.

FIG. 11. (Color online) Magnetization of Co(n MLs)/Ni(p MLs)
superlattices: (a) as a function of the Co layer thickness tCo and for
several Ni layer thicknesses tNi and (b) as a function of the Co content.

that the spin magnetic moment of the different Co and Ni
atoms does not depend strongly on the location of these atoms
(at the center of a layer or close to an interface) and that
the spin magnetic moment is considerably higher than the
orbital magnetic moment. We can further estimate the magne-
tization of the superlattices neglecting the contribution of the

FIG. 12. (Color online) (a) Density of states (DOS) at the Fermi
level and (b) spin polarization at the Fermi level for Co(n MLs)/Ni(p
MLs) superlattices, as a function of the Co layer thickness and for
several Ni layer thicknesses.
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FIG. 13. Magnetic anisotropy energy per surface unit and per
thickness unit as a function of the magnetization of Co(n MLs)/Ni
(p MLs) superlattices. The values (n,p) are indicated for some of
these superlattices.

orbital magnetic moments. Interface effects on the spin
magnetic moments being small, the calculated magnetization
varies more or less linearly as a function of the relative Co
content, between the value calculated for bulk fcc Ni and that
calculated for bulk fcc Co, as shown in Fig. 11.

These values of the magnetization have been calculated
from the energy integration of the majority- and minority-spin
total DOS, up to the Fermi level. Energy-resolved results are
also interesting for the interpretation of experiments. In partic-
ular, the DOS and spin polarization at the Fermi level are im-
portant parameters which must be known for interpretation of
the transport and magnetotransport experiments and for analy-
sis of the spin-torque effect. Figure 12(a) shows the calculated
DOS at the Fermi level, represented as a function of the Co
layer thickness and for several Ni layer thicknesses. This DOS
increases with the relative Ni content. For a given value of the
relative Ni content, the DOS at the Fermi level also increases
when the density of interfaces decreases: it is, for instance,
higher for Co(4 MLs)/Ni(4 MLs) than for Co(1 ML)/Ni(1
ML). When the thickness of the Co layers becomes high, the
DOS at EF does not depend strongly on the thickness of the Ni
layers. Figure 12(b) shows the spin polarization at the Fermi
level versus the Co and Ni layer thicknesses. It shows the same
kind of variations as the DOS curves described in Fig. 12(a).

VIII. DISCUSSION AND CONCLUSION

The results presented in the previous sections have shown
that most of the Co(n MLs)/Ni(p MLs) superlattices possess a
moderate or weak parallel anisotropy, except for the superlat-
tices Co(2 MLs)/Ni(1 ML), Co(4 MLs)/Ni(1 ML), and Co(3
MLs)/Ni(1 ML), which show a strong parallel anisotropy.
Only four superlattices possess a PMA which is strong for Co(1
ML)/Ni(2 MLs), intermediate for Co(1 ML)/Ni(3 MLs), and
weaker for Co(1 ML)/Ni(4 MLs) and Co(1 ML)/Ni(1 ML).
These superlattices present a wide range of magnetizations,
DOS and spin polarizations at the Fermi level, which can all
be adjusted by changing the relative Co and Ni content and by
choosing the density of Co/Ni interfaces in the multilayers.
All these parameters, and the strength and sign of the magnetic
anisotropy, can be chosen independently in order to optimize
the Co/Ni superlattices used for specific applications in
devices. As an example, we can adjust the Ni content and
interface density to choose, at the same time, the MAE and
the magnetization. This is illustrated in Fig. 13, where Keff

is represented as a function of the magnetization M, for all
the superlattices described above. In this figure, most of the
data Keff(M) can be fitted by a curve with a parabolic shape,
except for the three superlattices which present the strongest
perpendicular anisotropy. Figure 13 shows that, in some cases,
we have access to superlattices with the same magnetization
but different magnetic anisotropies or to superlattices with the
same magnetic anisotropy but different magnetizations.

To summarize, we have presented a wide database which
describes the physical properties of Co(n MLs)/Ni(p MLs) su-
perlattices with an fcc stacking of the (111) atomic layers. We
have given details on the MCAE, the MAE, the magnetization,
the DOS and spin polarization at the Fermi level. This database
could be useful for researchers who want to design magnetic or
spintronic devices containing Co/Ni superlattices for specific
applications or in which the efficiency of the spin-torque effect
could be adjusted.
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TABLE II. Nonvanishing 〈di,ms |ĤSO|di′ ,ms′ 〉 matrix elements.

|z2,+ 1
2 〉 |z2,− 1

2 〉 |yz,+ 1
2 〉 |yz,− 1

2 〉 |xz,+ 1
2 〉 |xz,− 1

2 〉 |xy,+ 1
2 〉 |xy,− 1

2 〉 |x2 − y2,+ 1
2 〉 |x2 − y2,− 1

2 〉

〈z2,+ 1
2 | i

√
3

2 ξh̄2 −
√

3
2 ξh̄2

〈z2,− 1
2 | i

√
3

2 ξh̄2
√

3
2 ξh̄2

〈yz,+ 1
2 | −i

√
3

2 ξh̄2 i 1
2 ξh̄2 − 1

2 ξh̄2 −i 1
2 ξh̄2

〈yz,− 1
2 | −i

√
3

2 ξh̄2 −i 1
2 ξh̄2 1

2 ξh̄2 −i 1
2 ξh̄2

〈xz,+ 1
2 |

√
3

2 ξh̄2 −i 1
2 ξh̄2 i 1

2 ξh̄2 − 1
2 ξh̄2

〈xz,− 1
2 | −

√
3

2 ξh̄2 i 1
2 ξh̄2 i 1

2 ξh̄2 1
2 ξh̄2

〈xy,+ 1
2 | 1

2 ξh̄2 −i 1
2 ξh̄2 iξh̄2

〈xy,− 1
2 | − 1

2 ξh̄2 −i 1
2 ξh̄2 −iξh̄2

〈x2−y2,+ 1
2 | i 1

2 ξh̄2 1
2 ξh̄2 −iξh̄2

〈x2−y2,− 1
2 | i 1

2 ξh̄2 − 1
2 ξh̄2 iξh̄2
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TABLE III. Nonvanishing values of {|〈ĤSO〉|2M//ex
− |〈ĤSO〉|2M//ez

}.

|z2 ↑〉 |z2 ↓〉 |xz ↑〉 |yz ↑〉 |xz ↓〉 |yz ↓〉 |xy ↑〉 |x2 − y2 ↑〉 |xy ↓〉 |x2 − y2 ↓〉

〈z2↑| 3 ξh̄2

2 −3 ξh̄2

2

〈z2↓| −3 ξh̄2

2 3 ξh̄2

2

〈xz↑| − ξh̄2

2
ξh̄2

2
ξh̄2

2 − ξh̄2

2

〈yz↑| 3 ξh̄2

2 −3 ξh̄2

2 − ξh̄2

2
ξh̄2

2
ξh̄2

2 − ξh̄2

2

〈xz↓| ξh̄2

2 − ξh̄2

2 − ξh̄2

2
ξh̄2

2

〈yz↓| −3 ξh̄2

2 3 ξh̄2

2
ξh̄2

2 − ξh̄2

2 − ξh̄2

2
ξh̄2

2

〈xy↑| ξh̄2

2 − ξh̄2

2 −4 ξh̄2

2 4 ξh̄2

2

〈x2 − y2↑| ξh̄2

2 − ξh̄2

2 −4 ξh̄2

2 4 ξh̄2

2

〈xy↓| − ξh̄2

2
ξh̄2

2 4 ξh̄2

2 −4 ξh̄2

2

〈x2 − y2↓| − ξh̄2

2
ξh̄2

2 4 ξh̄2

2 −4 ξh̄2

2

APPENDIX: CORRECTION TO THE GROUND-STATE
ENERGY DUE TO SPIN-ORBIT COUPLING, AS A

FUNCTION OF �ml AND �ms

In this Appendix, we describe how the contribution of a
given virtual transition to the correction of the ground-state
energy can be calculated using the second-order perturbation
theory. This will indicate if the virtual transition promotes
in-plane or out-of-plane anisotropy. We consider only the d

orbitals of a single atom and ignore hybridization. We also
consider that the crystal field (which describes the interface or
the surface perpendicular to the Oz quantization axis) and the
exchange interaction have clearly split the dz2 , dxz, dyz, dxy ,
and dx2−y2 orbitals with spin ↑ and ↓. We wish to calculate
the matrix elements of the spin-orbit-coupling Hamilto-
nian between one occupied and one unoccupied of these
states.

For the orbital quantum number l = 2 (d orbitals), we
must first express the |ml,ms〉 states where ml = 0,±1,±2
and ms = ± 1

2 on the basis of the states |J,MJ 〉 eigenvectors
of the atom central part and spin-orbit-coupling Hamiltonian,
using the Clebsh-Gordan coefficients. The spin-orbit-coupling
Hamiltonian is given by ĤSO = ξ L̂ · Ŝ, where ξ is a spin-orbit-
coupling parameter. L̂ and Ŝ are the angular momentum and
spin operators. Using the total angular momentum Ĵ = L̂ + Ŝ
and the matrix elements of ĤSO between |J,MJ 〉 states, we can
express the matrix elements of ĤSO between |ml,ms〉 states.
The next step consists in writing the d orbitals |di,ms〉 in the
basis of the |ml,ms〉 states as |z2,± 1

2 〉 = |0,± 1
2 〉, |yz,± 1

2 〉 =
i√
2
{|−1,± 1

2 〉+|1,± 1
2 〉}, |xz,± 1

2 〉 = 1√
2
{|−1,± 1

2 〉 − |1,± 1
2 〉},

|xy,± 1
2 〉 = i√

2
{|−2,± 1

2 〉 − |2,± 1
2 〉}, and |x2 − y2,± 1

2 〉 =
1√
2
{|−2,± 1

2 〉+|2,± 1
2 〉}. This allows us to calculate the matrix

elements of the spin-orbit-coupling Hamiltonian between
|di,ms〉 states (see Table II).

In the last step, we express the electron states spin-polarized
in the direction parallel or perpendicular to the Oz axis. To do
this, we use the fact that the average value of the Ŝx , Ŝy , and
Ŝz operators is ± h̄

2 sin θ , 0, and h̄
2 cos θ , respectively, for the

spin state [cos θ
2 |+ 1

2 〉± sin θ
2 |− 1

2 〉]. Consequently, the states
|+ 1

2 〉 and |− 1
2 〉 descibe the ↑ and ↓ spin states polarized along

the Oz axis (this axis being perpendicular to the surface or
interface), while the states 1√

2
{|+ 1

2 〉 + |− 1
2 〉} and 1√

2
{|+ 1

2 〉 −
|− 1

2 〉} correspond, respectively, to the ↑ and ↓ spin states
polarized along Ox (this axis being parallel to the interface or
to the surface).

The |di ↑↓〉 states can further be expressed in terms
of |di,ms〉 states: we get |di ↑〉 = |di,+ 1

2 〉 and |di ↓〉 =
|di,− 1

2 〉 when the spin polarization is along Oz and |di ↑〉 =
1√
2
{|di,+ 1

2 〉 + |di,− 1
2 〉} and |di ↓〉 = 1√

2
{|di,+ 1

2 〉 − |di,− 1
2 〉}

when the spin polarization is along Ox. This can be used
to calculate the matrix elements to the spin-orbit-coupling
Hamiltonian between |di ↑↓〉 states. These matrix elements
will depend on the direction of the spin polarization, along
Oz or along Ox. Table III gives the difference between the
square moduli of these matrix elements calculated for each of
these two directions. Negative terms in this table correspond
to virtual transitions which promote magnetization along Oz

(perpendicular to the interface or surface).
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