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Highly tunable acoustic metamaterials based on a resonant tubular array
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Recent theoretical studies demonstrated that waves can be steered in any desired fashion by using a suitable
distribution of material parameters. However, the required parameters for acoustic transformations often surpass
the ranges available from the metamaterials developed so far. We introduce a class of acoustic metamaterials based
on standing waves in a tubular array and experimentally demonstrate continuous tuning of the compressibility in
an unprecedentedly wide range from −8 to 6 relative to air at audio frequencies. Potential applications include
the acoustic Luneburg lens and cloaking.
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I. INTRODUCTION

Metamaterials have extended ranges of available consti-
tutive parameters for electromagnetic waves (permittivity ε

and permeability μ) and for acoustic waves (density ρ and
compressibility β) beyond the boundaries of conventional
materials.1–9 Single negative materials of four kinds3,10–13 and
double negative materials for both optics4 and acoustics14

have been realized. However, there still remain important yet
unavailable areas in the Veselago’s ε-μ space and its acoustic
counterpart. The inaccessibility of these areas has impeded
the fabrication of practical working devices of transformation
optics and acoustics. The cloaking of a spherical space is
an example. Despite extensive investigations and worldwide
publicity, a truly working model of an invisibility cloak has
not been reported yet: Strictly speaking, there were only two
reports on experimental results regarding free waves, with one
for microwave8 and another for sound in water.15 But both of
them left out the impedance matching to the external space,
allowing a strong reflection from the shell surface.

Constitutive parameters are changed from those of empty
space by the action of unit-cell elements, which fill the
space usually in the form of arrays. In many cases, two
different kinds of unit-cell elements are used to control a
pair of the constitutive parameters: To make double negative
electromagnetic media, a split-ring resonator and long wires
were used to form a composite structure.4 In this case, the
split-ring resonator was used to change permeability and the
long wire was used for permittivity. A double negative acoustic
metamaterial16 was constructed by combining a Helmholtz
resonator and a thin membrane, which were responsible for
the control of the compressibility and the density, respectively.
In many cases, each of the two elements controls its relevant
parameter in a mutually orthogonal manner. For example, the
shape and dimensions of the Helmholtz resonator affect the
value of β only and the tension of the thin membrane changes
ρ only.16

In transformation optics, the use of metamaterials lies in
the capability of producing a continuous spectrum of positive
parameters rather than negative ones. However, the whole
range of positive parameters cannot be generated by these
unit-cell elements. A split-ring resonator, in principle, is
able to produce relative permeability from −∞ to 1 − F

and from 1 to +∞, but not in the range from 1 − F to
1, where F is the geometrical factor.3 The long wire and
the thin membrane are not capable of creating the relative
permittivity and the density larger than 1.2,3 The Helmholtz
resonator has a forbidden gap in the compressibility from
1 to 1 + F .11

Here we present an acoustic metamaterial which in princi-
ple generates the whole range of compressibility from−∞ to
+∞ without any gap. Experimentally, we demonstrate tuning
of compressibility in a range from −8 to 6 relative to air. The
range is continuous without any gap in the middle and does
not extend to ∞ only because of the dissipation.

II. STRUCTURE AND DYNAMICS

The proposed acoustic metamaterial, schematically shown
in Fig. 1(a), consists of an array of branch tubes attached to a
main duct. The spacing d between the tubes is much smaller
than the wavelength. Each tube is equipped with a slidable
plunger to adjust the length of the air column in the tube.
In each tube, resonances occur at a series of frequencies as
standing waves are formed. It turns out that in the lossless limit,
the compressibility spans continuously from −∞ to ∞ in each
frequency interval between the resonances. Experimentally we
obtained the range from −8 to 6 overming the shortage of the
Helmholtz resonator system.

Previous investigations on acoustic systems17,18 consisting
of arrays of side-attached tubes similar to our structure did
not include the effect of sequential formation of higher-mode
standing waves in the side-attached tubes and overlooked the
important feature we present in this paper. A very recent
study by Garcia-Chocano et al.18 on a structure consisting
of a two-dimensional array of side tubes, for example, did
not extend the focus of the investigation into the frequency
range of the second standing-wave mode. Consequently, they
reported an observation of the compressibility up to only 0.4,
without any indication of overcoming the gap problem of the
array of Helmholtz resonators.

Side-attached Helmholtz resonators change the effective
compressibility because some portion of air in the duct sinks
in or out of the neck of the Helmholtz resonator when pressure
is applied. The effective compressibility starting with 1 + F at
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FIG. 1. (Color online) (a) Acoustic metamaterial exhibiting
continuously tunable compressibility. (b) Experimental setup for
determination of the dispersion relation.

zero frequency increases with frequency to reach the maximum
at the resonance frequency. As the acoustic frequency passes
through the resonance frequency, the phase of the motion
of the air into the neck changes by 180◦ and the effective
compressibility is abruptly dropped to a negative maximum
value, which gradually rises up as the frequency is further
increased to approach 1 asymptotically. As a consequence, the
gap in compressibility from 1 to 1 + F is inevitably formed.
Side-attached tubes have a similar effect on the effective
compressibility of the duct, but a major qualitative difference
comes from the fact that it has many resonance frequencies.
Between two adjacent resonance frequencies, the effective
compressibility changes continuously from −∞ to ∞ in the
lossless limit. As a result, the compressibility gap exhibited by
the Helmholtz resonators disappears.

As sound propagates along the duct, the oscillating pressure
causes the air to move in and out of the branch tubes. When
air in a unit volume V = SDd of the duct experiences a net
expansion �Vnet, the pressure is changed by the amount �p =
−B0�Vnet/V , where SD and B0 are the cross section of the
duct and the bulk modulus of air, respectively. Because of the
motion of air into the tube, the net volume expansion �Vnet

is different from the apparent expansion �V by the volume
displacement �Vtube of air into the tube, i.e., �Vnet = �V −
�Vtube. Consequently, the effective compressibility defined as
βr = B0/Beff = �V/�Vnet can be expressed as

βr = 1 + �Vtube

�Vnet
, (1)

where Beff is the effective bulk modulus.
To analyze the dynamics of air in the tube of length l

with one end being closed, we consider Newton’s equation
and the wave equation for a displacement of air, ξ (x,t), as

follows:

∂p
T

∂x
+ ρ

T

∂2ξ

∂t2
= 0, (2)

∂2ξ

∂x2
− k2

T

ω2

∂2ξ

∂t2
= 0, (3)

where p
T
, ρ

T
, and k

T
are the pressure, the density, and the

wave number in the tube, respectively. By imposing a boundary
condition at the close end, ξ (0,t) = 0, it is straightforward to
obtain

ξ (x,t)

p
T
(x,t)

= − k
T

ρ
T
ω2

tan k
T
x. (4)

While the pressure at the open end of the tube is equal to
that of the duct, i.e., p

T
(l,t) = −B0�Vnet/V , the volume

displacement of air in the tube, �Vtube = S
T
ξ (l,t), becomes

�Vtube = �Vnet
S

T
c0

ωV
tan

ωl

c0
, (5)

where S
T

is the cross-sectional area of the tube and c0 =
ω/k

T
is the speed of sound in the air. Notably the volume

displacement of air into the tube can be divergently larger than
the net volume change �Vnet. The effective compressibility in
Eq. (1) is then rewritten as

βr = 1 + S
T
c0

ωV
tan

ωl

c0
. (6)

This relation can also be derived independently using the
well-established electrical transmission line analogy.16,19,20

The equivalent electrical transmission line consists of an array
of unit circuits, as shown in Fig. 1(a). The series inductor L0

and the shunt capacitor C0 represent the duct, whereas the
shunt impedance Z

T
represents the branch tube. The input

impedance of a tube with a rigid termination is given by
Z

T
= −iZ0 cot k

T
l, where Z0 is the characteristic impedance

of the tube.21

III. EXPERIMENTAL RESULTS

We derived Eq. (6) from the dynamics of a single cell.
Clearly the characteristic periodicity in the frequency space
stems not from the periodicity d of the tube array but from the
resonant nature of each branch tube of length l. In other words,
Eq. (6) still applies even when the tubular array is randomly
spaced, as long as the average spacing remains d. When d is
changed with fixed l, only the slope of each curve is changed.
Stop bands with lower frequency edges occur periodically and
the period is determined by l, independent of d: the spacing d

affects only the width of each stop band. Similar results were
reported by J. O. Vasseur et al.22 for an electromagnetic comb
structure.

Experimentally, we measured the dispersion relation, which
can be expressed in terms of compressibility as

ω = c0k/
√

βr . (7)

To measure the dispersion relation more precisely, instead of
measuring wavelengths of traveling waves, we allowed total
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FIG. 2. (Color online) (a) Experimental dispersion-relation data and theoretical curves from Eq. (7). (b) Experimental data of effective
compressibility agree well with the theoretical curve from Eq. (6).

reflections of the waves at the ends of the duct so that standing
waves were formed in the duct at a series of frequencies. Note
that these standing waves are the result of the superposition
of oppositely propagating waves along the metamaterial and
have nothing to do with the standing waves in the branch
tubes. The dispersion relation was determined using the setup
shown in Fig. 1(b). Both ends of the duct were closed and
acoustic energy was supplied by the loudspeaker located at
one of the ends. The amplitude and phase of the pressure were
detected by three miniature microphones as in Fig. 1(b). Using
the microphone 2, by detecting signal intensity as frequency
was swept, the formation of standing waves in the duct was
clearly observed in a series of resonance frequencies. The wave
numbers k of the resonant waves are multiples of π/L, where L

is the full length of the duct. By assigning these series of wave
numbers to the measured resonance frequencies, we obtained
the dispersion-relation data shown in Fig. 2(a). Theory and
experiment agree well. For each branch, we were able to obtain
the data only up to certain values of wave numbers due to
dissipation.

Noticeably lower frequency edges of the stop bands occur
periodically: In each stop band, we observed that the sound
did not propagate but became evanescent along the duct. The
decay constant κ of the evanescent wave was determined
from the ratio of amplitude (A1) at the microphone 1 to
that (A3) at microphone 3. The decay constant was obtained
from κ = (1/�z) ln(A1/A3), where �z is the distance between
microphones 1 and 3. �z was typically about 100 mm. Since
wave numbers were imaginary, k = iκ , the corresponding
compressibilities βr = c2

0k
2/ω2 were negative.

Experimental compressibility data, both positive and neg-
ative, are plotted together with the theoretical curve from
Eq. (6) as a function of frequency in Fig. 2(b) using the pa-

rameters S
T

= 314 mm2, v
T

= 340 m/s, V = 24 500 mm3, l =
235 mm, and L = 1500 mm. These values correspond to the
experimental setup. The experimental data agree excellently
with the theoretical curve. Due to the different experimental
errors for pass band and stop band, the apparent experimental
data do not meet smoothly at zero compressibility. The
widest compressibility span obtainable from the system was
limited by the dissipation and this limitation becomes worse at
higher-order resonances, as can be seen in Fig. 2(b). Clearly,
it is best to choose the frequency interval between the first and
second resonances.

For a fixed frequency, the compressibility can be tuned by
sliding the plungers. The tan(ωl/c0) term in Eq. (6) diverges
at the lengths satisfying ωl/c0 = π/2,3π/2,5π/2, . . . , or
whenever the length l becomes odd-integer multiples of
λ

T
/4. Figure 3(a) shows experimental data and the theoretical

curve of Eq. (6) for the compressibility at an arbitrary fixed
frequency of 550 Hz (corresponding to λ

T
= 618 mm) as a

function of l. Our experimental data again agree very well
with the theoretical values. When 0 < l < 0.25λ

T
, βr of our

new metamaterial covers from 1 to 7.5. This range is enough
to support devices such as the Luneburg and the Maxwell’s
fish-eye lenses.23,24 On the other hand, when 0.25λ

T
< l <

0.75λ
T
, we observed the compressibility spanning over the

unprecedentedly wide range from −8.4 to 6.1 without any
gap.

To demonstrate the potential applications of our new
metamaterial, we constructed a profile of the tube lengths
using the slidable plungers so as to create a linear distribution
of compressibility along the duct, βr (z), theoretically from
−6 to 6. The experimental data also follow the theoretical
curve starting from βr = −6 at one end, passing through
zero in the middle, and continuously increasing to 6 at the
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FIG. 3. (Color online) (a) Theoretical curves and the experimental
data for the effective compressibility of the duct as a function of the
tube length l. The theoretical curves diverge at odd multiples of
quarter wavelength (λT /4) because of the term tan ωl/c0 in Eq. (6).
(b) A linear compressibility distribution was realized by constructing
the tube length profile l(z), as marked with the solid circles.

other end, as shown in Fig. 3(b). These data were obtained
by measuring a phase change �φ to the position change of
detectors �z to evaluate the wave number k = �φ/�z. The
direct measurement of the phase resulted in a much bigger
error than the data in Fig. 3(a) and interference arising from
partial reflection from both ends generated some wiggles.
Nevertheless, the data follow the intended linear distribution
reasonably well. It is noted that this linear distribution of
the compressibility ranging from negative to positive values
is extremely difficult to achieve in any other metamaterials
developed so far.

As mentioned above, we experimentally confirmed that the
effective density of the air in our metamaterial is not affected
by the presence of the branch tubes, measuring the com-
plex reflection coefficient R at the normal-tube/metamaterial
boundary. The characteristic impedance Z of the metamaterial
was obtained from the relation

Z

Z0
= 1 + R

1 − R
. (8)

Table I lists the resulting experimental values of Z/Z0 for the
side tube lengths l of 185, 309, and 433 mm, respectively, at
550 Hz. The wave numbers k are also listed. The effective
density ρeff is obtained by ρeff/ρ0 = (Z/Z0)(k/ω)c0. While

TABLE I. Experimental data for the characteristic impedances,
wave numbers, densities, and compressibilities.

toprule l(mm) 185 309 433

Z/Z0 0.121 + 0.480i 0.986 0.471 + 0.047i

k(/m) 18.73i 10.37 21.84
ρeff/ρ0 0.91 ±10% 1.01±5% 1.02±5%
βr −3.40 1.04 4.62

the compressibilities −3.4, 1.0, and 4.6, respectively, at these
lengths are significantly different from each other, the effective
densities remain equal to that of the normal air within the
experimental error. The relatively larger experimental error for
the l = 185 mm case, where the compressibility is negative,
is due to the imprecision in the experimental determination of
decay constant κ .

IV. CONCLUSIONS

It is important to note that the present structure is the
first metamaterial without an inaccessible parameter gap
occurring near 1 because the compressibility gap from 1
to 1 + F in the Helmholtz resonator system is not unique:
The electromagnetic metamaterial consisting of split-ring
resonators3 has a permeability gap in the range from 1 − F to
1. The array of long wires2 cannot make permittivity larger than
1. The array of I-shaped conductors25 has the permittivity gap
in the range from 1 to 1 + F . Even the acoustic metamaterial
consisting of an array of membranes13 is not able to generate
density in the range from 1 to ∞. Our work will provide a
prototype for solving all of these gap problems.

Here, we performed experiments in air at audible frequen-
cies, but as the dimensions are scaled down, our structure can
be used for ultrasonic applications. Also, as water can be used
instead of air, the wide-range tunability can be extended to
underwater acoustics.

Most of the phenomena and devices for acoustic waves have
their counterparts for electromagnetic waves. The Luneburg
lenses for electromagnetic waves, for example, also need the
same index distribution pattern from 1.41 to 1.23,24 The ideas
for many of the acoustic metamaterials, in fact, came from the
electromagnetic counterparts developed previously. We expect
that a reverse flow of ideas from acoustic metamaterials to
electromagnetic metamaterials may also happen. Our work has
the potential to be extended to electromagnetic waves since the
electromagnetic counterpart for acoustic tubes exists: the wave
guides.
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