
PHYSICAL REVIEW B 86, 184203 (2012)

Alloy microstructures with atomic size effects: A Monte Carlo study under
the lattice statics formalism
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We present in this paper atomic scale Monte Carlo simulations of microstructure evolutions in the presence of
atomic size mismatch, performed on a rigid lattice. The lattice statics formalism is used to obtain effective pair
interactions (EPIs) from a continuous empirical description of alloy energetics that includes elastic relaxations
in the harmonic approximation. These EPIs are long-ranged and are introduced in a Monte Carlo scheme to
compute alloy properties. The influence of atomic size mismatch on EPIs as well as on microstructure evolutions
is investigated in the case of a model binary fcc alloy. The microstructure evolution with atomic size mismatch
operates mainly by shape changes and by the development of spatial correlations between precipitates. Our aim
is also to provide a method to include elastic effects at the atomic scale starting from material macroscopic data,
without any requirement of realistic continuous interatomic potential calibration. A commonly found approach
in microscopic mean-field simulations is to use, at the atomic scale, effective elastic interactions inherited
from continuum linear elasticity. We derive here a different and original method: the discrete lattice approach
(DLA) that both converges to the continuum theory of elasticity (long-range aspect) and takes into account the
discreteness of the lattice. It allows us to correctly reproduce the whole range of elastic interactions, down to the
atomic scale, successfully improving the simple use of continuum elasticity, without the prior knowledge of any
interatomic potential. Finally, the accuracy of the DLA is quantitatively verified through a detailed comparison
between the microstructural evolutions obtained with this approach and the original lattice statics approach.
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I. INTRODUCTION

Macroscopic properties of metallic alloys are strongly
related to the spatial organization of the different stable
phases. When atomic radii of the alloy components differ,
particular coherent microstructure morphologies are found,
such as specific shapes and spatial alignments of precipitates.
This atomic size effect is responsible for coherency stress
that induces long-range elastic interactions. In the scope of
a good understanding of microstructure formation, particular
attention has to be paid to the role of these elastic effects.

Mesoscopic scale studies, using continuum theory of
elasticity1 coupled with continuous methods (such as phase
field) have been successfully applied to explain elastic-
ity related physical problems. One can mention, without
being exhaustive, the directional coarsening phenomenon,2

chessboard-like microstructure formation3 or cuboidal pre-
cipitates that form ordered arrays.2 However, this continuous
description suffers from important limitations at small scale
when effects due to the discreteness of the underlying lattice
cannot be ignored. Indeed, interfaces are diffuse in phase
field methods, whereas in most experimental situations, sharp
interfaces are observed. Early stages of precipitation cannot
be reached either, because subcritical fluctuations as well as
critical nucleus often involve very small length scales. An
atomic scale treatment of elasticity is then required for a correct
description of such phenomena.

The lattice statics formalism4,5 (LS), which consists namely
in relaxing the elastic degrees of freedom within a rigid lattice
framework, leads to an approach where the time scale is only
controlled by atomic jumps. Approaches that deal with similar
working hypothesis can be found in the literature.6 This point
is of great interest since the characteristic time scale becomes
the diffusion time scale. By combining the LS formalism with

Monte Carlo simulations, large systems (several millions of
atoms) can therefore be simulated; microstructure formations,
partly driven by coherent elasticity, are then accessible at the
atomic scale.

In this work, after a brief presentation of the LS formalism,
we calculate elastic interactions for a model binary fcc alloy
exhibiting a miscibility gap at low temperature. This very
simple system highlights the main features of elastic discrete
interactions. Special attention is then devoted to the long-
wavelength limit of the LS and its link with continuum linear
elasticity. We then discuss two different techniques to calibrate
discrete elastic interactions on macroscopic quantities. In
particular, we propose a method that determines coherency-
induced elastic interactions using the single knowledge of
a few macroscopic quantities, namely, elastic constants and
stress-free eigenstrain. We show that this approach leads to
elastic interactions very similar to the ones derived within
the LS formalism, down to the atomic scale, but with the
important advantage that the implementation of the method
does not require the preliminary knowledge of a continuous
interatomic potential.

Finally, microstructure calculations are performed. We
investigate the influence of atomic size mismatch on mi-
crostructure morphology at the atomic scale and compare the
different treatments of discrete elasticity on microstructure
simulations.

II. ATOMIC TREATMENT OF ELASTICITY

A. Lattice statics approach

We consider a binary (A-B) alloy, where c̄ is the average
concentration in B atoms, and with a Bravais lattice with one
atom per cell. The alloy energy E({Rn,cn}) can be written as
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a function of the atomic positions Rn and the occupation site
variables cn (cn = 1 if there is a B atom at Rn and 0 otherwise).
In the case of a small atomic size effect, the microstructure
stays coherent and it is relevant to define a homogeneous
reference state around which internal energy can be expanded
to a limited range.

This state can be chosen in a number of ways;7 a convenient
one is a homogeneous solid solution with cn = c̄ at each site n

and with a lattice parameter which minimizes the total energy
E({Rn,c̄}).

The lattice statics analysis is based on a second-order
expansion of the total energy around this reference state.
This requires an identification of small quantities such as
concentration variations δcn = cn − c̄, displacements δun,
and average strain ε̄ij . These latter terms correspond to the
development of the total atomic displacements un in the
following form:

ui
n = ε̄ijR

0j
n + δui

n, (1)

where R0
n are the atomic positions in the reference state and

the total displacements un = Rn − R0
n are expressed with

respect to the reference state. Sums over repeated Cartesian
indices are implicit. If we neglect the vibrational component
of the equilibrium state, the lattice statics analysis consists
in imposing mechanical equilibrium on δun. To do so, and
without lost of generality concerning the identification of
the role of δun, we may impose ε̄ij = 0 (i.e., un = 0 at the
boundaries of the system, or periodic boundary conditions on
un) and

∑
n δcn = 0. This makes the first-order terms vanish

in the expansion. When limited to the second order, the energy
becomes

ELS = E0 + 1

2

∑
n,m

[
θnmδcnδcm + 2ψi

mnδcnδu
i
m

+φij
nmδui

nδu
j
m

]
, (2)

where E0 is the reference state energy. The chemical interac-
tions θnm, the components ψi

nm of the Kanzaki forces, and the
force-constant matrix φ

ij
nm are defined by

θnm = ∂2E

∂cn∂cm

∣∣∣∣
R0,c̄

, ψi
nm = ∂2E

∂ui
n∂cm

∣∣∣∣
R0,c̄

,

(3)

φij
nm = ∂2E

∂ui
n∂u

j
m

∣∣∣∣
R0,c̄

.

Note that derivatives with respect to δcn and δui
n are identical to

those with respect to cn and ui
n, respectively. Besides, because

of the symmetry properties of the lattice, the second derivatives
obey the following rules:

θnm = θmn, ψi
mn = − ψi

nm,

φij
nm = φij

mn = φji
mn,

(4)∑
m

φij
nm = 0,

∑
m

ψi
mn = 0.

The system is supposed to be at the local elastic equilibrium,
which is justified in the context of diffusive solid-state
transformations. Static displacements are then obtained by
solving the set of equations ∂E

∂ui
n

= 0. Using periodic boundary

conditions, the resolution leads to

ui(q) = − (φ−1)ij
∗
(q) ψj (q)δc(q) , ∀q �= 0, (5)

where f ∗(q) is the complex conjugate of f (q) and the Fourier
transforms are defined by

f (q) =
∑

n

fn e−iq·Rn . (6)

The q vector is limited to the first Brillouin zone of the
structure. The static displacements are then inserted into
Eq. (2) and an Ising-like expression is obtained for the energy:

E = E0 + 1

2N

∑
q �=0

V (q)|δc(q)|2

= E0 + 1

2

∑
n,m

Vnmδcnδcm, (7)

where N is the number of atoms. The Vnm terms are called
effective pair interactions (EPIs). Their Fourier transform V (q)
contains two distinct contributions:

V (q) = θ (q) + J (q), (8)

where θ (q) is the Fourier transform of the chemical interactions
θnm given in Eq. (3) and where J (q), the Fourier transform of
the strain-induced pair interactions Jnm, is given by

J (q) = −ψi(q) (φ−1)ij (q) ψj∗
(q). (9)

J (q) differs from zero only if there is an atomic size effect
between the alloy components.

The main interest of the lattice statics formalism is that,
within this approach, the alloy energy is only a function
of compositional variables. Extensions to multicomponent
alloys,8 to lattices with several atoms per unit cell,9 and to
interstitial solid solutions1 are straightforward in principle.
An important outcome of this method is to provide an
energetic model to compute alloy properties within efficient
discrete statistical tools (Monte Carlo methods, mean-field
approximation,...). Free energy contribution due to deviations
around the lattice Statics equilibrium could be incorporated
within the quasiharmonic approach.7

B. Effective pair interactions

Lattice statics method implementation requires the compu-
tation of the various second derivatives of a given continuous
interatomic potential, parametrized on a specific alloy. Details
of the implementation within the context of pair potentials,7,10

the embedded atom method (EAM),7,11 and all-electron
methods12 are given in the literature.

As explained in the Introduction, one of the aims of our
paper is to analyze the major trends of atomic size mismatch
on microstructural evolutions at the atomic scale. Therefore,
for the sake of simplicity, we have chosen a Lennard-Jones
potential to simulate a phase segregation, which is very flexible
in comparison with more realistic potentials in terms of control
of the competition between chemical and elastic effects. We
use the following form:

UXY (Rnm) = 4 εXY

[(
σXY

Rnm

)12

−
(

σXY

Rnm

)6]
, (10)

where X and Y stand for A or B.
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TABLE I. Lennard-Jones parameters ε and σ for a phase
segregation (Ref. 13) for different values of 
a/a.


a/a AA AB BB

ε (meV) 180 153 146
σ (Å) 0% 2.3331 2.3331 2.3331
σ (Å) 4% 2.3331 2.3807 2.4283
σ (Å) 6% 2.3331 2.4052 2.4774
σ (Å) 10% 2.3331 2.4559 2.5787

The amplitude of elastic effects is controlled via the quantity

a/a, corresponding to the lattice parameter difference
between the pure A and B fcc phases. The following procedure
is used to determine the potential parameters (for details see
Ref. 13). We start with an alloy without atomic size mismatch:

a/a = 0%. In this case, σAA, σAB , and σBB are equal and
adjusted to reproduce a particular lattice parameter (0.361 5 nm
here). The values of εαα (α = A or B) are chosen to reproduce
two given melting temperatures (1400 and 1155 K). Then,
εAB is fixed to ensure a phase separation at low temperature
(εAA + εBB − 2εAB � 0). The value of 
a/a is adjusted
through σBB , with σAA being kept constant. Then, σAB is fixed
to half the sum of σAA and σBB . The other potential parameters
are not modified. With such a procedure, the minimum value
of each interaction potential remains unchanged when 
a/a is
varied. Detailed expressions of the second derivatives for a pair

potential are given in Appendix A. The parameters obtained
by this procedure, when interactions are limited to the fifth
nearest neighbors, are given in Table I for different values of

a/a.

We discuss now the behaviors of the chemical and elastic
contributions of the EPIs for different size mismatches. First
we emphasize that the interactions introduced above, referred
to as chemical or elastic, are not intrinsic in nature. They
depend on the reference state introduced above and around
which a second-order expansion is performed. Therefore,
when the size effect parameter 
a/a is changed, both the
elastic and chemical interactions change.

In Fig. 1, calculated values of EPIs are plotted as a function
of the neighbor shell in real space for c̄ = 0.10 and 
a

a
= 0%,

4%, 6%, and 10%. Without atomic size mismatch, the elastic
interactions vanish and the chemical interactions lead to a
phase segregation. When 
a

a
�= 0, the elastic interactions

become finite and their magnitude increases with the size
mismatch. Besides, chemical interactions are seen to decay
rapidly with distance, whereas elastic interactions decay very
slowly. This long-range aspect of the EPIs due to the elastic
interactions has been previously underlined in different studies
at the atomic scale.7,14–18

In addition to the long-range behavior of the EPIs, elastic
interactions may play a major role at short distances and
therefore control the nature of the phase transition. When

a
a

= 4%, the first neighbor elastic interaction contributes to
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FIG. 1. Calculated values of the effective pair interactions V (R), chemical interactions θ (R), and elastic interactions J (R) for c̄ = 0.10
and 
a

a
= 0%, 4%, 6%, and 10%. The horizontal axis represents neighbor shells.
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FIG. 2. Quantity R3 × J (R) as a function of the atomic distance
R for three different crystallographic directions: (100), (110), and
(111), for 
a

a
= 6% and c̄ = 0.10.

one third of the total effective interactions. For 
a
a

= 6%, we
note that the physical behavior of the system (phase separation
again) is mostly controlled by the elastic contribution. This
means that short-range elasticity can be essential for alloy
thermodynamics, chemical and elastic contributions being
eventually competitive (see, for example, 
a

a
= 10% in Fig. 1).

These features were also observed for EPIs calculated from
EAM alloy energy7 and with an second moment approximation
- tight binding ising model (SMA-TBIM) approach14 in the
case of a Cu-Ag alloy. In brief, if the second-order expansion
used above were limited to the chemical fluctuations δcn, the
induced effective Hamiltonian could lead to a thermodynamic
equilibrium which is only approximatively reproduced, or even
qualitatively wrong.

Finally, in order to characterize the crossover between the
short-range and the long-range behaviors of elastic interac-
tions, we display in Fig. 2 the quantity R3 × J (R) as a function
of the distance R for 
a

a
= 6%. For large distances, the discrete

interactions recover the 1
R3 decrease of the long-range elastic

interactions, as expected within the continuum linear elasticity
theory.4,7 However, this regime is reached only for distances
larger than about 10ā. Therefore, the specific role of the
long-range interactions on the microstructure evolutions (large
spatial correlations and precipitate shapes) requires the use
of a very large cutoff on the discrete real-space interactions.
As discussed below, this necessitates an efficient numerical
algorithm. Also, for smaller ranges, elastic interactions sig-
nificantly deviate from their 1/R3 continuum linear elasticity
behavior and, below 4ā, the interaction anisotropy itself is
qualitatively changed.

As a conclusion, we emphasize that a correct description
of microstructure evolutions at small time and space scales
requires an atomic scale approach, such as the one provided by
the lattice statics formalism, when a size mismatch is present.

III. MICROELASTICITY MODEL FROM MACROSCOPIC
DATA

As explained above, when dealing with a specific alloy,
the calibration of a realistic continuous interatomic potential
can be necessary. Often this procedure is based on the

fitting of relevant physical quantities (lattice parameters,
elastic constants, cohesion energy, interface energy, etc.).
This preliminary step is known to be particularly fastidious.
Therefore it is highly desirable to develop a methodology
to obtain elastic interactions directly from the macroscopic
properties of the material of interest.

With this aim, we first recall1,5,19 the link between the
dynamical matrix and Kanzaki forces with elastic constants
and an eigenstrain tensor. We then examine two different ways
to obtain elastic interactions at the atomic scale. Finally, the
two methods are compared numerically in the case of the
model alloy already mentioned.

A. Link between discrete and continuous
approaches of elasticity

First of all, the connection of the Kanzaki forces and
dynamical matrix with the macroscopic features of the material
needs to be established. The case of the dynamical matrix
is well known19,20 and involves the elastic constants of the
reference state:

λ
R0,c̄
iklj + λ

R0,c̄
ilkj = − 1

v0

∑
n

φ
ij

0n R0k
n R0l

n , (11)

where translational invariance has been used and v0 is the
volume of the atomic cell. The notation {R0,c̄} refers to a
homogeneous state with an average lattice R0, which is chosen
in order to minimize E0(R,c̄) upon R. Using Eq. (11), the
long-wavelength limit of the dynamical matrix is

φij (q → 0) � v0 λ
R0,c̄
ikj l qkql = v0G

−1
ij ∀ i,j, (12)

where Gij (q) is, by definition, the continuous Green’s function
of the reference homogeneous state.

For Kanzaki forces, we start by expanding them up to the
second order around q = 0:

ψi(q) = −i qj
∑

n

ψi
0n R0j

n + o(q2). (13)

Kanzaki forces are the microscopic response to local con-
centration changes. Therefore, the identification of their link
with macroscopic quantities requires the analysis of the stress
or strain as a function of a given concentration change. A
simple way is to compute the stress-free deformation of
a homogeneous system when the average concentration is
modified. We introduce an arbitrary inhomogeneous alloy
{R′,c̄′} with an average concentration c̄′:

R′i
n = R0i

n + ε̄ijR
0j
n + δui

n, c′
n = cn + δcn. (14)

By imposing δui
n = 0 at the boundaries or periodic boundary

conditions on δui
n, ε̄ij refers to the macroscopic deformation

and δui
n are the local displacements. The energy of any alloy is

then expanded up to the second order upon the reference state
{R0,c̄}:

E = E(R0,c̄) + Ech

+
∑

n

∂2E

∂ε̄ij ∂cn

∣∣∣∣
R0,c̄

δcnε̄ij + 1

2

∂2E

∂ε̄ij ∂ε̄kl

∣∣∣∣
R0,c̄

ε̄ij ε̄kl

+
∑
n,m

ψi
nmδcnδu

i
m + 1

2

∑
n,m

φij
nmδui

nδu
j
m, (15)

where Ech is the chemical part.

184203-4



ALLOY MICROSTRUCTURES WITH ATOMIC SIZE . . . PHYSICAL REVIEW B 86, 184203 (2012)

First order and crossed terms vanish due to the symmetry
properties of the lattice. Elastic relaxation is given by solving
the sets of equations ∂E

∂ε̄ik
= 0 (homogeneous relaxation) and

∂E
∂δui

n
= 0 (local relaxation). Let us consider the homogeneous

relaxation only:

∂E

∂ε̄ij

= ∂2E

∂ε̄ij ∂ε̄kl

∣∣∣∣
R0,c̄

ε̄kl +
∑

n

∂2E

∂ε̄ij ∂cn

∣∣∣∣
R0,c̄

δcn

= Nv0λ
R0,c̄
ijkl ε̄kl +

∑
n,m

ψi
nmR0j

m δcn = 0. (16)

The components of the Kanzaki forces ψi
nm, defined in Eq. (3),

do not depend on the alloy configuration, so they can be
evaluated in a particular case. Let us assume that for all sites
n, δcn = δ̄c. To the lowest order, the average strain tensor ε̄ij

is linked to δ̄c by

ε̄ij = ε0
ij δ̄c, (17)

where ε0
ij has the symmetry of the reference state. In the simple

case of a phase separation and cubic symmetry ε0
ij = ε0 δij ,

where ε0 = 1
ā(c̄)

dā
dc

|R0,c̄ is the Vegard coefficient. In the general

case of an ordering system that displays different variants, ε0
ij

would be an appropriate average of the eigenstrain tensors
associated with each variant. Finally, taking into account
translational invariance, Eq. (16) becomes∑

m

ψi
0mR0j

m = −v0 λ
R0,c̄
ijkl ε0

kl . (18)

This equation establishes a general link between the
macroscopic quantity ε0

kl and the atomic scale Kanzaki forces.

B. Elastic interactions from macroscopic data

In this section we examine two different ways to estimate
microscopic elastic interactions directly from the value of
macroscopic quantities.

The first method is simply based on the long-wavelength
limit of the elastic interactions and has already been used to
introduce elastic effects in the case of microscopic Mean-Field
simulations.21,22 Using Eq. (13), we obtain the following for
q → 0:

JLS(q) ∼ −qk
∑

n

ψi
0nR

0k
n (φ−1)ij (q)

∑
m

ψ
j

0mR0l
mql, (19)

where JLS(q) refers to the elastic interactions obtained from
an LS development. Here, the long-wavelength relations
Eqs. (12) and (18) are inserted into Eq. (19) and, for q �= 0,
the discrete interactions can be formally written as

JLS(q) ∼ −v0 qkσ 0
kiG

ij (q)σ 0
j lq

l = v0 B(q), (20)

where σ 0
ij = λ

R0,c̄
ijkl ε0

kl . The quantities B(q) are the usual
Fourier transforms of elastic interactions that emerge within
a homogeneous continuum elastic theory1 when the average
strain around the reference state is zero (see Sec. II A). The
continuous interactions only depend on the direction of the q
vector and their evaluation solely requires the knowledge of the
elastic constants of the reference state and the eigenstrain ε0

ij

between the involved phases. Taking directly the continuous
interactions B(q) and using them through Eq. (20) at the

atomic scale constitutes a first method to obtain elastic
interactions from macroscopic data. We call this method the
continuum limit approach (CLA) and note JCLA(q) = v0 B(q),
the corresponding elastic interactions.

Even though the CLA provides correct elastic interactions
at long range, it is bound to fail at short distances because is
does not incorporate the discreteness of the lattice. Therefore
we propose another scheme that still relies on Eqs. (11) and
(18) but is based on a discrete atomic potential whose Kanzaki
forces and dynamical matrix can be fitted on macroscopic
elastic properties. As Kanzaki forces and the dynamical matrix
are usually short ranged, we impose a cutting radius on these
quantities. If this cutoff is short enough, the new quantities ̃i

0n

and �̃
ij

0n can be identified using only macroscopic parameters
through Eqs. (11) and (18). In the following we detail the case
of an isotropic pair potential, which is used for the numerical
simulations.

With an isotropic pair potential, the quantities nm and �nm

adopt, for Rn �= 0, the following forms:

φ̃
ij

0n = −α
(
R0

n

)
δij + β

(
R0

n

)R0i
n R

0j
n

R0
n

2 , (21)

ψ̃ i
0n = δ

(
R0

n

)R0i
n

R0
n

, (22)

where R0
n is the norm of the vector R0

n. The parameters α(R0
n),

β(R0
n), and γ (R0

n) are identified through Eqs. (11) and (18),
and with the symmetry relation

∑
n φ̃

ij

0n = 0. More precisely,
for each N -coordination shell, three parameters αN , βN , and
γN have to be determined. The number of coordination shells
to be considered needs to be large enough to reproduce all the
elastic moduli of the material and the eigenstrain. The case of
the fcc lattice is detailed in Appendix B. The quantities ̃i

0n

and �̃
ij

0n are then suitable to compute another set of elastic
interactions, here called JDLA(q). In the following, we refer to
this method as the discrete lattice approach (DLA).

By construction, as they both rely on the long-wavelength
limit q → 0, the CLA and DLA provide the same correct
long-distance elastic interactions. However, contrary to the
CLA, the DLA, which incorporates the discrete nature of the
lattice, is expected to give a more reliable description at short
distances, as confirmed below.

C. Comparison of elastic interactions

In this section, a numerical comparison of the LS inter-
actions JLS with the CLA interactions JCLA and the DLA
interactions JDLA is proposed, using a Lennard-Jones pair
potential. The potential parameters used are listed in Table II.

TABLE II. Lennard-Jones potential parameters ε and σ used for
elastic interaction calculation. The atomic size effect is 6%, and a

designates the lattice parameter of the fcc structure.

AA AB BB

ε (meV) 180 153 146
σ (Å) 2.3331 2.4052 2.4774
a (Å) 3.6153 3.8390
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FIG. 3. Fourier transforms of elastic interactions JLS(q) for 
a

a
=

6% and c̄ = 0.06 along (100), (110), and (111) directions of the
reciprocal space. JLS(q) is defined in the first Brillouin zone. The
three curves end at the special points.

In the real space, the range of the Lennard-Jones potential is
limited to the fifth neighbors. The atomic size effect between
the pure components is fixed at 6%. The elastic constants
for the reference state at concentration c̄ = 0.06 are C11 =
215 GPa, C12 = C44 = 122 GPa. The lattice parameter is ā =
3.630 2 Å, and the eigenstrain tensor at this concentration is
ε0
ij = 0.068 0 δij . A common approximation that can be found

in the literature22,23 is to assume that the lattice parameter
varies linearly with concentration over the whole composition
range. In our case this linear behavior is rather well followed
and leads to an error on the equilibrium lattice parameter lower
than 0.05% at c̄ = 0.06. However the value of the eigenstrain
ε0
ij (c̄) is much more sensitive to the precise shape of the

ā(c̄) curve. Assuming a strictly linear behavior of the lattice
parameter leads to a relative error of 9.5%. Such an error would
induce a more than 18% error on the long-wavelength limit of
the elastic interactions.

We first examine the calculated values of the JLS(q),
represented in Fig. 3, along specific directions of the reciprocal
space. We first note that JLS(q) is equal to zero at special points,
as expected (see Ref. 7). When looking at the overall behavior
of JLS(q), we see that its value depends both on the norm
and the direction of the q vector. The directional dependence
is reminiscent of anisotropic elasticity. The dependence with
respect to the norm indicates that the short-range elastic
interactions do not scale with the long-range ones. The latter
are embedded in the norm-independent long-wavelength limit
q → 0 of JLS(q).

We now compare the CLA and the DLA with the LS
method. Figure 4 shows the elastic interactions for all the
methods in the (100) direction of the reciprocal space. For
the DLA, we have limited the real-space range of the Kanzaki
forces and dynamical matrix to the next-nearest neighbors (see
Appendix B for details). As expected, in the long-wavelength
limit q → 0, all the interactions converge to the same value.
However, the long-wavelength regime is limited to a small
q domain, as already mentioned in Sec. II B. For q �= 0,
CLA interactions strongly differ from the exact LS ones. So,
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a
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FIG. 4. Elastic interactions for 
a

a
= 6% and c̄ = 0.06, calculated

by different methods: lattice statics analysis JLS (black circles),
discrete lattice approximation JDLA (gray squares), and continuous
limit approximation JCLA (black crosses). They are represented in the
(100) direction of the reciprocal space.

as anticipated above, the relevance of this method for the
short-range elastic interactions is poor. On the other hand,
the DLA interactions follow the LS ones with a very good
agreement for the entire range of q. These observations are
still valid for the other directions (110) and (111).

In Fig. 5 we present, as a function of distance, the real-space
EPIs calculated within the previous approaches. These EPIs
include both elastic and chemical contributions, the latter being
of course the same in the three cases. We observe that the
DLA provides a very good approximation of the exact LS,
whereas the CLA shows an important deviation (33%) for the
first neighbor interactions, which are the dominant ones. As
a consequence, the phase diagram corresponding to the CLA
interactions would strongly differ from the LS phase diagram.
This would impact both the volume fraction of precipitates
and the kinetics of evolving microstructures.
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FIG. 5. Effective pair interactions plotted versus the atomic
distance in angstroms for 
a

a
= 6% and c̄ = 0.06, calculated by

different methods: LS (black circles), DLA (gray squares), and CLA
(black crosses).
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i = 1, nmain

n = 1, nising

Re-initialization of ΔEpq

Exchange between first neighbors
If acceptance: updating procedure

according to Eq. (23)

according to Eq. (25)

FIG. 6. Scheme of the quadrupolar algorithm convenient for long-
range interactions. We have nIsing = K × Nsites with K ∼ 103 and
nmain = MCS/K .

D. Discussion

The main advantage of the lattice statics approach is
to embed the elastic forces into effective interactions that
couple discrete degrees of freedom. The lattice statics ap-
proach, which is an atomic scale linear elasticity theory,
should converge to the continuum elastic theory in the long-
wavelength limit. This point has been numerically confirmed
in our analysis. However, for a specific alloy, the numerical
implementation of the method requires the knowledge of a

detailed potential at the atomic scale, which is often very
difficult to obtain.

As shown above, the DLA provides an efficient way to cir-
cumvent this difficulty, as the calculation of the corresponding
discrete elastic interactions simply requires knowledge of a
few macroscopic quantities extracted from experiments or ab
initio calculations. The procedure relies on the identification
of short-range Kanzaki forces and the dynamical matrix.
In the present paper, this has been done within a pair
potential framework. This restricts the analysis to systems
which approximately follow the Cauchy rule. More general
situations, that do not suppose a specific form for an underlying
potential, can be straightforwardly considered. This point is
addressed in Sec. IV D.

IV. MICROSTRUCTURE SIMULATIONS

Our purpose is now to simulate, at the atomic scale,
the microstructure evolution in the presence of atomic size
mismatch.

A. Computational details

We use a Monte Carlo scheme in which energies are
computed with the EPIs previously determined. For the sake
of simplicity, we choose a Kawasaki dynamics. Simulations
are performed in the canonical ensemble. For each attempt of
atom exchange, we need to evaluate the energy cost 
Ep0q0

FIG. 7. (Color online) Snapshots of microstructures extracted at four Monte Carlo times (MCS) from simulations at 300 K for binary alloys
with a nominal concentration c̄ = 0.08 and with different atomic size mismatches: (a)–(d) corresponds to 
a

a
= 0%, (e)–(h) to 
a

a
= 4%, and

(i)–(l) to 
a

a
= 6%. For the sake of clarity, only one type of atom is represented and the color is a function of the depth in the simulation box,

whose size is (29 nm).3 The Fourier transform in the (001) plane is represented for each microstructure (see text for details). Each component
of the q vector extends from −2π/ā to 2π/ā, and the scale for intensity is shown on the right side bar.
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given by


Ep0q0 = (
δcq0 − δcp0

)
[Hp0,q0 + Vq0p0 (δcp0 − δcq0 )]

with Hp0,q0 =
∑

n

{Vp0n − Vq0n}δcn, (23)

where {p0,q0} is the pair of nearest neighbors we try to
exchange.

The numerical implementation requires the choice of a cut-
off. As recalled above, the long-wavelength elastic interactions
Vnm decrease as 1/R3. However, within an exchange dynamics,
the energy cost 
Ep0q0 consists in summing individual
components (Vp0n − Vq0n) which decrease as 1/R4. Therefore,
the sum in Eq. (23) converges absolutely and consequently can
be approximated by the choice of a finite cutoff. In the present
case, we found that rcut = 15ā was a large enough value to
correctly reproduce spatial correlations between precipitates
(the observed microstructures were hardly sensitive to rcut in
the range 11–20ā). However, with such a cutoff, the sum over
n in Eq. (23) includes approximatively 20 000 terms. Different
algorithms are available in the literature to reduce the CPU
time devoted to this summation.16,24 We have implemented the
Fratzl and Penrose16 algorithm, well suited for the Kawasaki
dynamics. The initial step is to compute and store the energy
costs 
Epq for all the first-nearest-neighbor pairs. Then the
algorithm proceeds as follows: Once an exchange {p0,q0} has
been accepted, the array 
Epq is updated according to


Epq = (δcq − δcp)H̃p,q − (δcq − δcp)Vqp, (24)

with

H̃p,q = Hp,q + (δcq0 − δcp0 )[Vp0p − Vq0p + Vq0q − Vp0q].

(25)

We observe that the variation of the energy cost 
Epq induced
by the {p0,q0} exchange is concentrated in a quadrupolarlike
term that decreases as 1/R5 if the pairs {p,q} and {p0,q0}
are far enough from each other. Therefore, we may limit the
updating procedure of the array 
Epq within a sphere centered
on {p0,q0} with a smaller radius (here 8ā) than the cutoff used

in the initialization of the array 
Epq . This greatly improves
the CPU efficiency of the overall algorithm. However, in order
to avoid a systematic drift for very long runs, we found it
necessary to reinitialize periodically the array 
Epq using
Eq. (23) [typically every 1000 Monte Carlo steps25 (MCS)].
The implementation of this scheme in the Monte Carlo code
is summarized in Fig. 6.

As this algorithm is based on the storage of the energy costs
of all first neighbor pair exchanges, its efficiency increases
when the number of accepted exchanges decreases, i.e., at low
temperature. Finally, we mention that the extension of this
algorithm to multicomponent alloys is straightforward.

Afterward, the overall microstructure morphologies are rep-
resented by monitoring configurations at different times along
the precipitation sequences. Kinetic aspects are quantitatively
analyzed using the number of precipitates as a function of the
simulation time. Precipitates are defined through the computa-
tion of a local concentration field. The local average concentra-
tion c̄n at site n is defined as the arithmetic average of the occu-
pancies over its first and second neighbors. Site n is supposed
to sit within a precipitate if cn � 0.5. Also, the anisotropy of
the microstructure (precipitate shapes and spatial correlations)
may be qualitatively identified by computing the diffuse
intensity along particular directions in the Fourier space:

I (q) =
∑

n

∣∣fn eiq·R0
n
∣∣2

, (26)

where q is a vector within the first Brillouin zone. fn is an
effective diffusion length of the atom that sits at R0

n (here,
fn = 1 if site n is inside a precipitate, 0 otherwise). Such an
analysis in Fourier space has many features in common with
small angle scattering experiments.26 Indeed, the intensity
diffused at large q values is associated with the shape of the
precipitates, whereas the intensity at intermediate q values
also includes information on the spatial correlations between
precipitates. Nevertheless, such an analysis is possible only
when the corresponding characteristic lengths (precipitate
sizes and correlation lengths) are sufficiently distinct.
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FIG. 8. (Color online) Fourier analysis of microstructures obtained for 
a

a
= 0%, 4%, and 6%, after 4000 MCS. Diffused intensity is

plotted versus the norm of the q vector, in 2π

a
units along the (100), (110), and (111) directions.
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FIG. 9. Time evolution of the number of precipitates for binary
alloys with 
a

a
= 0%, 4%, and 6% and with c̄ = 0.08.

B. Influence of atomic size effect on microstructure

The set of EPIs calculated with the potential parameters
listed in Table I is now used to investigate the role of the atomic
size mismatch on microstructure morphology. We perform
our simulations on fcc boxes whose size is 80ā × 80ā × 80ā

(i.e., 2 048 000 atoms), where ā is the lattice parameter of the
reference state. In this section, we consider three binary alloys
at 300 K with an average concentration c̄ = 0.08. For the first
alloy, the atomic size mismatch 
a

a
is zero, whereas it is 4% and

6% for the others. The corresponding values of ā are 3.615 Å,
3.627 Å, and 3.635 Å, respectively. The initial configuration
of the simulations is a random solid solution. Figure 7 shows,
for each alloy, the configurations extracted from the Monte
Carlo simulations at 500, 1000, 2500, and 4000 MCS and the
corresponding maps in the Fourier space in the [001] zone axis.
Without atomic size mismatch [Figs. 7(a)–7(d)], precipitates
are spheric and randomly distributed in the simulation box.
This is confirmed by the circular symmetry of the diffraction
pattern, both in the domain of large q, which is sensitive to the
shape of precipitates, and at intermediate q, i.e., in the domain
which is sensitive to spatial correlations between precipitates

[see Fig. 8(a)]. This also implies that the interface free energy
is isotropic at this temperature. For 
a

a
= 4% and t = 500 MCS,

the microstructure in real space appears to be very similar to the
one obtained in the absence of atomic size mismatch. However,
the slight anisotropy at large q in the diffraction pattern reveals
that precipitates are in fact slightly cuboidal. At later times,
we observe larger precipitates which are aligned along cubic
directions, as confirmed by the anisotropy of the diffracted
intensity profiles shown in Fig. 8(b). When 
a/a = 6%, and at
early time (500 MCS), precipitates definitely adopt anisotropic
shapes and alignments along cubic directions are already
clearly visible. At later times, anisotropy of the precipitate
shape develops and they often show elongated shapes along
cubic directions. Their cross section is almost square and
interfaces are oriented along {100} planes. At further times
(not shown here), we have observed that the shape of the
precipitates evolves toward a platelike shape. In this case, the
diffraction pattern exhibits a cross shape with axes oriented
along the (100) directions. Precipitate shapes and alignments
are the result of elastic relaxations which are driven by the
elastically soft directions, here (100) because of a negative
elastic anisotropy (C11-C12-2C44).

The number of precipitates versus simulation time, ex-
tracted from the simulations described above, is given in
Fig. 9. For all investigated atomic size mismatches, the number
of precipitates features a peak at early times followed by
a monotonous decrease. This behavior is characteristic of
a nucleation-growth process. Note also that the number of
precipitates in the simulations at long times decreases when
the atomic size mismatch increases. This point is consistent
with the anisotropic coalescence/coagulation of precipitates
induced by elastic relaxations. A more quantitative analysis
is however difficult to perform, as the solubility limits for the
three alloys slightly differ (0.007, 0.007 5, and 0.008 for the
alloys with 
a/a = 0%, 4%, and 6%, respectively). Finally,
the analysis of the time evolution of precipitate sizes (not
shown here) reveals that the asymptotic regime27,28 is not
reached at the end of our simulations (t = 4000 MCS).

In brief, we have shown that our implementation of the
lattice statics technique using the Fratlz et al. algorithm
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FIG. 10. Number of precipitates (left) and average radius (right) in angstroms versus Monte Carlo time for alloys with 
a

a
= 6% and

c̄ = 0.06 using the LS, CLA, and DLA interactions.
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allows study of the microstructural evolutions of coherent
alloys with elastic effects using thermodynamics simulations
at the atomic scale. In particular, we have shown that the
morphological modifications of the precipitate shapes and
the development of spatial correlations between precipi-
tates are correctly accounted for. This technique is well
adapted to investigate the first stages of the precipita-
tion process (incubation, nucleation), these regimes being
difficult to explore with modeling based on continuous
approaches.

C. Microstructures obtained with different methods for elastic
interaction calculations

In this section, we compare the microstructural evolutions
obtained with the LS, CLA, and DLA interactions. As detailed
in Sec. III C, the LS method is an exact derivation of
coherent elasticity at the atomic scale from a continuous
potential, the CLA is derived from the continuum limit of
elastic interactions, and the DLA verifies the long-wavelength
relations [Eqs. (11) and (18)] but also includes the discreteness
of the lattice. These approaches are applied to the same

FIG. 11. (Color online) Snapshots of microstructures extracted at 500, 2000, and 10 000 MCS from Monte Carlo simulations at 300 K
for binary alloys with a nominal concentration c̄ = 0.06 and with an atomic size mismatch 
a

a
= 6%. Images (a)–(c) correspond to the

calculations with the exact lattice statics (LS) interactions. Images (d)–(f) and (g)–(i) correspond to the calculations with the CLA and the DLA
approximations, respectively (see text for details). For the sake of clarity, only one type of atom is represented and the color is a function of the
depth in the simulation box, whose size is (29 nm).3
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alloy with an atomic size mismatch of 6% and a nominal
composition c̄ = 0.06. The values of the elastic and total
interactions are those discussed in Sec. III C and displayed
in Figs. 4 and 5. We also recall that the chemical part of the
EPIs is the same in the three cases.

As shown in Fig. 5, the CLA value of the EPI for the first
neighboring distance strongly differs from the LS and DLA
interactions. As a consequence, the solubility limits in the CLA
are expected to be different from those corresponding to the
other methods. This is confirmed by the values of the matrix
composition measured in the later stages of our simulations
(0.031 for the CLA, 0.008 otherwise). This difference neces-
sarily impacts the precipitation driving forces. The analysis
of Fig. 10, that displays the time evolution of the number of
precipitates and their average radius at 300 K, confirms that the
kinetics of precipitation is correctly reproduced by the DLA
whereas the CLA leads to a quantitative error. Indeed, within
the CLA, precipitates are fewer and larger during the whole
time range investigated.

Figure 11 represents the snapshots of the configurations
extracted from the Monte Carlo simulations at t = 500, 2000,
and 10 000 MCS for the three methods. The microstructural
evolutions calculated with the LS and the DLA interactions
are very close and no significant differences can be observed.
Precipitates, initially almost spheric when they are small (t =
500 MCS), adopt elongated shapes along one cubic direction
when they grow. For the CLA, strongly anisotropic precipitates
are already seen for t = 2000 MCS. In addition, they evolve
towards platelets around t = 10 000 MCS (elongation along
two cubic directions). These shapes minimize the elastic
energy of isolated precipitates within homogeneous elasticity
theory.1 Such differences are more quantitatively evidenced by
the analysis of the individual morphologies of the inclusions.
Since the precipitates are well separated, this can be done
through the calculation of their shape factors defined as
follows. First, the characteristic length of the precipitate in
each cubic direction is computed as the standard deviation of
the corresponding coordinate. Then, using the three obtained
sizes l1 � l2 � l3, the shape factors F1 and F2 are defined by

F1 = l3

l1
and F2 = l2

l1
. (27)

The quantities F1 and F2 allow differentiation between
cubic or spheric precipitates (F1 � F2 � 1) from precipitates
elongated in one or two cubic directions (F1 � F2 � 1 and
F1 � F2 � 1, respectively). A each time step, the average
shape factors < F1 > and < F2 > of the precipitates in
the simulation box are computed. Their time evolution is
represented in Fig. 12. Again, the behaviors corresponding
to the LS and the DLA interactions are very similar on the
whole time scale investigated. Precipitates evolve from an
almost isotropic shape (< F1 >≈< F2 >≈ 1.2 at t = 500
MCS) to an anisotropic one-dimensional shape (< F1 >≈ 2,
< F2 >≈ 1.2 at t = 6000 MCS). With the CLA interactions,
the shape factors, initially close to those observed for the LS
and the DLA interactions, display a much sharper increase with
time. This is mostly a consequence of the too-high solubility
limit predicted by the CLA. As mentioned above, this leads to
the precipitation of larger precipitates which adopt platelike
shapes to minimize the coherent elastic energy.

In brief, we have shown that the simple extension of con-
tinuum linear elasticity down to the atomic scale (CLA) fails
to reproduce the correct precipitation processes. The method
proposed here (DLA) provides a very good approximation of
the exact LS analysis, even when elastic effects are strong
(
a/a = 6% here).

D. Generalization of the DLA

In this paper, the identification of short-range Kanzaki
forces and dynamical matrix from macroscopic quantities,
as required by the DLA, has been performed within a pair
potential framework. This limits the range of application of
such a method to a few materials. A more general derivation
for ψ̃ and φ̃ can be done by considering the form they adopt for
the first neighbors in an fcc lattice. We give their expression for
the [110] first neighbor pair, the others being straightforwardly
obtained using symmetry relations between the 12 pairs that
belong to the first neighbor shell:

φ̃
ij

0,[110] =
⎛
⎝ α γ 0

γ α 0
0 0 β

⎞
⎠ , (28)
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FIG. 12. Average shape ratios < F1 > (left) and < F2 > (right) versus MCS for alloys with 
a

a
= 6% and c̄ = 0.06 using the LS, CLA,

and DLA interactions.
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ψ̃ i
0,[110] =

⎛
⎝ δ

δ

0

⎞
⎠ . (29)

The number of non-null and independent coefficients in
Eqs. (28) and (29) is a consequence of the fcc lattice sym-
metries and symmetry rules φ̃

ij

0n = φ̃
j i

0n = φ̃
ij

n0. The insertion
of ψ̃ and φ̃ into Eqs. (11) and (18), limited to the first neighbor
shell in the fcc lattice, leads to a set of linearly independent
equations that links the unknown atomic scale quantities α, β,
γ , and δ to the macroscopic elastic coefficients C11, C12, C44

and to the eigenstrain tensor ε0
ij :

α = − ā

4
C11, β = ā

4
(C11 − 2C44),

(30)

γ = − ā

4
(C12 + C44), δ = − ā2

16
ε0(C11 + 2C12).

To summarize, the proposed general DLA consists simply in
identifying, through Eqs. (28) and (29), the first neighbor
Kanzaki forces and dynamical matrix, which when inserted
through their Fourier transform into Eq. (9), allow the discrete
elastic interactions JDLA(q) to be obtained. Therefore, the DLA
provides a general and straightforward scheme to identify
atomic scale elastic interactions that not only reproduce the
long-range elastic behavior, but also incorporate the correct
short-range elastic interactions that are bound to the discrete
nature of the lattice. This is a prerequisite to correctly simulate
precipitation processes, from the early stages to the latter ones.
This methodology is easily transferable to other type of lattices
than the fcc one, and thus to other type of materials.

V. CONCLUSION

Long-range elasticity is a major driving force during
microstructural evolution of alloys when atomic size mismatch
is present. Elastic effects can also be in competition with
chemical effects at short-range distances, contributing to the
stability of the alloy.

The lattice statics approach provides a simple energetic
model to compute alloy properties using statistical methods
(here, Monte Carlo simulations). Starting from a continuous
potential description of alloy energetics and using lattice
Green’s functions, effective pair interactions depending only
on compositional degrees of freedom are derived. In this
study we use a numerical algorithm which allows one to
calculate microstructural evolutions on large time and space
scales. Using different atomic size mismatches, we show that
the major trends associated with elasticity (precipitate shapes
and spatial correlations) are correctly reproduced from the
nucleation and growth regime to the beginning of coarsening.

Also, to avoid the long development of a specific continuous
potential, we propose a general method, here called the
discrete lattice approach (DLA), to calibrate atomic scale
elastic interactions using only a few macroscopic properties of
the alloy (elastic moduli, eigenstrain tensor). Contrary to the
method which consists in using, down to the atomic scale, the
elastic interactions derived from linear elasticity (here referred
to as the CLA), the DLA provides an accurate description of
short-range elasticity. We show in this paper that the DLA gives
a very good approximation of the exact lattice statics method.

This point is quantitatively verified on both the EPIs values and
the microstructural evolutions. To complete the calibration of
the energetic model, chemical pair interactions can be obtained
from ab initio calculations (cluster expansion29,30) or diffuse
x-ray scattering experiments.31

Many interesting prospects follow our work. First of all,
the implementation of a realistic kinetic mechanism, involving
exchanges between atoms and vacancies, is needed to correctly
reproduce physical phenomena like solute drag, migration
of small clusters, or vacancy surface trapping. This could
be done by identifying a vacancy to an additional alloying
element. Within such a framework, realistic kinetic Monte
Carlo simulations taking into account elasticity could be
performed for alloys with atomic size mismatch, allowing
relevant comparisons with three-dimensional atom probe
experiments.

Another interesting perspective is the extension of the LS
formalism to topological defects, such as dislocations, within
the framework of the DLA. In this study, alloys have always
been considered as coherent materials. When coherency stress
becomes too high, dislocations can relax the stored elastic
energy when the plastic threshold is reached. As pointed out by
Nabarro,32 a dislocation loop produces the same displacement
field as a platelet inclusion, with a stress-free eigenstrain
related to the Burgers vector b and the normal n of the loop
by ε00

ij = 1
2

binj +bj ni

d
, where d is the interplanar distance along

direction n. This approach has been applied at the mesoscopic
scale with phase field methods (see, for example, Refs. 33
and 34). This formalism, transposed down to the atomic scale
within the DLA, gives an interesting way to study coherency
loss phenomena or the interplay between an evolving elastic
microstructure and plastic relaxation through dislocation glide.
The significant advantage of the present discrete approach, as
opposed to a phase field one, is that small-scale phenomena
(such as dislocation nucleation and annihilation, interactions
between dislocations and point defects, or thin interfaces) are
readily taken into account. A nonconserved spin-flip dynamic,
corresponding to the presence or absence of the dislocation
loop, could make this formalism compatible with a lattice
Monte Carlo scheme.

APPENDIX A: SECOND DERIVATIVES

In this appendix, the different second derivatives of the
energy with respect to atomic displacements and chemical
degrees of freedom are detailed in the case of a pair potential.
Chemical interactions:

θnm = UAA

(
R0

nm

) + UBB

(
R0

nm

) − 2UAB

(
R0

nm

)
. (A1)

Kanzaki forces:

ψi
nm = −{

c̄U ′
BB

(
R0

nm

) − (1 − c̄)U ′
AA

(
R0

nm

)
+(1 − 2c̄)U ′

AB

(
R0

nm

)}(
R0i

m − R0i
n

)
R0

nm

, (A2)

where the superscript ′ denotes the derivative with respect
to Rnm.
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Dynamical matrix:

φij
nm = −δij

Ũ ′(R0
nm

)
R0

nm

+
{

Ũ ′(R0
nm

)
R0

nm

− Ũ ′′(R0
nm

)}

×
(
R0i

m − R0i
n

)(
R

0j
m − R

0j
n

)
R0

nm
2 , (A3)

φij
nn = δij

∑
p �=0

Ũ ′(R0
np

)
R0

np

−
∑
p �=0

{
Ũ ′(R0

np

)
R0

np

− Ũ ′′(R0
np

)}

×
(
R0i

n − R0i
p

)(
R

0j
n − R

0j
p

)
R0

np
2 , (A4)

where Ũ (Rnm) corresponds to

Ũ (Rnm) = c̄2 UBB

(
R0

nm

) + (1 − c̄)2 UAA

(
R0

nm

)
+ 2c̄(1 − c̄) UAB

(
R0

nm

)
. (A5)

APPENDIX B: DLA FOR FCC BINARY ALLOY

In this appendix, the details of the discrete lattice approach
implementation in the case of an fcc lattice with Cauchy
relation are given. Cubic crystals have three independent
elastic constants. Equation (11), which links elastic constants
with a dynamical matrix, can be rewritten with the following
set of equations:

C11 = − 1

2v0

∑
R

φ11(R)R1R1,

C12 + C44 = − 1

v0

∑
R

φ12(R)R1R2, (B1)

C44 = − 1

2v0

∑
R

φ11(R)R2R2.

When limiting the sum over R to the second nearest neighbors
and assuming a pair potential form for the dynamical matrix,
this system of equation becomes

C11 = 4

a

(
α1 − β1

2
+ α2 − β2

)
,

C12 + C44

2
= −β1

a
, (B2)

C44 = 4

a

(
α1 − β1

4
+ α2

)
,

where αN and βN are defined in Eq. (21). The Cauchy relation
imposes

α1 + α2 = 0. (B3)

In order to identify the αN and βN parameters, we also fix
α1 = 0. Finally, the identification of these parameters from
macroscopic data is given by

α1 = 0 (Imposed), β1 = −aC12,
(B4)

α2 = 0, β2 = −a

4
(C11 − 2C12).

For Kanzaki forces, Eq. (18) adopts the following form:∑
m

ψi
0mRj

m = −v0ε
0
ij (C11 + 2C12). (B5)

Due to the strong short-range character of Kanzaki forces,
the sum over m is limited here to the first neighbors. Indeed,
when calculating their values exactly from the continuous pair
potential, the second-neighbor value is negligible. Therefore
we have

δ1 = − v0

4a
ε0(C11 + 2C12), (B6)

where δ1 is defined in Eq. (22).
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