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Ultrametric probe of the spin-glass state in a field
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We study the ultrametric structure of phase space of one-dimensional Ising spin glasses with random power-law
interaction in an external random field. Although in zero field the model in both the mean-field and non-mean-field
universality classes shows an ultrametric signature [Phys. Rev. Lett. 102, 037207 (2009)], when a field is applied
ultrametricity seems only present in the mean-field regime. The results for the non-mean-field case in an external
field agree with data for spin glasses studied within the Migdal-Kadanoff approximation. Our results therefore
suggest that the spin-glass state might be fragile to external fields below the upper critical dimension.
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I. INTRODUCTION

Spin glasses1,2 are paradigmatic model systems that find
wide applicability across disciplines. Although studied in-
tensely, our understanding of some of their fundamental
aspects is still in its infancy. In particular, the understanding of
the nature of the spin-glass state remains controversial and
active discussion has emerged recently.3–13 It is unclear if
the mean-field replica symmetry breaking (RSB) picture14 of
Parisi describes the non-mean-field behavior of spin-glasses in
an externally applied field best. While the droplet theory15–18

states that there is no spin-glass state in a field for short-range
systems, the mean-field RSB picture2,14,19,20 states that for
low enough temperatures T and fields H (i.e., below the de
Almeida-Thouless line)21 a stable spin-glass state emerges.
The question lies at the core of theoretical descriptions and
is of immediate importance to applications in research fields
ranging from, for example, sociology to economics where
terms linear in the spin variable can emerge.

One way to settle the applicability of the RSB picture to
short-range spin glasses in a field while avoiding technical
difficulties when measuring observables in a field13 is by
testing12 if the phase space is ultrametric (UM). Unfortunately,
the existence of an UM phase structure for short-range
spin glasses on hypercubic lattices remains elusive,22 mainly
because only small systems can be studied numerically. Recent
results in zero field22 suggest that short-range systems are not
UM, whereas other opinions exist.23–26

More recently12 results on one-dimensional (1D) Ising
models with power-law interactions showed that short-range
spin glasses might be UM after all. Therefore, a natural probe
for the spin-glass state in a field is to study the UM response
of 1D Ising models with power-law interactions when an
external field is applied. The model has the advantage in
that by tuning the exponent of the power law, the universality
class can be tuned between a mean-field and a non-mean-field
regime. In addition, large linear system sizes can be simulated,
which allows for a better finite-size scaling analysis than for
hypercubic lattices.22

Our results show that for this model in a field the phase space
has an UM structure in the mean-field regime. However, in the

non-mean-field regime, when an external field is applied, the
UM structure seems to be much weaker for the studied system
sizes, suggesting that the spin-glass state for short-range
systems is fragile with respect to externally applied fields.
These results are compared to studies of spin glasses within
the Migdal-Kadanoff (MK) approximation.

II. MODEL

The 1D Ising chain with long-range power-law
interactions17,27–29 is described by the Hamiltonian

H = −
∑

i<j

JijSiSj −
∑

i

hiSi ; Jij = c(σ )
εij

rij
σ

, (1)

where Si ∈ {±1} are Ising spins and the sum ranges over all
spins in the system. The L spins are placed on a ring to en-
sure periodic boundary conditions and rij = (L/π ) sin(π |i −
j |/L) is the geometric distance between the spins. εij are
Gaussian random couplings. The constant c(σ ) is chosen29

such that for the mean-field transition temperature T MF
c (σ �

0.5,L,H = 0) = 1. In Eq. (1), the spins couple to site-
dependent random fields hi chosen from a Gaussian distri-
bution with zero mean and standard deviation [h2

i ]1/2
av = H .

The model has a rich phase diagram when the exponent
σ is changed:29 both the universality class and the range
of the interactions can be continuously tuned. In particular,
σ = 0 gives the Sherrington-Kirkpatrick (SK) model,30 whose
solution is the mean-field theory for spin glasses and where a
spin-glass state in a field is expected (i.e., an UM signature for
low enough H and temperatures T ). More importantly,27 for
1/2 < σ < 2/3 the critical behavior is mean-field–like, while
for 2/3 < σ � 1 it is non-mean-field–like.

Here we study in a field H = 0.10 the SK model [σ =
0] to test our analysis protocol, as well as the 1D chain for
σ = 0.60 (also mean-field–like), and σ = 0.75 (Tc ∼ 0.69,
roughly corresponding to four space dimensions) outside the
mean-field regime. We choose two values of σ �= 0 to be able
to discern any trends when the effective dimensionality31 is
reduced. In general deff = (2 − η)/(2σ − 1), where η is the
critical exponent for the short-range model at space dimension
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d = deff . Note that η is zero in the mean-field regime and, for
example, −0.275(25) for d = 4.32

III. NUMERICAL METHOD AND EQUILIBRATION

We generate spin-glass configurations by first equilibrating
the system at low temperatures and an external random field
of standard deviation H = 0.1 using the parallel tempering
Monte Carlo method.33,34 Once the system is equilibrated
we record states ensuring that these are well separated in
the Markov process and thus not correlated. In practice, if
we equilibrate the system for τeq Monte Carlo sweeps, we
generate for each disorder realization 103 states separated by
τeq/10 Monte Carlo sweeps. We test equilibration using the
method presented in Ref. 11. We consider systems sizes up to
L = 512, which is the same maximum size as in the zero-field
case studied previously,12 but numerically much harder than in
the zero-field case because Monte Carlo methods equilibrate
considerably slower in a field. For the parallel tempering
simulations Tmin = 0.36 and Tmax = 1.40 (16 temperatures).
For all values of σ studied, and all system sizes L, we generate
4000 disorder realizations. For L = 32, the equilibration time
is 2 × 104 Monte Carlo sweeps (MCS), for 64, 1.5 × 105 MCS,
for 128, 5 × 105, and for 256 and 512, 106 MCS.

The presented data are for T = 0.36. In Ref. 35 we fixed
T ≈ 0.4Tc for all values of σ studied to ensure that we are
deep in the spin-glass phase. However, it is unclear if one-
dimensional spin glasses with power-law interactions have
a spin-glass state in a field for σ > 2/3.11,13,36 Using the Tc

estimates of Leuzzi et al.13 at zero and finite field (H = 0.1) for
the diluted version of the model we estimate that if a spin-glass
state exists for H = 0.1 it should suppress the zero-field Tc by
approximately 20%. For σ = 0.75 it is known that Tc(H =
0) ≈ 0.69(1).11 Therefore T = 0.36 corresponds roughly to
a 40% reduction of the critical temperature (i.e., deep in the
putative spin-glass phase).

We also study spin glasses within the standard MK
approximation37 (i.e., spin glasses on hierarchical lattices).38

Due to the simple lattice structure, the phase space is also
expected to be simple. In fact, as shown rigorously in Ref. 39,
spin glasses on MK lattices are replica symmetric. We used a
variation of the standard MK recursion where, starting from
one bond, iteratively each bond is replaced by 2d bonds and
2d−1 spins (d = 3). For details, see, for example, Refs. 40
and 41.

IV. ULTRAMETRICITY

Ultrametricity appears in different fields of research ranging
from linguistics to the taxonomy of animal species and is
a key component of Parisi’s mean-field solution of the SK
model.1,14,42 Therefore, if a spin glass has no UM phase-space
structure there is a strong indication that Parisi’s mean-field
picture might not work for this system.

In an UM space43 the triangle inequality dαγ � dαβ + dβγ

is replaced by a stronger condition where dαγ � max{dαβ,dβγ }
(i.e., the two longer distances must be equal and the states lie
on an isosceles triangle). Here, dαβ represents the distance
between two points α and β in phase space.

FIG. 1. Dendrogram obtained by clustering 100 configurations
(see text) for a sample system with σ = 0.0 (Sherrington-Kirkpatrick
model) and L = 512 at T = 0.36, together with the matrix dαβ

(grayscale, distance 0 is black). The order of the states is given by the
leaves of the dendrogram (figure rotated clockwise by 90◦).

We use the approach developed in Ref. 12, which is
closely related to the one used by Hed et al. in Ref. 22. For
each disorder realization we produce M = 103 equilibrium
configurations. These are sorted using the average-linkage ag-
glomerative clustering algorithm.44 The clustering procedure
starts with M clusters containing each exactly one config-
uration. Distances are measured in terms of the Hamming
distance dαβ = (1 − |qαβ |), where qαβ = N−1 ∑

i S
α
i S

β

i is the
spin overlap between configurations {Sα} and {Sβ}. Iteratively
the two closest clusters Ca and Cb are merged into one cluster
Cd , reducing the number of clusters by one. The distances
of the new cluster Cd to the other remaining clusters have to
be calculated: the distance between two clusters is the average
distance between all pairs of members of the clusters. The itera-
tive procedure stops when only one cluster remains, the results
are then typically structured in a treelike structure called a
dendrogram (see Fig. 1). To probe for a putative UM space
structure, we randomly select three configurations from the
hierarchical cluster structure (see Ref. 22), resulting in three
mutual distances. Next, we sort these Hamming distances
dmax � dmed � dmin and compute K = (dmax − dmed)/
(d),
where 
(d) is the width of the distance distribution. If the
phase space is UM, then we expect dmax = dmed for L → ∞.
Thus P (K) → δ(K = 0) for L → ∞ and the for the variance
of the distribution Var(K) → 0 for L → ∞.

V. RESULTS

Figure 2(a) shows the distribution P (K) for the SK model
(σ = 0), T = 0.36, and H = 0.10. There is a slight hint for a
divergence for K → 0. Similar results are found for the mean-
field regime with σ = 0.60 [Fig. 2(b)]. The UM signature in
a field is considerably weaker than when no field is applied.12

While for the SK model there is still a faint sign of a divergence,
for larger values of σ it is hard to see if the distributions diverge
for K → 0 and L → ∞. Figure 2(c) shows data for σ = 0.75,
T = 0.36, and H = 0.10 where no clear sign of a divergence is
present, suggesting that phase space might not be UM outside
the mean-field regime.
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FIG. 2. (Color online) Distribution P (K) for different system
sizes (all panels have the same horizontal and vertical scale) and
an external random field H = 0.1. (a) Data for the SK model.
The distribution diverges very slightly for K → 0 and L → ∞
thus signaling an UM phase structure. (b) Data for σ = 0.60
(mean-field universality class). There is still a weak hint of a
divergence for K → 0. (c) Data for σ = 0.75 (non-mean-field
universality class). There is no clear sign of a divergence in P (K)
for K → 0. Note that when H = 0 data for σ = 0.75 show a clear
signature for UM behavior.12 Error bars are smaller then the symbol
size.
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FIG. 3. (Color online) Variance Var(K) of P (K) as a function
of system size L for different values of σ . The data can be fit to a
power law (dashed lines). In the mean-field regime (SK and σ = 0.6)
a fit to a constant is unlikely (see text). The power-law decay of the
variance as a function of system size suggests a divergence in P (K)
for K → 0. For σ = 0.75 the data are compatible with a constant
(solid line) or a very weak power-law behavior.

Hence, drawing conclusions from the P (K) data is not
sufficient. A better probe is given by the variance Var(K) of
P (K) as a function of system size L (Fig. 3).45 The variance
of the distribution for the SK model clearly decays with
a power law Var(K) ∼ b/Lγ [b = 0.49(4), γ = 0.13(2), Q

factor ∼0.28].46,47 If we restrict the fit to L � 128 we obtain
b = 0.58(7) and γ = 0.16(2) with a Q factor ∼0.487. A fit to
a constant gives Q = 0 if the fit is performed for all data or
restricted to L � 128. A fit to a constant + power-law behavior
Var(K) ∼ a + b/Lγ gives a constant a compatible with zero
and a clear power-law decay. Therefore, and as expected, the
SK model shows an ultrametric phase-space structure for small
externally applied magnetic fields.

Similar results are obtained for σ = 0.60 where a fit to
a power law is very likely with b = 0.395(6), γ = 0.074(3),
and Q = 0.989 [restricted to L � 128 we obtain b = 0.374(1),
γ = 0.064(1), and Q = 0.983]. However, a fit to a constant
gives Q < 10−5 (0.124 restricted to L � 128). We also
attempted a fit to a constant + power-law behavior [i.e.,
Var(K) ∼ a + b/Lγ ]. We obtain a = 0.18(2) > 0 with Q =
0.989. This suggests that we might be at a marginal regime
(i.e., close to the upper critical dimension).

For σ = 0.75 a fit to a very weak power law with b =
0.30(1) and γ = 0.014(6) is found with Q = 0.897. Thus,
the exponent γ is extremely small, only within about two
standard deviations from zero. Correspondingly, a fit to a
constant is equally probable with Q = 0.811. Similar results
are obtained for L � 128 where b = 0.33(2) and γ = 0.028(9)
with Q = 0.811, and Q = 0.766 for a fit to a constant. A fit to
a constant + power-law behavior gives a power-law exponent
consistent with zero within error bars.

Summarizing, either ultrametricity in the non-mean-field
regime is completely lost in a field or greatly weakened,
suggesting a marginal signal for σ = 0.60. Larger systems
would be needed to fully discern the behavior, however they
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FIG. 4. (Color online) Variance Var(K) of P (K) as a function of
system size L for spin glasses on MK lattices. The data are compatible
with a constant behavior, showing that there is no UM phase-space
structure for spin glasses within the MK approximation. The solid
line is a guide to the eye.

are out of reach with current technology. Note that for diluted
systems larger system sizes are possible, but the finite-size
effects are stronger, resulting in no overall benefit.

Within the MK approximation the distributions P (K) also
show no divergence for K → 0. Figure 4 shows the variance of
the distributions as a function of the system size for very large
lattices. There is no discernible decrease with an increasing
number of spins (i.e., no UM structure of phase space). In
fact, a fit to a power-law behavior results in a slope compatible
with zero (i.e., a constant behavior). This is to be expected

because the model is defined on a hierarchical lattice. However,
a direct comparison to the results for σ = 0.75 strengthens the
evidence of a potential non-UM structure for the latter case, in
agreement with recent results.48

VI. SUMMARY AND CONCLUSION

We have studied numerically the low-temperature config-
uration landscape of long-range spin glasses with power-law
interactions. By tuning the exponent σ that governs the decay
of the power-law interactions and therefore their range we can
tune the system out of the mean-filed universality class. Using
a hierarchical clustering method and analyzing the resulting
distance matrices we show that when a field is applied the sys-
tem is only clearly UM in the mean-field regime, unlike in the
zero-field case where an UM signal was found for values of σ

that correspond to space dimensions above and below the upper
critical dimension. Therefore, our results suggest that the spin-
glass state is fragile to an externally applied field below the
upper critical dimension. Larger systems would be needed to
determine if the UM signature for σ = 0.75 (corresponding ap-
proximately to four space dimensions) persists in a field or not.
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