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Structural interpretation of the Prigogine-Defay ratio at the glass transition
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On cooling through the glass transition, a many-particle system freezes into one of the many inherent
structurally stable states which are freely accessible in the undercooled liquid. This implies a freezing of an
additional heat capacity, an additional thermal expansion, and an additional compressibility. Analyzing the
volume and energy distribution of the inherent states at the glass transition, one finds two kinds of slow density
fluctuations, namely those which do require an energy change and those which do not. Their ratio determines
the Prigogine-Defay ratio. If the second kind is absent, the Prigogine-Defay ratio is unity, enthalpy and volume
fluctuations are strictly correlated, and the structural relaxation processes do not couple to an external compression.
This case is not often found in real glasses, but seems to be realized to good approximation in Lennard-Jones
systems, probably also in metallic glasses. In these two cases, the zero coupling is also reflected in the boson
peak modes.
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I. INTRODUCTION

When an undercooled liquid freezes into a glass at the glass
temperature Tg , the thermal expansion usually decreases by
a factor of two to four.1–5 Obviously, the possibility to jump
from one possible structure to another leads to a strong thermal
expansion. This possibility gets lost as the system enters the
glass phase.

In the glass phase, the thermal volume expansion αg has a
textbook explanation6 in terms of the Grüneisen relation for
the vibrations

αg = �cVg

B
, (1)

where cVg is the heat capacity of the glass at constant volume
per unit volume, B is the bulk modulus of the glass, and
the Grüneisen parameter � describes the volume dependence
ω ∝ 1/V � of the average vibrational frequency ω.

The present paper intends the derivation of a similarly
simple-minded relation for the additional thermal volume
expansion �α = αl − αg of the undercooled liquid. The
additional expansion is ascribed to an increasing population
of inherent states with a larger structural energy (and, conse-
quently, a larger volume) with increasing temperature. As will
be seen, this simple concept leads to a physical understanding
of the Prigogine-Defay ratio at the glass transition,4,5,7,8 which
has at present several conflicting interpretations.1,3,9–14

On cooling through the glass transition at Tg , the structural
rearrangements stop, while the vibrations persist. There is
general agreement on that. It follows that the additional heat
capacity, thermal expansion, and compressibility above Tg

depend on the distribution function of the inherent states in
volume and structural energy at Tg and zero pressure. This
has never been realized before. The consequences are worked
out in the present paper. They involve the recognition of
two different kinds of density fluctuations in the undercooled
liquid, of which one is responsible for the thermal expansion,
while the other gives rise to the deviation of the Prigogine-
Defay ratio from unity.

Section II provides the theoretical basis of the treatment
and derives equations for the additional heat capacity, thermal

expansion, and compressibility of the undercooled liquid.
Section III discusses the connection to experimental and
numerical work from the literature. Section IV summarizes
the paper.

II. THEORETICAL BASIS

The theoretical description requires the concept of the
inherent states of an undercooled liquid.15 The inherent state
is a structurally stable minimum of the potential energy for a
sample of N particles. N should be large enough to get rid of
finite size effects.

An inherent state is characterized by its energy NE

and its volume NV at the glass temperature Tg and zero
pressure, where E is the average structural energy per particle
and V is the average particle volume. One has to specify
temperature and pressure, because the volume of a given
inherent state increases with temperature due to the vibrational
anharmonicity and decreases with increasing pressure due to
its compressibility.

The Boltzmann factor for this inherent state contains not
only the energy NE, but its vibrational entropy NSvib as well.
Denoting the average volume at the structural energy E with
VE , one has to reckon with a vibrational entropy which depends
on VE . It is reasonable to make a Grüneisen Ansatz for the
volume dependence of the vibrational entropy Svib

Svib = Svib,g + kB�E ln
VE

Vg

, (2)

where Svib,g is the vibrational entropy and Vg is the atomic
volume at the glass transition. As will be seen in the
comparison to experiment, �E is not necessarily the same
as the Grüneisen � of Eq. (1), because it reflects the behavior
of the boson peak rather than the one of the entire spectrum.

The inherent state ensemble is described by its density in
structural energy and volume at Tg and zero pressure (see
Fig. 1). Without loss of generality, one can split any distribution
gEV (E,V ) into a product

gEV (E,V ) = gE(E)gV (E,V − VE), (3)
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FIG. 1. The distribution g(E) of inherent states in energy at zero
pressure. The inset shows the volume distribution of the states at
E around the average value VE . The curves shown here are both
Gaussians, but they need not be Gaussians in the general case.

with a normalized volume density at constant structural energy
gV (E,V − VE):∫ ∞

0
gV (E,V − VE)dV = 1, (4)

an average volume VE at the structural energy E:∫ ∞

0
VgV (E,V − VE)dV = VE, (5)

and a volume fluctuation contribution:∫ ∞

0
(V − VE)2gV (E,V − VE)dV = v2

E. (6)

In the thermodynamic limit of large N , gE(E) and gV (E,V −
VE) are N independent. In order to be able to work with
the Boltzmann factor exp(−βNE) alone, one defines the
generalized distribution function

g(E) = gE(E)

(
VE

Vg

)�E

. (7)

The average particle volume VE tends to increase with
increasing structural energy E due to the anharmonicity of the
interatomic potential. As will be seen, this effect is responsible
for the additional thermal expansion of the undercooled liquid.
Let us assume a linear relation

VE = Vg + a(E − Eg), (8)

where Eg is the average structural energy at Tg and Vg =
VE(Eg). The coefficient a, an inverse pressure, is a measure
for the anharmonicity of the interatomic potential.

To get the partition function Z, one has to integrate the
density gEV (E,V ) of the inherent states per atom over the
configurational energy E and over the volume V . At zero
pressure, the volume integrates out and one has

Z =
∫ ∞

−∞
g(E) exp(−βNE)dE, (9)

which contains the vibrational entropy contribution via Eq. (7)
for the generalized distribution function g(E) (note that the
equation contains an implicit assumption, namely an equal
Svib for different volumes at equal structural energy E).

One can calculate the average structural energy E per atom
and the average squared structural energy E2 per atom at zero

pressure:

E = 1

Z

∫ ∞

−∞
Eg(E) exp(−βNE)dE (10)

and

E2 = 1

Z

∫ ∞

−∞
E2g(E) exp(−βNE)dE. (11)

The configurational part �cp of the heat capacity at zero
pressure per unit volume is given by

�cp = 1

V

∂E

∂T
= 1

V kT 2
(E2 − E

2
). (12)

The average volume V is given by the double integral

V = 1

Z

∫ ∞

∞

∫ ∞

0
Vg(E)gV exp(−βNE)dEdV. (13)

Because of Eq. (5), one can again integrate the volume out and
gets V = VE , a single integral over E. Inserting Eq. (8) for
VE , one gets

V = Vg + a(E − Eg). (14)

The same procedure can be followed for the expectation
value V 2, this time using Eq. (6) to evaluate the volume
integral. Again replacing VE with Eq. (8), one finds finally

V 2 − V
2 = a2(E2 − E

2
) + v2

E, (15)

where v2
E is the thermal average over the values v2

E at the
different structural energies.

This is the central result of the present paper. It shows that
one has two kinds of density fluctuations in the undercooled
liquid. Those in the first term of the right side of Eq. (15)
stem from a change of the structural energy; those in the
second term occur at constant structural energy. Of course,
in a given transition from one inherent state to another one
will usually find a mixture of both. But, as will be seen in
the next section, there are indeed substances where the second
term is practically zero, which implies a strong correlation
between energy and density fluctuations, a correlation which
is actively debated in the community.5,7,8,16,17

Returning to the additional thermal expansion at Tg , one
finds from Eq. (14)

�α = a
1

V

∂E

∂T
= a�cp. (16)

From the volume fluctuations, one calculates the additional
compressibility �κ as in Eq. (12):

�κ = V 2 − V
2

V kBT
. (17)

The two terms in Eq. (15) give rise to two terms in �κ:

�κ = �κPD + �κ0. (18)

The first is the compressibility contribution from the possibility
to change the average structural energy:

�κPD = a
1

V

∂E

∂p
= a2

V kT
(E2 − E

2
). (19)
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This part of the compressibility has the index PD, because it
satisfies the Prigogine-Defay relation for a second-order phase
transition:9

�cp�κPD

(�α)2T
= �E2 �V 2

(�E�V )2
= 1. (20)

Here �E and �V are the additional energy (enthalpy)
and volume fluctuations from the structural energy changes,
respectively. For completely correlated enthalpy and volume
fluctuations (an implicit property of the first term), the
Prigogine-Defay ratio is one.

But there is also the second term

�κ0 = v2
E

V kBT
, (21)

which stems from the density fluctuations at constant structural
energy. At zero pressure, these additional density fluctuations
occur at constant energy and contribute neither to the heat
capacity nor to the thermal expansion. As a consequence, one
finds the Prigogine-Defay ratio

	 = �κ0 + �κPD

�κPD

= �κ

�κPD

, (22)

where �κ is the measured value. 	 is larger than one if �κ0 is
larger than zero. This provides a new explanation of the much-
debated1,3,9–14 Prigogine-Defay ratio of the glass transition.

This new explanation confirms the traditional view1,3,9,13,14

of more than a single order parameter freezing in at the
glass transition. The equilibration of the distribution function
gV (E,V − VE) is clearly distinct from the equilibration of
g(E) and must be even expected to occur with different
relaxation times.18 One therefore needs two different order
parameters to describe the actual deviation of the system from
equilibrium. The present paper identifies the corresponding
two different kinds of density fluctuations and expresses
the Prigogine-Defay ratio quantitatively in terms of their
properties.

One must bear in mind, however, that one has an important
class of glass formers, the strongly correlated ones, in which
gV (E,V ) is close to a δ-function, its equilibration plays no
role, and the Prigogine-Defay ratio is close to 1. They occur
more often on the computer, but they are also found in reality.5

They show strikingly simple properties, both in dynamics19

and thermodynamics.7,8

An alternative explanation of the deviation of the Prigogine-
Defay ratio from unity has been given in terms of nonequi-
librium thermodynamics,10–12,14 beginning with work by
Nieuwenhuizen,10 who identifies the freezing of the configura-
tional entropy as a reason for a violation of the second Ehren-
fest relation, thus leading to a deviation of the Prigogine-Defay
ratio from unity. However, as he himself and, later, Speedy11

pointed out, this influence tends to lead to a Prigogine-Defay
ratio smaller than 1, opposite to the experimental findings.

Schmelzer and Gutzow12 have developed a quantitative
treatment of the glass transition in terms of nonequilibrium
thermodynamics. This treatment explains the difference be-
tween cooling and heating experiments. It turns out that one
has to expect different Prigogine-Defay ratios for heating
and cooling experiments and, generally, a Prigogine-Defay
ratio which depends on the cooling rates. Schmelzer and

FIG. 2. (a) The temperature dependence of the thermal volume
expansion24 in B2O3 compared to the sum (continuous line) of a
constant Grüneisen term (dashed line) and the structural expansion
of Eq. (25). (b) The temperature dependence of the heat capacity of
the metallic glass vitralloy-1 at ambient pressure25 compared to the
sum (continuous line) of the vibrational heat capacity of the glass
(dashed line) and the inherent structure contribution of Eq. (24).

Gutzow claim that these effects are also able to explain the
experimentally measured Prigogine-Defay ratios in terms of
the diffusiveness of the glass transition. However, this special
conclusion is debated by others.14

From the point of view of the present paper, one does
not need the Schmelzer-Gutzow explanation, because the
existence of two kinds of density fluctuations explains the
deviation of the Prigogine-Defay ratio from unity in a natural
way. Of course, the present approach contains the idealization
of a sudden stop of all configurational changes at Tg , which is
not true. In many glass formers, one has pronounced secondary
relaxations which persist deep into the glass phase.20,21 This
influence is clearly visible in the thermal expansion of B2O3

in Fig. 2(a) of the next section, where the glass transition is at
550 K, but the final glass value is only reached around room
temperature.

Experimentally, one can get rid of the nonequilibrium
effects in the glass by extrapolating the glass properties
from low enough temperatures, because the influence of the
relaxational states on the heat capacity, the compressibility, and
the thermal expansion becomes rapidly very small as one cools
down from Tg . In many glasses, these three quantities are then
close to the ones of the corresponding crystals, because they
are exclusively determined by the vibrations [see, for example,
the heat capacity of metallic glass and crystal in Fig. 2(b)]. If
one extrapolates the glass values from low enough temperature
like in Fig. 2(a) (that is what Gupta and Moynihan3 did to
arrive at their value 4.7 for the Prigogine-Defay ratio of B2O3),
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one gets the idealized Prigogine-Defay ratio as defined in the
present paper.

Finally, let us discuss the further assumptions needed to
arrive at the derived equations. With respect to the distribution
function gEV (E,V ) there are no specific assumptions. Also, it
is not necessary to assume the same compressibility and the
same vibrational anharmonicity for all inherent states. The
fact that their frozen occupation probability just below Tg

equals the equilibrium occupation probability just above Tg

ensures the continuity of their contributions to the heat
capacity, the thermal expansion, and the compressibility. The
temperature slope of these quantities must be expected to be
different above and below Tg , but a correct extrapolation from
both sides should provide discontinuities �cp, �α, and �κ

which depend only on the distribution functions g(E) and
gV (E,V − VE).

It is necessary to assume the same vibrational entropy
for the states at constant structural energy, but with dif-
ferent volumes. If this does not hold, the equations get
more complicated. However, a linear volume dependence of
the vibrational entropy at constant structural energy could be
compensated by an external pressure, so one would get the
same situation at a nonzero pressure. In any case, the existence
or nonexistence of inherent states with different volume at
constant structural energy remains the central point for the
analysis.

The separation of the partition function into a vibrational
and a configurational part works as long as the time scale of the
configuration changes is well separated from the vibrational
time scale. This implies a validity of the scheme between the
glass temperature and the critical temperature Tc of the mode
coupling theory,22 a bit more than half of the interval between
glass temperature and melting temperature.

In this interval, the total volume change is only a few
percent. This justifies the assumption of a completely linear
volume-energy relation in Eq. (8).

A more severe limitation is the restriction to the pressure
zero (but note that in the glass transition case the atmospheric
pressure is still practically equal to zero). The restriction is
necessary to keep the equations simple. Therefore the task of
treating the pressure dependence of the glass transition must
be left to future work.

If one talks about two kinds of density fluctuations, one
must keep in mind that a given density fluctuation will usually
be a mixture of both. But for a Prigogine-Defay ratio of unity
one only has one kind, namely a density fluctuation which is
due to a fluctuation of the structural energy. This has important
implications,5,16 in particular the property of isomorphicity.7,8

Some other important implications will be discussed in the
next section.

III. COMPARISON TO EXPERIMENT AND SIMULATION

A. Heat capacity and thermal expansion

According to numerical simulation results23 the density
g(E) of the inherent states tends to be a Gaussian in the
configurational energy E, with the maximum E0 of the
Gaussian at a value higher than kTg (see Fig. 1):

g(E) = g0 exp

[−(E − E0)2

2w2

]
, (23)

where w2 is the mean squared deviation of E from E0. In this
simple case

�cp = w2

V kBT 2
, (24)

and the thermal expansion at zero pressure

�α = aw2

V kBT 2
. (25)

While one cannot expect every glass former to have a
single Gaussian density of inherent states, it turns out to be
easy to find substances which have the 1/T 2 dependence.
Figure 2 shows two examples,24,25 B2O3 and the metallic glass
vitralloy-1. There are more such cases,2 but there are also
cases like glycerol26 and selenium,27 where the additional
heat capacity decreases more slowly. The equations derived
here suggest that the function g(E) is not a Gaussian in these
two cases.

The case of selenium allows us to compare the two
Grüneisen constants � and �E describing the volume depen-
dence of the average vibrational frequency in the glass and
in the undercooled liquid, respectively. From Eq. (2), one has
in the undercooled liquid a vibrational component �cp,vib of
�cP

�cp,vib = T
∂Svib

∂T

∣∣∣∣
Tg

= �EkB�αTg. (26)

Inserting the data28 for selenium at Tg , the product �αTg is
0.076. There is an inelastic neutron scattering measurement29

of �cp,vib, which places it at about one third the total �cp of
1.72 kB per atom. With this value, one calculates �E = 15. On
the other hand, Eq. (1) with the values from Ref. 28 provides
� = 0.5, a much smaller value.

The large difference becomes understandable if one looks
at the neutron scattering data.29 In fact, the large increase of
the vibrational entropy above Tg is only due to changes at the
low frequency end of the vibrational spectrum, at and around
the boson peak. Thus one does not see an effect of the entire
vibrational spectrum, but merely the one of a small minority
of soft modes close to a structural instability.30 They are still
tractable in terms of the quasiharmonic approximation, but it
is no wonder that their Grüneisen parameter under structural
changes should be much larger than the average one of the
entire spectrum in a fixed configuration.

B. Coupling to longitudinal and transverse sound waves

Measurements of the Prigogine-Defay ratio at the glass
transition3 in B2O3 show a value of 4.7, much larger than unity.
This shows that the constant-energy component of the density
fluctuations is a factor of 3.7 larger than the rest. But there are
also substances with a Prigogine-Defay ratio close to unity,5

for which the volume distribution function gV (E,V − VE) of
Eq. (3) is essentially a δ function at VE , with practically no
contribution to the density fluctuations.

This possibility of a practically complete absence of a
volume variation at constant structural energy is surprising
if one considers the volume variation as just a special case
of a distortion. One knows that there must be infinitely many
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shear distorted inherent states at constant structural energy,
because otherwise one cannot understand the viscous flow. If
one applies a small shear strain to a given inherent state,
the sample ends up after the equilibration in another sheared
inherent state with the same structural energy. If the Prigogine-
Defay ratio is unity, this sheared inherent state has the same
volume as the initial one. The consideration shows that
a Prigogine-Defay ratio of unity implies a zero coupling
of the structural shear relaxation processes to an external
compression.

One can get an independent experimental access to this
aspect of the problem by comparing the acoustic absorption of
longitudinal and transverse sound waves at low temperatures
in the glass phase.28 The low temperature absorption is due
to tunneling states,31–33 which can be viewed as two inherent
states separated by a very small energy barrier. If these two
states differ only in the shear strain, the ratio of the square of the
coupling constants γl for longitudinal waves and γs for trans-
verse waves is γ 2

l /γ 2
t = 4/3, because the longitudinal modulus

M = B + 4/3G (B bulk modulus and G shear modulus). If
the ratio exceeds 4/3, one has evidence for a volume difference
of the two inherent states. One can quantify this influence in
terms of the definition of a bulk-shear coupling ratio

δB

δG
= γ 2

b

γ 2
s

= γ 2
l

γ 2
s

− 4

3
, (27)

where γb is the coupling constant of the tunneling state
to an external compression. In most glasses,31–33 this ratio
lies between 1 and 2, showing that there is indeed a strong
coupling to an external compression.

It is not straightforward to define a comparable ratio δB/δG

at the glass transition. The proper way would be to define
the ratio in terms of compliances. But the shear compliance
diverges, while the bulk compliance (the compressibility) stays
finite.

One can make a crude compromise28 by saying that the
processes which reduce the shear modulus G to zero reduce
the bulk modulus by �B, and that this defines the average
coupling ratio δB/δG. Then

�B = δB

δG
G. (28)

One calculates �B from the difference

�B = BPD − B0, (29)

where BPD is the zero frequency modulus one would have for
a Prigogine-Defay ratio of unity (the low frequency modulus
for zero compression coupling)

BPD = 1

1/B + �κ/	
(30)

and B0 is the actual measured zero frequency modulus of the
undercooled liquid

B0 = 1

1/B + �κ
. (31)

This recipe allows us to determine the average coupling ratio
δB/δG from the measurements at Tg via

δB

δG
= B�κ(	 − 1)

1 + B�κ(	 − 1)

B

G
. (32)

It turns out that this approximation works rather well for
a large number of substances. One gets essentially the same
dependence on the Poisson ratio for both glass transition data
and tunneling states. Also, substances measured both at Tg and
at low temperature show the same ratio within experimental
error.28 The substances with zero bulk coupling (a Prigogine-
Defay ratio of unity) occur at the high Poisson ratio end, at a
value of about 0.4.

C. Comparison to simulation

The question is: Why do some glass formers like B2O3

have a large Prigogine-Defay ratio (a strong coupling of the
structural relaxation processes to an external compression),
while others have a Prigogine-Defay ratio close to unity,5

i.e., structural relaxations which do not couple to an external
compression? Part of the answer to this question has been given
in numerical studies16,17 of different interatomic potentials.
These studies have a relaxation time range of nanoseconds, in
the best case microseconds. Therefore they do not discriminate
between vibrations and structural relaxation, but calculate
the total enthalpy-volume correlation. They find a strong
correlation in the Lennard-Jones potential, a slightly weaker
but still strong correlation in the MGCU-potential applicable
to metallic glasses, but a rather weak correlation for hydrogen
bonded substances.

Taking the heavily studied34 Lennard-Jones example, the
strong enthalpy-volume correlation (equivalent to a Prigogine-
Defay ratio close to unity) at zero pressure is the same as
the one for a steep inverse power law potential with an
applied external pressure.16,17 The inverse power law is 1/r18.9

(r interatomic distance). This shows that the Lennard-Jones
potential is rather close to the hard-sphere case. The applied
external pressure needed to hold the atoms together in the
equivalent inverse power potential can be estimated from the
linear potential term of 2.4 r in Lennard-Jones units at the first
coordination shell;16,17 it is not small.

The effect of an external pressure on the structural states of
the inset of Fig. 1, the ones responsible for the compressibility
�κ0, is to change their energies. Thus they are no longer at
equal energy and begin to contribute to the heat capacity and to
the thermal expansion. As a consequence, the Prigogine-Defay
ratio diminishes. Its deviation from its zero pressure value
should become notable at the critical pressure

pcrit = 1

a
= �cp

�α
, (33)

because then the structural states of the inset of Fig. 1 have
half the energy-volume coefficient of the other ones.

The strong enthalpy-volume correlation of the Lennard-
Jones system extends down to low temperatures in the glass and
even in the crystal,16 showing that in this case the vibrations
reflect the properties of the structural relaxation. This is
consistent with the finding δB/δG = 0 in a Lennard-Jones
glass at zero temperature.35,36 The instantaneous affine shear
deformation modulus G∞ is a factor of two higher than the
final G, but B∞ = B. Since B∞ and G∞ have the central-force
Poisson ratio ν = 1/3, this pushes36 the final ν up to 0.4. The
effect is due to a nonaffine motion of the atoms which lowers
the shear energy, but does not couple to the compression. The
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nonaffine motion is intimately related to the boson peak and
to the tunneling states which dominate the glass behavior at
very low temperatures30,37 as well as to the plastic modes
responsible for the shear thinning in non-Newtonian flow.38

One can define a (numerically accessible) vibrational
coupling ratio in the low-temperature glass

δB

δG
= B∞ − B

G∞ − G
, (34)

which in the Lennard-Jones case is zero, as well as the one
defined in Eq. (32). There seem to be several examples for an
equality even if the ratio is nonzero.28 This supports numerical
evidence39 for an intimate relation between the soft modes
and the structural rearrangements of the undercooled liquid,
a property which glass forming liquids seem to share with
colloids and granular matter.40

D. Metallic glasses and the Ioffe-Regel limit

There are some indications that one has a low δB/δG

in metallic glasses as well, though their anharmonic thermal
expansion41 αlTg = 0.035 is a factor of ten smaller than the
Lennard-Jones one.16 Tunneling state measurements33 show a
coupling constant ratio of 4/3, consistent with the complete
absence of a coupling to the compression. This implies a
Prigogine-Defay ratio of unity.

In the Lennard-Jones glass, both vibrational and relax-
ational modes have a zero coupling to an external compression,
i.e., a coupling constant ratio of 4/3 to longitudinal and
transverse sound waves, respectively. Assuming the same for
metallic glasses resolves a controversy of long standing42,43 on
the scattering of sound waves at the boson peak. The existence
of a plateau in the thermal conductivity of glasses44,45 at about
5 K shows that one reaches the Ioffe-Regel limit of strong
damping (mean free path equal to wavelength) more or less in
the boson peak region. While it is not yet possible to measure
the damping of transverse waves at the boson peak, one can
measure the damping of longitudinal waves with the x-ray
Brillouin technique. On the basis of such measurements, it
was concluded that the Ioffe-Regel limit is reached at the
boson peak.43 But there is one notable exception: in the x-ray
Brillouin scattering of a metallic glass42 at the boson peak, the
damping is decidedly smaller than the Ioffe-Regel limit.

The controversy is resolved if one assumes a Prigogine-
Defay-ratio of one in the measured metallic glass. If one has
zero coupling to an external compression, the ratio γ 2

l /γ 2
t is

only 4/3. The damping is proportional45 to γ 2/v3, where v

is the sound velocity. In the metallic glasses, the ratio of the
sound velocities is approximately a factor of 2, so the damping
of the longitudinal waves at the boson peak should be about a
factor of six weaker than the one of the transverse waves.

Independent support of this interpretation of the x-ray
Brillouin data is supplied by a soft-sphere simulation,46 which
only shows the Ioffe-Regel limit for the transverse waves.

The findings indicate that one has δB/δG close to zero in the
rather harmonic metallic glasses as well as in the anharmonic
Lennard-Jones case, in agreement with the numerical finding16

for the MGCU potential. This is another example where the
absence of a coupling to an external compression seems to
be shared by all three groups of glassy excitations, namely
relaxations, tunneling states, and boson peak modes.

Both Lennard-Jones systems and metallic glasses belong
to the close packed systems. There are two possible reasons
for a weak compression-relaxation coupling in close packing:
(i) the attractive part of the potential acts as a critical pressure
in both Lennard-Jones systems and metallic glasses, (ii) the
elementary structural relaxation processes in close packing
couple only very weakly to the compression. The second
possibility is supported by two atomic models for the structural
relaxation in close packing, the interstitial47,48 and the gliding
triangle,49 both of which couple only to the shear.

IV. SUMMARY

To conclude, the paper presents a thermodynamic descrip-
tion of the undercooled liquid at zero pressure which allows
us to calculate the additional thermal expansion, the additional
heat capacity, and the additional compressibility above Tg from
the properties of the inherent states. The description provides a
physical explanation for the large measured Prigogine-Defay
ratios at the glass transition. According to this explanation,
one has to distinguish two kinds of slow density fluctuations
in the undercooled liquid (in agreement with the traditional
view of more than one order parameter freezing in at the
glass transition). The first kind is always present and is due
to a change to an inherent state with a different structural
energy and, consequently, a different volume. This first kind
is responsible for the thermal expansion. The second kind is
due to the existence of inherent states with different volumes
at the same structural energy. If this second kind is absent,
enthalpy and volume fluctuations are strongly correlated and
the Prigogine-Defay ratio is one.

A Prigogine-Defay ratio of unity is equivalent to a zero
coupling of the structural relaxation processes (flow processes)
to an external compression. In glass forming systems, this
case is the exception rather than the rule. The most important
example is the heavily studied Lennard-Jones system. In this
case, the zero coupling is found both for the relaxations and
for the boson peak vibrations. The relatively weak coupling
of the longitudinal sound waves to tunneling states and boson
peak modes indicates a Prigogine-Defay ratio close to unity in
metallic glasses as well. In spite of intense numerical studies,
the reason for the zero coupling is not yet fully clear.
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