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Discrete energy levels of bright solitons in lithium niobate ferroelectrics
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In the framework of a simple model of a one-dimensional array of a ferroelectric slab of domains, the
polarization with time and space is explained by the Klein-Gordon equation. A perturbation of the K-G equation
makes it possible to use this continuum model through a progressive-wave nonlinear Schrödinger equation
(NLSE). The latter gives rise to a bright soliton that moves with a certain velocity. The bright soliton controls
itself so that both bright and dark solitons appear at the same time with discrete energy levels that are estimated
from a hypergeometric function, but the dark soliton is not visible as it is part of the complex solution that
indicates absorption of energy, i.e., the presence of an energy gap. The pulse width for switching of ferroelectrics
can be estimated from the analysis of the NLSE and matches that calculated from this model.
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I. INTRODUCTION

In the field of applied physics, one of the most well studied
materials is ferroelectrics, which have a variety of important
applications1–4 in nonlinear optics, such as electro-optics
and second-harmonic generation5,6 and nonvolatile memory
devices.7,8 Ferroelectrics have also emerged as important
materials as piezoelectric transducers, pyroelectric detectors,
surface acoustic wave (SAW) devices, and four-phase mixing
doublers. Both lithium tantalate and lithium niobate appear
to be promising candidates as the key photonic materials for
a variety of devices, such as optical parametric oscillators,
nonlinear frequency converters and second-order nonlinear
optical material, and holography. Many such devices include
important nanodevices.9–11

Ferroelectricity is an electrical phenomenon whereby cer-
tain materials exhibit a spontaneous dipole moment whose
direction can be switched between the equivalent states by
the application of an external electric field.1–4 It arises in
certain crystal systems that undergo second-order structural
transition below the Curie temperature, which results in
the development of spontaneous polarization. This can be
explained by the Landau-Ginzburg free energy functional.3,4,9

The ferroelectric behavior is commonly explained by the
rotation of domains and domain walls that are present in the
crystal with uniform polarization.1–4 This behavior is nonlinear
in terms of hysteresis of polarization (P ) and electric field (E)
vectors.

Ferroelectricity arises because of the collections of do-
mains, where the ferroelectric domains, as with ferromagnetic
domains, are created and oriented by a need to minimize
the fields as well as the free energy of the crystal. The
bulk properties and domain structure of these materials have
been extensively studied.3,4,9,12–16 However, recently they
have gained renewed interest for potential applications in
nanoscience and the design of nanodevices, where the focus
is on properties exhibited at small length scales.9,11 Because
of these current interests, we look for details of the dynamical
properties of domain arrays, which may become significant
features at some of the length scales of interest and thus this
issue assumes special significance.

Several studies have been made by Vanderbilt et al.17

on the ab initio calculation of energy of the domain wall
having a narrow width of the order of one lattice spacing
as well as on defect pinning of the domain wall in lead
titanate.18 By powerful NMR experiments on intrinsic defects
of ferroelectrics, Yatsenko et al.19 did an impressive study
on domain dynamics of lithium and antisite niobium defects
structure. Phillpot and coworkers20 used a density functional
theory (DFT) approach and molecular dynamics simulations
to show that the 180 ◦ domain walls have mixed character
in lead titanate and lithium niobate that can be dramatically
enhanced in nanoscale thin film heterostructures, where the
internal wall structure can form polarization vortices. They
also showed21 the behavior of Er defects in lithium niobate by
energetic and stability considerations by DFT combined with
thermodynamic calculation, which yields exlusively the role
of defects on the charge balance.

Quantum chemical calculations were also undertaken by
Stashans et al.22 on the oxygen vacancy defects in lead
titanate crystals. It should be mentioned that the relaxor
ferroelectrics and intrinsic inhomogeneity were also studied
by Bussman-Holder et al.23 for a dielectrically soft matrix.
The phenomenological level of description has been used
in many previous theoretical and experimental investigations
of ferroelectric domain walls, particularly by Scott and
coworkers.7,8 First-principles calculations have also been
performed on ferroelectrics by Klotins et al.24 in terms of
nano polar regions. An interesting investigation on the domain
structure by dynamic-contact “electrostatic force microscopy”
also revealed that the distribution of polar nanoregions and
their dynamics are influenced by the grain morphology,
orientation, and more importantly, oxygen vacancies.25 Some
of these investigations have been made to get an overview of
the domains and domain walls in such materials in terms of
“smaller length scales” in which the excitations can exist.

The above description also shows the importance of the
domain wall in ferroelectrics in describing a soliton solution,
i.e., nonlinear localized traveling waves that are robust and
propagate without change in shape, giving the polarization
profile and the distribution of the elastic strain across the
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domain wall.26 As also indicated in Ref. 26, the ferro-
para phase change occurs through a global and coordinate
displacement of the ions. Hence, the presence of solitons is due
to the Landau double well potential in which the pentavalent
metal ions (niobium or tantalum) are sitting with their coupling
that is strong enough to lead to cooperative effects. A two-well
potential of Landau-Ginzburg has been used to derive the kink
solution of the nonlinear propagating waves in ferroelectrics
in the context of a diatomic chain model.27–29 The impact of
this potential in the case of a discrete system has been quite
extensively studied by Comte30 (see references therein).

Within the continuum limit dynamics, the nonlinear Klein-
Gordon (K-G) equation with second-order space and time
derivatives has been used in a number of studies on domain
walls and the motion of domain walls, and in some preliminary
treatments of arrays of domains.14 A particular facility in
the treatment is that the K-G equation is a well-known
equation of mathematical physics which exhibits a wide
variety of interesting properties and has applications to a
wide variety of different physical systems. A set of intrinsic
localized modes or discrete breathers (DBs) of the domain
array was also investigated in the context of the Klein-Gordon
equation.9 These excitations are characterized by their long-
time oscillations and are highly localized pulses in space that
are found in the discrete nonlinear model formulation. DBs are
discrete solutions, periodic in time and localized in space, and
whose frequencies extend outside the phonon spectrum. They
are formed as a self-consistent interaction or coupling between
the mode and the system nonlinearity. Thus, DBs modify the
local properties of the system that provides the environment
for the DBs to exist.

Without going into the history of DBs, it can be said that
there has been a considerable amount of research activity on
DBs since the paper of Sievers and Takeno31 was published
in 1988. An extensive study on the subject was done by
Flach and coworkers32,33 and by Mackay and Aubry34,35

that was also followed by a lucid presentation on what we
know about discrete quantum breathers by Fleurov.36 Here,
a brilliant review by Flach and Gorbach37 also needs a
special mention that contains almost all the relevant references
on DBs. It is pertinent to mention that a richer variety of
the Klein-Gordon equation was also derived in the case of
other important nonlinear optical materials such as split-ring
resonator based metamaterials, where a discrete breather pulse
has been observed.38,39 The Fano resonance due to DBs has
also been described on a two-channel ansatz in the K-G lattice
by various workers.40–42 Recently, it was shown in terms of
various parameters such as dielectric permittivity, coupling,
and focusing-defocusing in metamaterials.43

Furthermore, as the discreteness is found to trap the
breathers, the moving breathers are nonexistent in a highly
discrete nonlinear system that has been lucidly presented
by Bang and Peyrard in the context of a Klein-Gordon
model.44 Another relevant work by the same authors45 needs
to be mentioned on a numerical study on the “exchange
of energy and momentum” between the colliding breathers
to describe an effective mechanism of “energy localization”
in the Klein-Gordon lattice, arising out of the discreteness
and nonintegrability of the system. In the latter work, the
bright soliton solutions have been used in the context of

nonlinear dynamics of DNA molecules to demonstrate the
generation of highly localized modes. These two references
have significance for our present work, as we are primarily
concerned with the derivation of the NLSE through the
perturbation route for ferroelectrics, wherein localization also
plays a role for discrete breathers.9

It is known that quasi-phase-matching (QPM) is an impor-
tant issue in a quadratic nonlinear photonic crystal (QNPC) or
photonic band gap materials with tunability. In an interesting
work on QPM by Kobyakov et al.,46 the influence of an induced
cubic nonlinearity on the amplitude and phase modulation
was analytically studied to predict an efficient all-optical
switching. Further, in the application front for a QNPC, a
stable soliton solution was shown by Corney and Bang47

for cubic nonlinearity (induced by dual QPM gratings) and
QNPC was found to support both dark and bright solitons
even in the absence of quadratic nonlinearity. The “modulation
instability” in periodic quadratic nonlinear materials was also
investigated by the same authors.48 Trapani et al.49 studied
focusing and defocusing nonlinearities in the context of
parametric wave mixing.

The literature on solitons is so vast that it is very difficult
to mention all the references. However, Ref. 26 is very
useful for further references. For soliton propagation, in
many optical systems, it is a common practice to use the
nonlinear Schrödinger equation (NLSE). Here it is shown
that the NLSE can be derived through perturbation on the
K-G equation when a progressive wave passes through a
nonlinear medium, such as lithium niobate ferroelectrics,
where dispersion may take place. It has been observed that
a soliton with higher velocity gives rise to a bright soliton and
that moving with lower velocity gives rise to dark soliton in the
context of a continuum Hamiltonian.14 This velocity involves
an “interaction constant” that is associated with the spatial
term, which seems to guide the soliton behavior, i.e., the shape
and velocity of soliton propagation in the ferroelectric system,
as considered here. A peculiarity is observed in the solution
of the NLSE when soliton-soliton coupling is considered.
The soliton has discrete energy levels due to dipole-dipole
interaction and a hypergeometric function is derived for the
ferroelectric system for discrete energy levels of solitons. All
these cases are discussed in the realm of stability of domains in
the specific case of lithium niobate ferroelectrics. Although the
NLSE has been described for a general system and for DNA
macromolecules,44,45 our perturbation analysis is primarily
focused on both the dark and bright solitons in the ferroelectric
system.

The paper is organized as follows: In Sec. II, theoretical
descriptions are given on the perturbation approach on the
K-G equation and derivation of the hypergeometric function
for discrete energy levels of solitons. In Sec. III, the results and
discussion are presented on soliton wave functions and soliton
velocity. Section IV gives the conclusions.

II. THEORECTICAL DEVELOPMENT

Let us consider an idealized one-dimensional array of N

identical ferroelectric domains along the x direction. The
domains are considered to be rectangular parallelepipeds. For
simplicity, the polarizations in each domain are oriented in
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the z direction and translationally invariant in the y direction.
Between the neighboring domains, there is a domain wall
and here we consider nearest-neighbor coupling between the
domains. The domain arrangement has been shown in Ref. 9.
For the mode dynamics of the extended modes and modes that
are localized, the nonlinear Klein-Gordon equation relating
the polarization (P ) vector in terms of space (x) and time (t)
with rms driving field (E0) is given by14

∂2P

∂t2
− K̄

∂2P

∂x2
+ γ̄

∂P

∂t
− ᾱ1P + ᾱ2P

3 − E0 = 0 (1)

for the dynamics of polarization P (x,t). Here, Eq. (1) contains
all the nondimensional terms as P = P ′/Ps , where Ps is the
saturation polarization in C/m2 [typical value for LiNbO3

ferroelectrics as 0.75 C/m2 (Ref. 3)]; the normalized field
is E0 = E′/Ec, where Ec is the coercive field (when P = 0) in
kV/cm in the usual nonlinear hysteresis curve of P vs E with
a typical value for the same material as 40 kV/cm;3 t = t ′/tc,
where tc is considered as the critical time scale for polarization
to reach a saturation value, i.e., at or near the domain walls
that are of importance to our study with a typical value of
10 ns for a switching time of (say) 200 ns for a damping
value γ̄ = 0.50 (Ref. 15) that are based on the above data;
and x = x ′/WL, where WL = domain wall width of the order
of a few nanometers. Equation (1) is obtained after dropping
the prime notation, and by taking α1 = α2/P

2
s and ᾱ1 = ᾱ2 =

ᾱ = (α1Ps)/Ec.3,9 Here, the coefficients associated with the
variation of the second-order spatial term for an interaction or
coupling (K) and that for first-order time variation in Eq. (1)
for a damping term (γ ) are given by K̄ = KPs/2Ec and
γ̄ = γPs/tcEc, where γ is a decay constant relating to the
loss of polarization due to internal friction during the rotational
motion of the domains in the system.

For a perturbation analysis, if ε is a small parameter
characterizing the nonlinearity, the solution of Eq. (1) is
considered as

P = P ′ + εP0 + ε2P1 + ε3P2 + · · · , (2)

where P ′ = √
ᾱ1/ᾱ2 ≈ 1 (Ref. 9) and P1,P2, . . . ,Pn are

the perturbed polarizations. Let us introduce the large-scale
variables X = εx, T = εt , and a new term, τ = εT = ε2T ,
where small parameter ε is constant, as discussed later. It is to
be noted that our analysis can even be done without involving
the above new term, but we wanted our perturbation method to
be more stringent. In our multiple scale analysis ∂

∂t
is replaced

by ( ∂
∂t

+ ε ∂
∂T

) and ∂
∂x

by ( ∂
∂x

+ ε ∂
∂X

). So, in terms of small
parameter, both the temporal and spatial terms can be written
as (

∂

∂t
+ ε

∂

∂T

)2

= ∂2

∂t2
+ 2ε

∂2

∂t∂T
+ ε2 ∂2

∂T 2
, (3a)

(
∂

∂x
+ ε

∂

∂X

)2

= ∂2

∂x2
+ 2ε

∂2

∂x∂X
+ ε2 ∂2

∂X2
. (3b)

Using Eqs. (3a) and (3b), Eq. (1) leads to the choice of the
operators such that they are related as

L = L0 + εL1 + ε2L2 + · · · (3c)

The different components of the above operators are then
written as

L(0) = ∂2

∂t2
− K̄

∂2

∂x2
+ γ̄

∂

∂t
, (4a)

L(1) = 2

(
∂2

∂t∂T
+ 1

2
γ̄

∂

∂T
− K̄

∂2

∂x∂X

)
, (4b)

L(2) =
(

∂2

∂T 2
− ∂2

∂t∂τ
− K̄

∂2

∂X2

)
, (4c)

where τ = εT .
In this continuum model, the polarized wave propagates

in a progressive manner through the ferroelectric slabs in a
one-dimensional array of domains that is expressed as

P0 = ψ(X,T )ei(kx−ωt). (5)

The nonlinearity is manifested through variable amplitude
ψ(X,T ) of the material response. Linear frequency (ω) and
propagation constant (k) are intrinsic properties of unperturbed
polarization in ferroelectrics. The use of Eqs. (2) and (3c)
in Eq. (1) gives rise to an equation that is independent of
the parameter ε1 that operates on Eq. (5) such that L0P0 =
−2ᾱ1P0 in the continuum model. Hence, the result is expressed
as

−ω2 + K̄k2 − iωγ̄ + 2ᾱ1 = 0, or

ω(ω + iγ̄ ) = K̄k2 + 2ᾱ1, or (6)

ω = ω(K̄k2 + 2ᾱ1)

ω2 + γ̄ 2
− iγ̄ (K̄k2 + 2ᾱ1)

ω2 + γ̄ 2
.

Taking the real parts, the concerned equation gives rise
to a relation of frequency with dispersion modes in the
ferroelectrics as

ω2 = K̄k2 + 2ᾱ1 − γ̄ 2. (7)

In an array of domains, the domain wall stands between the
two uniform dipoles that are in opposite direction. There are no
waves or dispersion frequency at the domain wall. So we adopt
the discrete model rather than the continuum case in dispersion
as a special case up to Eq. (11). Now, if we use the discrete
concept to take care of smaller length scale of excitation, i.e.,
in the nano range, L0P0 = −2ᾱ1P0. At this stage, if we use the
discrete polarization modes Pn for the nth domain, and only
use the unperturbed part to take care of smaller length scales
of excitation, Eq. (1) with the help of the operator in Eq. (4a)
can be written as

∂2P0

∂t2
− K̄(P0(n+1) + P0(n−1) − 2P0n) + γ̄

∂P0

∂t

+ 2ᾱ1P0 = 0. (8)

Here, it is to be noted that we consider the nearest neighbors of
the nth domain; hence Pn+1 and Pn−1 are taken into account.
The polarization waves maintain the periodicity, and if we take
a as the lattice constant and k as the propagation constant, then
as per the Bloch theorem, we get P0(n+1) = P0e

ika , P0(n−1) =
P0e

−ika , and P0n = P0. Let us use these relations in the above
Eq. (8), and for the discrete case for dispersion, we get

−ω2 + 4K̄ sin2 ka

2
− iγ̄ ω + 2ᾱ1. (9)
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As lithium niobates contain a niobium antisite vacancy, we
are inclined to attribute the resulting modes to the impurities
and nonlinearity,9 as the presence of quantum breathers has
been related to the presence of such impurities in lithium
niobates,50 as also extensively investigated by Phillpot and
coworkers by the density functional theory (DFT) approach
and phase field modeling.20,21 The impurity-induced localized
mode oscillations are mainly present in the vicinity of the
impurity sites. On the other hand, these excitations exist at
any point in the ferroelectric domains. In the realm of nano
science and technology, the importance of discrete domains in
the smaller length scale cannot be denied, and thus the domains
could be better understood. The real value of dispersion
frequency in ferroelectric medium in discrete domains is given
as

ω2 = 4K̄ sin2 ka

2
− γ̄ 2 + 2ᾱ1 for

−π

a
� k � π

a
. (10)

Here, the propagation constant k lies within the first Brillouin
zone. If E0 = 0 and γ̄ 2 is very small (i.e., damping tends to
zero14), then the minimum frequency for dispersion is defined
as

ωmin =
√

2ᾱ1, i.e., ω > ωmin. (11)

Now, coming back to the continuum case, by using Eqs. (2)
and (3c), the coefficient of the second-order term ε2 is
L1P0 + L0P1 = 0. As P1 is not involved in this analysis, the
second term should be considered zero: L0P1 = 0. So, the first
term L1P0 = 0. This condition evaluates the partial differential
equation as

2i

(
ω

∂ψ

∂T
+ i

1

2
γ̄

∂ψ

∂T
+ K̄k

∂ψ

∂X

)
= 0,

and for the continuum case for an array of ferroelectric
domains, we have

∂ψ

∂T
= −v

∂ψ

∂X
, (12)

where v is the group velocity, which cannot be termed as
the velocity of the soliton as we arrive at the soliton solution
at Eq. (17), and this is defined as v = 2K̄k/(2ω + iγ̄ ). The
magnitude of this velocity is given by

v = 2K̄k√
4ω2 + γ̄ 2

. (13)

This is the group velocity that decreases with increasing
damping. In the continuum model, the nonlinearity is linked
to this velocity (v) and the spatial distance as

ξ = X − vT . (14)

Hence, we can write

∂2ψ

∂T 2
= v2 ∂2ψ

∂ξ 2
. (15)

By using Eqs. (2) and (3c), the coefficient of the third-order
term ε3 is L2P0 + ᾱ2P

3
0 = 0. By using Eqs. (14) and (15),

this condition gives rise to the nonlinear Schrödinger equation
(NLSE):

i
∂ψ

∂τ
+ �′ ∂

2ψ

∂ξ 2
+ β |ψ |2 ψ = 0. (16)

Here, ᾱ1 = ᾱ2, �′ = (v2 − K̄)/ω, and β = ᾱ2/ω. The solu-
tion of Eq. (16) is

ψ =
√

2 sec h

√
ᾱ1

v2 − K
ξei(ᾱ1/ω)τ . (17)

So, for the unperturbed polarization, we can write

P0 =
√

2 sec h

√
ᾱ1

v2 − K̄
ξei{kx−[ωt−(ᾱ1/ω)τ ]}. (18)

These unperturbed polarization waves will also propagate
through the ferroelectric medium only when

ωt � ᾱ1τ

ω
. (19)

In the discrete case, the NLSE, i.e., Eq. (16), is capable of
tackling x and t if and only if τ = ε2t and X = εx where ε is
an unknown constant that is to be determined. Equation (19)
implies that minimum linear frequency ω �

√
ε2ᾱ1. So, by

comparing Eqs. (11) and (19), we get ε = √
2, and then

Eqs. (14) and (16) are modified as

ξ =
√

2(x − vt) (20)

and

i
∂ψ

∂t
+ 2�′ ∂

2ψ

∂ξ 2
+ 2β |ψ |2 ψ = 0. (21)

In the approximation of discrete domains in the nanoscale
region, the above NLSE with an attractive term for (β = + β)
or repulsive term for (β = − β) gives rise to a normalized
solution of the bright soliton as

ψ1 =
√

2 sec h

√
ᾱ1

v2 − K
ξei(2ᾱ1/ω)t . (22)

When the soliton moves with velocity v <
√

K̄ , Eq. (21) gives
the dark soliton. The normalized solution for the equation of
the dark soliton is written as

ψ2 = tanh

√
ᾱ1

K −v2
ξei(2ᾱ1/ω)t . (23)

In this case, the bright soliton has the probability density as
|ψ |2 = ψψ∗ which is the intensity or amplitude of polarization
wave such that

ψψ∗ = 2 sec h2 ξ

σ
, (24)

where σ =
√

v2−K̄
ᾱ1

.

A plot of ψ2 vs x and t (not shown here) would show the
behavior of the amplitude in the space-time perspective. Now,
if we take it as an eigenvalue problem, then let us consider the
expression as

i
∂ψ

∂t
= Enψ. (25)

The solitary state exists due to the dipole-dipole interaction in
a domain which can be tuned or rather tailored in various ways
in the experiment. So, let En be the discrete energy level of
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the soliton, then Eq. (21) becomes

Enψ + 2�′ ∂
2ψ

∂ξ 2
+ 4β sec h2 ξ

σ
= 0. (26)

For the determination of discrete energy levels, let us do a
transformation of variables as

z = − sinh2 ξ

σ
. (27)

Using this transformation of variables, Eq. (26) becomes

z(z − 1)
d2ψ

dz2
− 1

2
(1 − 2z)

dψ

dz

+
(

σ 2En

8�′ + 2βσ 2

4�′ cosh2 ξ

σ

)
ψ = 0. (28)

Let us take a solution of the above equation as

ψ = (1 − z)(γ−1)/2w(z), (29)

where an energy term is defined as γ = 0,3 and w(z) is
the “hypergeometric” function. This function is specifically
suitable to find the discrete energy levels in lithium niobate
ferroelectrics for a study of switching behavior that are useful
for applications. By using Eqs. (28) and (29) becomes

z(1 − z)
d2w(z)

dz2
+

(
1

2
− γ z

)
dw(z)

dz

+
(

δ2 − (γ − 1)(γ − 2)

4(1 − z)
+ (γ − 1)(γ − 3)z

4(1 − z)

− (1 − 2z)(γ − 1)

4(1 − z)

)
w(z) = 0, (30)

where δ2 = −σ 2E/8�′ is considered in the above equation,
and we get

z(1 − z)
d2w(z)

dz2
+

(
1

2
− γ z

)
dw(z)

dz

+
(

δ2 − (γ − 1)2

4

)
w(z) = 0, (31)

where −a = δ − (γ − 1)/2, −b = −δ − (γ − 1)/2, then a +
b + 1 = γ and (−a)(−b) = δ2 − [(1 − γ )/2]2. Here, a and b

are integers or fractions. Hence by putting δ − (γ − 1)/2 =
−n/2, for n = 0,1,2,3,..., the discrete energy for the bright-
soliton motion can be expressed as

En = −2ᾱ1

ω
(n + 1)2 for γ = 0 (32)

and

En = −2ᾱ1

ω
(2 − n)2 for γ = 3. (33)

The solution of the above Eq. (31) can be written as

w(z) =
∞∑

r=0

arz
k+r . (34)

The “series” solution can be expressed as

w(z) = AF
(−a, − b, 1

2 ,z
)

+Bz1/2F
(−a + 1

2 , − b + 1
2 , 3

2 ,z
)
. (35)

Let us discuss some cases with different parameter values:
Case 1. When k = 0 and r = 0. Thus, w(z) = a0.
Case 2. When k = 1

2 and r = 0. Thus, w(z) = a0z
1/2. So,

w(z) = a0(1 + z1/2).
Both spatially variable and time-approximate solution of

Eq. (26) is given as

ψ(ξ,t) = (1 − z)(γ−1)/2w(z) = a0

(
sec h

ξ

σ
+ i tanh

ξ

σ

)

× exp

[
i
2ᾱ1(n + 1)2

ω
t

]
for γ = 0, (36)

ψ(ξ,t) = a0

(
cosh2 ξ

σ
+ i cosh3 ξ

σ

)

× exp

[
i
2ᾱ1(2 − n)2

ω
t

]
for γ = 3. (37)

These two equations have quite an importance, as discussed
below. Next, let us do our analysis for a widely used material
such as LiNbO3, based on the above deductions of NLSE
and the hypergeometric function for estimation of the discrete
energy levels.

III. RESULTS AND DISCUSSION

By giving an appropriate perturbation, an analysis of the
K-G equation gives rise to the nonlinear Schrödinger equation
(NLSE) that is considered in the context of soliton waves,
i.e., the second-order linear operators which describe the
dispersion and diffraction of the wave packet and nonlinearity.
The analysis of the NLSE facilitates the determination of the
pulse width for switching of ferroelectrics that are highly
congruent, such as lithium tantalates, wherein voluminous
work was done by Gopalan and coworkers.6,51 For optical
communication devices, when a wave packet passes through
ferroelectric materials, the dispersion would take place near
the domain wall and in the absence of dispersion, the soliton
will appear near the domain wall.

As lithium niobate contains a niobium antisite vacancy, we
are inclined to attribute the resulting modes to the impurities,9

as the presence of quantum breathers has also been related to
the presence of such impurities in lithium niobate.50 Our K-G
equation [Eq. (1)] is derived from our discrete Hamiltonian9,13

that contains a nondimensional driving field term which
involves the poling field (Ec). This “poling field” in turn
depends on the impurity content, as detailed by Yan et al.52

with an impressive set of data on lithium niobates, while
modeling the domain structure. Thus, our Hamiltonian is
impurity dependent.9 Also, the presence of charged defects
has been extensively investigated by Phillpot and coworkers
by density functional theory (DFT) approach and phase field
modeling20,21 for Er defects in ferroelectrics. The impurity-
induced localized mode oscillations are mainly present in
the vicinity of the impurity sites. On the other hand, these
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FIG. 1. (Color online) The dashed line is the curve for K̄ = 100
and the solid line for K̄ = 10.

excitations exist at any point in the ferroelectric domains. As
the importance of discrete domains in the smaller length scale
cannot be denied, the real value of dispersion frequency53 in
ferroelectric medium in discrete domains is given by Eq. (11)
for zero driving field and low damping value.

As per Eq. (10), for two different values of K̄ , for positive
pulse in the switch-on state, a plot of frequency vs propagation
constant is shown in Fig. 1. Normally, the higher coupling has
higher slope (dω/dk) that gives rise to higher dispersion. It is
seen that at lower values of interaction constant, the minimum
is hardly discernible at zero wave number, whereas a very
high value of coupling in the system gives rise to a distinct
minimum to show the effect of increasing coupling. The linear
frequency [as per Eq. (11)] is ω >

√
2ᾱ1, as discussed before.

By the above mathematical analysis, it is observed that pulse
width is 0.12 sec or 120 ms. This corresponds to ωmin = 26.58
for ᾱ1 = 353.42 that is related to an impurity content of
0.133 mole % of niobium antisite charge defects (equivalent
to a poling field of 40 kV/cm) with short voltage excitation
in the lithium niobate as a result of domain wall motion
during forward poling. For lithium tantalite ᾱ1 = 512.66 and
ωmin = 32.02. So, numerically speaking, the required pulse
width is ≈0.10 sec or 100 ms for lithium tantalate, whereas
experimentally, the domain wall motion is observed with the
use of a Nomarski light microscope during forward poling for
pulse width to be 150 ms at a very high value of poling field
of 221 kV/cm.54

As per Eq. (22), the (bright) solitonic wave function is
shown in Fig. 2. The calculations show that the coefficient
K̄ involving the dipolar interaction term is very important
in contributing to the “soliton motion” in our ferroelectric
system, i.e., in terms of its influence on the shape of the solitons
with stationary velocity.14 This interaction constant (K̄) is
proportional to the square of the domain dimension.13 When
soliton velocity is >K̄ , i.e., the soliton moves faster, it is called
a bright soliton26 that resides in the vicinity of the defect and
also at the domain walls. Here, ψ1 is normalized in the region
−1.1 � ξ � 1.1 when v2 = 4ᾱ1 + K̄ . Under this condition
for K̄ = 10 and ᾱ1 = 353.42, the typical velocity of the bright
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FIG. 2. (Color online) The spatiotemporal behavior of bright-
soliton propagation.

soliton will be approximately 37.73 m/sec in lithium niobate.
For K̄ = 100, the typical velocity of the bright soliton becomes
38.91 m/sec.

As per Eq. (23), the (dark) solitonic wave function is
shown in Fig. 3. It is normalized in the region −0.7 � ξ � 0.7
when v2 = K̄ − ᾱ1/36. The typical velocity of a dark soliton
in lithium niobate is approximately 0.43 m/sec for K̄ = 10
and for K̄ = 100 that for a dark soliton,v = √

100 − ᾱ1/4 =
3.41 m/sec. So, the velocity of a dark soliton is very low
compared to that of a bright soliton in lithium niobate
ferroelectrics, as expected. No relation has been worked out
between the soliton velocity and domain wall motion, which
can be taken up in our future scope of work. However,
it is pertinent to mention one important investigation on
a lead-zirconate-titanate with strontium-ruthenium by Kim
et al.55 who showed the domain wall velocity to be 0.1–0.5
m/sec. They also related different switching behavior to local
field deviation due to dipolar defects. Here, we have also
shown that dipole-dipole interaction prevails in our system
that is normally enhanced by defects.9,11 Now, we can write

-10
-5

0
5

10

-1
-0.5

0

0.5
1

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

xt

si
 2

FIG. 3. (Color online) The spatiotemporal behavior of dark-
soliton propagation.

184101-6



DISCRETE ENERGY LEVELS OF BRIGHT SOLITONS IN . . . PHYSICAL REVIEW B 86, 184101 (2012)

-10
-5

0
5

10

-1
-0.5

0

0.5
1

-1

-0.5

0

0.5

1

1.5

xt

si

FIG. 4. (Color online) The wave function behavior of Eq. (38),
which is the resulting normalized solution of Eq. (21).

the resulting normalized solution of Eq. (21) as

ψ =
(√

2 sec h

√
ᾱ1

v2 − K̄
ξ + tanh

√
ᾱ1

K̄ − v2
ξ

)
ei(2ᾱ1/ω)t .

(38)

When v =
√

K̄ , only sinusoidal waves propagate through
lithium niobate due to relatively lower existence of dark
solitons. This is shown in Fig. 4. It is observed that for an inter-
action between the solitons in highly nonlocal nonlinear media,
and for β = + β, the solitons are propagating in different parts
of the sample. They exhibit properties normally associated
with polarization and have a tendency to conserve quantities
such as power and momentum, which has an implication for
the application in devices. An interaction between the solitons
themselves can establish a certain minimal distance between
the pulses and hence they can be separated from each other by
domain wall width (DWW); i.e., it is thought that a pulse
active on a given polarization direction will be separated
by a finite distance barrier (DWW) wherein it gets inverted
after switching, i.e., when polarization goes to the opposite
direction.

Here, the two values of γ (0 and 3) need some explanation.
In Eq. (29), γ = 3

2 ± 1
2

√
8βσ 2/�′ + 1 = 3

2 ± 3
2 . So γ has

values 0 or 3 and as detailed in Sec. II, under this condition,
only the hypergeometric function is valid. Dark solitons
are energetically weaker than bright solitons. When v = K̄

progressive wave packets exist for a finite value of dark
solitons, as discussed before.

In terms of discrete energy levels, some explanation needs
to be given here. The soliton appears near the domain wall due
to interaction between the dipoles. Impurities are also gathered
at the domain wall and the steepness of the domain wall is
enhanced by the bright soliton along with the low-energetic
dark soliton. It is interesting to note that dark solitons always
exist [see Eqs. (22) and (38)] even when the bright soliton
propagates through the medium with its self-energy that is
defined by 2 sec h2 ξ

σ
. So, bright solitons have a certain number

of energy levels that depend on the internal obstacle, i.e.,
damping in the system. There is no obstacle in a region that

-4 -3 -2 -1 0 1 2 3 4
22

23

24

25

26

27

28

29

30

31

k

fre
qu

en
cy

 &
 e

ne
rg

y

FIG. 5. (Color online) Dispersion is shown by solid line that is
maximum at − π/a and π/a; the dashed line is meant for zero-point
energy for this model.

is characterized as an “energy gap” where the dipoles can
be rotated by forward and reverse poling. The corresponding
domain walls are relatively steeper for forward poling than for
reverse poling thus establishing the existence of energy levels
of the soliton.54,56 The condition for unperturbed propagation
of waves through the crystal is primarily temperature and
impurity dependent for a particular frequency, as deduced from
Eq. (19).

Finally, it is important to mention that Eqs. (36) and (37) are
quite significant in that if we start with the bright soliton at or
near the domain wall in a given ferroelectric, then the solution
of the NLSE [Eq. (26)] gives rise to both a real term that is
driving the bright soliton in the system and a complex term,
i.e., a significant absorption of “energy” that implies a certain
band gap, where dark solitons would cease to propagate in the
system. When a wave packet passes through lithium niobate
ferroelectrics, the dispersion will take place near the domain
wall and when dispersion will not exist, the soliton will appear
near the domain wall, as shown in Fig. 5. When the bright
soliton passes through the self-energy barrier, it splits into
real and imaginary parts which are bright and dark solitons,
respectively, with discrete energy levels.

IV. CONCLUSION

An analysis of the K-G equation gives rise to the nonlinear
Schrödinger equation (NLSE) on perturbation that is consid-
ered in the context of soliton waves, i.e., the second-order
linear operator which describes the dispersion and diffraction
of the wave packet and nonlinearity. The validity of the NLSE
breaks down near collapse where the assumption of small
amplitude and large scale of modulation no longer holds.
The effects of perturbations that can modify or even arrest
the collapse are also considered. These include dissipation,
normal dispersion, and saturated nonlinearity. Both bright and
dark solitons are the solutions of NLSE under the conditions
v >

√
K̄ and v <

√
K̄ , respectively. The bright soliton moves

with a velocity of 37.73 m/sec and the dark soliton moves
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with a velocity of 0.43 m/sec for K̄ = 10. The soliton has
self-energy or amplitude defined as 2 sec h2 ξ

σ
, and this has an

important role in controlling the bright soliton so that the bright
soliton has discrete energy levels. When the wave packet passes
through lithium niobate ferroelectrics, the dispersion will take
place near the domain wall and in the absence of dispersion,
the soliton will appear near the domain wall. When the bright
soliton passes through the self-energy barrier, it splits into real

and imaginary parts, i.e., bright and dark solitons, respectively,
with discrete energy levels.
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