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Stochastic modeling of molecular charge transport networks
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We develop a stochastic network model for charge transport simulations in amorphous organic semiconductors,
which generalizes the correlated Gaussian disorder model to realistic morphologies, charge transfer rates, and
site energies. The network model includes an iterative dominance-competition model for positioning vertices
(hopping sites) in space, distance-dependent distributions for the vertex connectivity and electronic coupling
elements, and a moving-average procedure for assigning spatially correlated site energies. The field dependence
of the hole mobility of the amorphous organic semiconductor, tris-(8-hydroxyquinoline)aluminum, which was
calculated using the stochastic network model, showed good quantitative agreement with the prediction based on
a microscopic approach.
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I. INTRODUCTION

The design of materials for organic electronic devices is
driven by optimization of charge and energy transfer processes
within them.1,2 These processes are strongly influenced by
an interplay of effects on various length and time scales,
ranging from macroscopic morphological order to quantum
phenomena at an atomic resolution. Theory and simulations
have substantially contributed to our understanding of these
processes in amorphous organic semiconductors; in particular
(extended, correlated) Gaussian disorder models (GDM) have
been successful in rationalizing the influence of finite carrier
concentration, Coulomb interactions, the shape of the density
of states, spatial correlations of site energy, and positional
disorder on transport dynamics.3–12

Microscopic approaches, which combine quantum chem-
istry, charge transfer theories, as well as molecular and
statistical mechanics,13–18 are conceptually similar to GDM,
except now charge hopping sites are extracted from a large-
scale morphology obtained using molecular dynamics and
charge transfer rates are determined using first-principles
calculations. Such a multiscale methodology allows one to
directly link macroscopic observables to the chemical structure
and the morphology and has been used, e.g., to elucidate
the influence of stacking motifs in columnar mesophases of
liquid crystals2,19–21 and to study percolating networks and
polarization effects in organic crystals.19,22

There exist, however, experimentally viable situations,
where neither of these two approaches is suitable. The
complexity of the microscopic approach limits its practical
application to comparatively small system sizes, limiting
simulations of transport in realistic device geometries, i.e.,
without periodic boundary conditions. It also does not allow
one to study a relaxation of a “hot” carrier in a density of states
with large energetic disorder, due to an insufficient number of
available states.23 GDM, apart from relying on experimental
input, cannot properly handle interfaces and host/guest sys-
tems, due to the use of regular lattices. To tackle such problems,
it would be desirable to marry the two approaches, that is,
to generalize the GDM to realistic (off-lattice) morphologies
and then fit the ingredients of this, generalized, model to the
(calculated) properties of representative microscopic systems.

In this paper we demonstrate how this can be achieved by using
stochastic models.24,25

As a prototypical system, we use tris-(8-
hydroxyquinoline)aluminum (Alq3), a green light emitter
employed in early realizations of organic light emitting
diodes.26–34 The coordination of three organic ligands to the
central aluminum atom leads to a roughly spherically shaped
molecule that is known to form an amorphous phase which
conducts both holes and electrons. In this disordered phase, the
large molecular dipole moment results in a broad distribution
of the density of states and long-range correlations of site
energies.17 Using Alq3 as a test system for the development of
a stochastic model is a considerable challenge since one has
to accurately account for the significant impact of a complex
energy landscape on the charge-transport properties of the
material. If successful, the same procedures can be expected
to perform with at least equal accuracy for less disordered
materials.

To incorporate the molecular properties into the stochastic
model we first perform microscopic simulations of hole
transport in a small (compared to, e.g., typical device sizes, but
large from the point of view of computational cost) amorphous
system of Alq3. These simulations provide the reference
weighted graph, where the vertex structure and weighted
edges are determined from the realistic morphology and the
microscopic hopping rates, respectively. We then develop a
stochastic network model, which includes generation of the
dense spatial vertex structure using an iterative dominance-
competition point-process model,35 a Bernoulli model to
obtain the vertex connectivity, a moving-average procedure
to assign correlated site energies to vertices, and distance-
dependent normal distributions to obtain electronic coupling
elements. We finally validate the model by comparing field
dependencies of charge carrier mobility as predicted by the
stochastic and microscopic approaches.

II. MICROSCOPIC SIMULATIONS

Here, we briefly summarize the determination of the ref-
erence weighted graph obtained by microscopic simulations.
For a full account of the procedure, see Ref. 17.
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The first step is the generation of an amorphous morphology
by atomistic molecular dynamics (MD) simulations. The force
field details can be found in the supporting information of
Ref. 17. A cubic box with N = 4096 Alq3 molecules arranged
on a cubic lattice is equilibrated above the glass transition
temperature, at 700 K, in an NPT ensemble with a velocity
rescaling thermostat and the Berendsen barostat. The system
is then quenched to room temperature. All simulations are
performed using the GROMACS package.36

The centers of mass of the molecules for a given snapshot
define the hopping sites for the charge carrier or, in other
words, the vertices of the directed graph. A pair of molecules
is added to the list of neighbors if the distance between centers
of mass of any of the three 8-hydroxyquinoline ligands is
below a cutoff of 0.8 nm. For the pairs in this neighbor list,
charge hopping rates are evaluated using the high temperature
limit of classical charge transfer theory37

ωij = 2π

h̄

J 2
ij√

4πλij kBT
exp

[
− (�Eij − λij )2

4λij kBT

]
, (1)

where T is the temperature, h̄ is the reduced Planck constant,
and kB is Boltzmann’s constant. The pair-specific quantities
are the reorganization energy λij , the electronic coupling
element, or transfer integral Jij , and the driving force, �Eij =
�Eel

ij + �Eext
ij , consisting of the difference in electrostatic site

energies, �Eel
ij = Ei − Ej , and the influence of an externally

applied electric field �F , �Eext
ij = q �F (�xi − �xj ). Here q and

�xi are the charge of the carrier and the position of site
i. These ingredients can be determined using electronic
structure techniques, classical simulation methods, or their
combination.14,17,38

The reorganization energy was computed using density-
functional theory [DFT; B3LYP functional and a 6-311G(d,p)
basis set] resulting in a value of 0.23 eV which was used
for all pairs of molecules. Electronic coupling elements Jij

were calculated for each molecular pair using DFT [Perdew-
Burke-Ernzerhof functional and a triple-ζ basis set] within the
dimer-projection method.39,40 Electrostatic contributions to the
site energies Ei are evaluated self-consistently based on the
Thole model41 with atomic partial charges and polarizabilities
as in Ref. 17.

With all the ingredients at hand, rates ωij between pairs
of molecules in the neighbor list are computed using Eq. (1)
for T = 290 K. These rates define the edge weights of the
reference directed graph.

III. STOCHASTIC NETWORK MODEL

We interpret the rates and the directed graph of the
microscopic model as a realization of a stochastic network
model with spatially distributed vertices and weighted edges.
A weighted graph G can be described by the triple G =
(V,E,�), where V is the set of vertices, E is the set of
edges, and � is the set of edge weights. The set of vertices
V = {S1,S2, . . .}, where Si is the location of the ith vertex in
R3, describes the locations (coordinates) of the hopping sites.
The set of edges E = {(Si1 ,Sj1 ),(Si2 ,Sj2 ), . . .} describes the
line segments between two connected vertices, i.e., it indicates
which hopping sites are connected. Finally, the set of weights

� = {(ωij ,ωji),(Si,Sj ) ∈ E}, where ωij is the edge weight
from Si to Sj , describes the hopping rates between hopping
sites.

Note that the stochastic network model is realized in a cu-
bic box W = [0,w1] × [0,w2] × [0,w3] ⊂ R3, w1,w2,w3 >

0, with periodic boundary conditions, whereby edges can be
connected over matching faces of the box W , to match the
setup of the microscopic simulation.

In the following, we develop and parametrize a stochastic
model for the weighted graph G consisting of separate
modeling components for its vertex set V , the edge set E,
as well as the set of edge weights �.

A. Vertex set

When identifying an appropriate procedure to generate a set
of points V in space with specific properties (density, correla-
tions, etc.), i.e., a suitable point-process model, some general
physical features have to be considered. First, due to the fact
that the points represent the centers of mass of molecules which
have finite extent, they need to have a minimum separation
between them. Second, neighbor separations fluctuate, e.g.,
due to intercalations. Finally, systems in glassy states have a
high number density ρ = Nmol/w, where Nmol is the number
of molecules in volume w = |W | = w1w2w3. Therefore, the
goal is to develop a point-process model which provides both
large minimum separations and high number densities.

To achieve this, we extend the existing dominance-
competition point-process model,35 which relies on the
thinning of a Poisson process, depicted in Fig. 1(a). In a
first step, points are generated according to a homogeneous
Poisson process, that is, a number of points N ∼ Poi(ρw) are
independently and uniformly distributed in the box W .42 Such
a process is completely random in space since points do not
interact and can therefore have very short distances. To account
for the finite spatial extent of the molecules, interactions
are introduced by independently assigning a random radius
Rn defining a spherical volume B(Sn,Rn) to each point Sn,
following a distribution that takes the desired nearest-neighbor
distribution into account [panel (2) of Fig. 1]. Then, the point
Sn is removed if it is contained in the volume of another
point Si and the volume of that point B(Si,Ri) is larger than
B(Sn,Rn). Such points are marked red in Fig. 1, panel (3). The
set of remaining points [see panel (4) of Fig. 1] is called a
dominance-competition process. In a dominance-competition
process, every point Sn with radius Rn has a distance to its
nearest neighboring point greater or equal than Rn. However,
the maximum point density (i.e., average number of points
per volume unit) of this dominance-competition model is
limited43 and eventually lower than in the microscopic model,
where ρ = 1.65 nm−3. The main issue is that the dominance-
competition model is based on a thinning of a Poisson process,
which has no interaction of points. Thus, the dominance-
competition model cannot reproduce the short-range order
observed for the vertices generated by the microscopic model.

To remedy this situation, we propose an iterative point-
process model. Starting from the dominance-competition point
pattern, Fig. 1, panel (4), a second independent realization of
a dominance-competition process is generated in the empty
space, as indicated by the blue circles in panel (5) of Fig. 1.
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FIG. 1. (Color online) Schematic representation of the iterative dominance-competition model: (a) thinning of homogeneous Poisson
process according to the dominance-competition model; and (b) iterative addition of points in the complementary phase to achieve desired
point density.

Points whose volumes contain points of previous realizations
[see red circles in Fig. 1, panel (6)], are deleted [panel (7) of
Fig. 1]. By this, it is guaranteed that for each accepted point
Sn, the distance to the nearest neighbor is always larger than
Rn. These steps are repeated k times until a point pattern with
the desired intensity is reached. In practice, the densities of
the first k − 1 iterations are chosen as large as possible and the
density of the kth iteration is chosen such that the microscopic
reference density ρ is reached.

The nearest-neighbor-distance distribution function D(r),
defined as the probability of a randomly chosen point to have
its nearest neighboring point within a distance of r > 0,35 is
shown in Fig. 2(a). In the microscopic model, the hopping
sites have a minimum separation of rh = 0.545 nm, hence

D(r) = 0 for r � rh. The point pattern of hopping sites is
also rather regular since the nearest-neighbor distances vary
only in a small range of 0.545 � r � 0.88 nm. Therefore, the
random radii Rn, which control the distances between points,
are simulated according to Rn = rh + Xn, where X1,X2, . . .

are independent and identically 	-distributed random variables
with mean 0.08 nm and variance 0.002 nm2. After k = 7
iterations the density ρ = 1.65 nm−3 of the microscopic data
is reached.

For validation of the model, structural characteristics of
the point pattern are compared to those of the microscopic
model. Among these are the nearest-neighbor-distance distri-
bution function [Fig. 2(a)], the pair-correlation function g(r)
[Fig. 2(b)], and the distribution function of spherical contact
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FIG. 2. (Color online) Characteristic distribution functions of the microscopic and stochastic point-process model: (a) nearest-neighbor
distance distribution function; (b) pair correlation function; and (c) spherical contact distribution function.
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distances H (r), which is the probability that the distance from
a randomly chosen point in space to the nearest point of the
point pattern is smaller than r [Fig. 2(c)]. For all distributions
there is a reasonable agreement between the microscopic and
stochastic models.

B. Site energies

We now develop a model for the site energies En. Sta-
tistically, they follow a normal distribution with mean m

and variance σ 2, i.e., En ∼ N (m,σ 2). Since En are due to
long-range electrostatic interactions of a localized charge with
the local electric field of the surrounding neutral molecules,
they are correlated in space.

To introduce spatial correlations, we propose a moving-
average procedure.44 This procedure relies on invariance
properties of the normal distribution with respect to
convolution, i.e.,

∑�
i=1 Xi ∼ N (

∑�
i=1 mi,

∑�
i=1 σ 2

i ), where
Xi ∼ N (mi,σ

2
i ) are independent random variables. Let

M (a)
n ,M (b)

n ,M (c)
n ∼ N (0,σ 2) be three sequences of independent

and identically distributed random variables. Every vertex Sn is
assigned the 4−tuple (Sn,M

(a)
n ,M (b)

n ,M (c)
n ), to which we want

to allocate a random site energy En. If S(1)
n ,S(2)

n , . . . ,S(�)
n are

its � nearest neighbors (including the point Sn itself), with
corresponding random variables M (b),(i)

n ,M (c),(i)
n , i = 1, . . . ,�,

the site energy is evaluated as

En = √
ωaM

(a)
n +

√
ωb

�b

�b∑
i=1

M (b),(i)
n

+
√

1 − ωa − ωb

�c

�c∑
i=1

M (c),(i)
n + m,

where ωa,ωb � 0 (ωa + ωb � 1) are weights for the individual
components and �b,�c > 0 for some integers. The idea is
to develop the energy landscape as a superposition of three
independent energy landscapes with different properties. The
first component, M (a)

n , is independent, i.e., it represents a rough
energy landscape. Its weight ωa controls the magnitude of the
maximum spatial correlation.

The next two components,
∑�b

i=1 M (b),(i)
n and

∑�c

i=1 M (c),(i)
n ,

are strongly correlated to that of the neighboring vertices,
whereas the number of nearest neighbors �b and �c controls
their range of spatial distribution. The correlation function
of site energies (see Fig. 3) exhibits a strong decrease for
small distances as well as small correlations for long distances.
To include both characteristics, we chose �b < �c, such that∑�b

i=1 M (b),(i)
n describes the strong decrease for small distances

and
∑�c

i=1 M (c),(i)
n describes the long-distance correlations.

The parameters ωa, ωb, �b, �c are estimated by minimizing
the discrepancy between microscopic and stochastic-model
correlation functions, κ(r).

For Alq3, the site-energy distribution of the microscopic
model is characterized by a mean of m = −0.76 eV and
variance of σ 2 = 0.036 eV2. Due to the high molecular dipole
moment of a single molecule of ∼4 D, the energy correlation
function for the microscopic model, shown in Fig. 3, has
a long-range tail. The correlation function of the stochastic
network model for ωa = 0.2, ωb = 0.4, �b = 9, and �c = 280
reproduces these correlations.
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FIG. 3. (Color online) Correlation function for the site energies
estimated from the microscopic model and the fitted stochastic model.

C. Graph edges

The random edge set E = {(Si1 ,Sj1 ),(Si2 ,Sj2 ), . . .} de-
scribes those pairs of vertices which are connected. Since
charge transfer can only occur between the neighboring
molecules, an edge set (neighbor list) of the microscopic model
is based on a cutoff distance between subunits of individual
molecules (ligands of Alq3). Contrarily, the stochastic model
operates on the molecular centers of mass (set of vertices).
Thus, the procedure for the edge set generation can only rely
on the information about this set.

In the microscopic model, the probability of two hopping
sites being connected, f (r), is unity for distances up to
1 nm and then decreases practically linearly until it is zero
[see Fig. 4(a)]. In the range 0.99 nm < r < 1.39 nm, a fit of
the linear function yields f (r) = −2.553r + 3.509 (where r

is in nanometers) and two vertices of the stochastic model with
separation r are added to the set of edges with a probability
f (r).

This connectivity model is validated by analyzing the
distribution of coordination numbers (the number of edges em-
anating from a vertex) and edge lengths. These distributions,
shown in Figs. 4(b) and 4(c), are in a good agreement between
the graphs generated by the microscopic and stochastic
models.

D. Transfer integrals

The final component of the stochastic network model
is the squared transfer integral J 2

ij . Microscopically, Jij

is determined from the electron densities of the involved
molecules and their interactions on a quantum-mechanical
level. As such, transfer integrals depend sensitively on the
molecular electronic structure and on mutual positions and
orientations of the molecules.

For Alq3, analysis of the microscopic J 2
ij shows that, for a

fixed distance r between hoping sites, log10(J 2
ij /eV2) is nor-

mally distributed according to N (m(r),σ 2(r)). We therefore
compute the distance-dependent mean value and the variance
of log10(J 2

ij /eV2), which is shown in Figs. 5(a) and 5(b). The
mean decreases linearly with distance, which is expected from
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FIG. 4. (Color online) (a) Distance-dependent probability of two hopping sites being connected. Histograms of (b) coordination number
and (c) edge lengths. The mean (variance) of the coordination number is 11.43 (2.03) in the microscopic model compared to 11.37 (3.18) in
the stochastic model. For the edge lengths, we obtain 0.99 nm (0.03 nm2) and 0.97 nm (0.03 nm2), respectively.

the exponentially decaying overlap of the involved electron
densities. We fit two linear curves m(r) = −4.272r − 1.594
and σ 2(r) = 7.819r − 2.027 to the data (r in nm, m in eV, and
σ 2 in eV2), which are also shown in Fig. 5. In the stochastic
model, an edge (Si,Sj ) is assigned a squared transfer integral
J 2

ij = 10Xij eV2, where Xij ∼ N (m(r),σ 2(r)).

IV. MODEL VALIDATION

To begin with, we compare the rate distributions predicted
by the stochastic model and the reference microscopic model.
In both cases the external field is set to zero, i.e., F = 0,
where F = | �F |. Figure 5(c) shows that both distributions are
in excellent agreement with each other.

To further validate the model, we evaluate charge mo-
bility μ, defined as the ratio of charge velocity v over F ,
i.e., μ = v/F . The charge velocity is determined using the
kinetic Monte Carlo (KMC) algorithm by dividing the charge
displacement vector along the field direction (accounting for
periodic boundary conditions) by the total simulation time. To
improve the statistics, the value of mobility is averaged over
six different directions of the external field and several KMC
trajectories starting from different injection points.

We first ignore the site-energy disorder, i.e., we put �Eel
ij =

0 in the expression for the rates in Eq. (1). The mobilities vs
field (KMC simulation time 10−5 s, averaged over six field
directions and five injection points) are shown in Fig. 6(a) for
both microscopic and stochastic models. One can see that the
absolute values and a slight decrease with the increasing field
strength (inverted regime) are similar for both models.

Taking the energetic disorder into account reduces the value
of mobility [Fig. 6(b), KMC simulation time 0.1 s, same
averages as before] by six (at low fields) to five (at high
fields) orders of magnitude and is due to large disorder in
site energies. Here the agreement between absolute values is
not perfect (there is approximately a factor of 5 difference).
The disagreement is in fact not a shortcoming of the stochastic
model, but is due to finite-size effects. Since the analyzed
systems have a relatively small number N of sites (4096 in
this work) and the corresponding site energies are strongly
correlated, the distributions of site energies predicted by
both the stochastic and microscopic models have significant
fluctuations from one realization to another, especially in
systems with large energetic disorder. The simplest way of
illustrating this is by calculating the average energy of a charge
in equilibrium, Ē . Assuming that the system is ergodic and the
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FIG. 5. (Color online) Mean (a) and variance (b) of distributions of log10(J 2
ij /eV2) as a function of distance between hopping sites.

(c) Distributions of logarithmic transfer rates log10(ωij s).
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BJÖRN BAUMEIER et al. PHYSICAL REVIEW B 86, 184202 (2012)

10−8

10−7

10−6

10−5

500 600 700 800 900 1000√
F (V/cm)1/2

μ
(c

m
2
/V

s)

10−2

10−1

μ
(c

m
2
/V

s)

(a)

(b)

ΔEel
ij = 0

microscopic model
stochastic model

microscopic model
stochastic model

FIG. 6. (Color online) Hole mobilities μ as a function of applied
field F , based on the microscopic (black) and stochastic (red) graph.
(a) Results obtained without site-energy disorder, i.e., �Eel

ij = 0.
(b) Poole-Frenkel plot. Error bars for the stochastic model have been
determined by averaging over three independent realizations. Since
respective errors cannot be calculated for the microscopic model due
to the computational cost of generating and evaluating independent
snapshots, relative errors identical to the stochastic model have been
assumed.

occupation probabilities are Boltzmann-distributed, Ē reads

Ē =
N∑

n=1

En exp(−En/kBT )

/ N∑
n=1

exp(−En/kBT ). (2)

For the realizations of the stochastic model used
for averaging, we find Ē/kBT = (−25.09, −23.65,

−28.21) relative to the mean m of the distribution,
while for the microscopic model Ē/kBT = −26.01. Higher
average energies lead to significantly higher mobilities
and, as discussed in Ref. 23, pronounced finite-size effects
(higher mobilities) when mobilities are averaged over
several realizations of site-energy distributions. To partially
remedy the situation, one could either prefilter realizations
of the stochastic model to those with the same transport
level or increase the size of the microscopic reference.
However, even doubling of the microscopic reference size
is computationally prohibitive at the level of theory we
employed in our calculations (DFT-based evaluation of
coupling elements, self-consistent polarization model for site
energies). Moreover, finite-size effects become negligibly
small only if (σ/kBT )2 � −5.7 + 1.05 ln N , in our case
for N ≈ 1026 (see, again, Ref. 23). So even for a perfect

parametrization of the stochastic model, one has to expect
systematic finite-size effects and concomitant deviations
between microscopic and stochastic models.45 Given the
high sensitivity of mobilities to the finite-size effects and
the fact that according to the rate expression, Eq. (1),
deviations in the parametrization propagate exponentially
into the mobility, the achieved agreement is satisfying:
Both models predict that, as a result of strongly correlated
energetic disorder, mobility is reduced by six orders of
magnitude as compared to the (hypothetical) disorder-free
case. Similarly, the mobility increase with the strength of the
field F , μ ∼ exp (α

√
F ), which is again due to correlated

site-energy disorder, and the slope of this dependence, α,
also known as a Poole-Frenkel slope, is well reproduced.
Overall, the stochastic model captures the relevant physics
of charge transport as characterized by the field-dependent
mobility on a qualitative and quantitative level, even though
the parametrization of the model did not explicitly use μ as
a target property, but instead the details of the underlying
graph representation of the charge transport network. The
computational cost of creating this weighted graph is on the
order of seconds for the stochastic model as compared to
weeks for the microscopic description. The stochastic model
is therefore transferable to situations whose treatment is
beyond the computational limits of microscopic simulations
of charge transport.

V. SUMMARY

To summarize, we have developed a stochastic network
model of the directed weighted graph used for microscopic
charge transport simulations. The model, parametrized for
a prototypical amorphous organic semiconductor, tris-(8-
hydroxyquinoline)aluminum, showed good agreement with
the predictions of the microscopic approach: Both the
mobility-field dependence and distributions of the charge
transfer rates were adequately reproduced. The generalization
of the model to more complex situations, e.g., anisotropic in
shape molecules and molecular mixtures, is possible and is a
work in progress.
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94, 5447 (1991).
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