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Vortex dynamics in ferromagnetic superconductors: Vortex clusters, domain walls, and
enhanced viscosity
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We demonstrate that there is a long-range vortex-vortex attraction in ferromagnetic superconductors due to
polarization of the magnetic moments. Vortex clusters are then stabilized in the ground state for low vortex
densities. The motion of vortex clusters driven by the Lorentz force excites magnons. This regime becomes
unstable at a threshold velocity above which domain walls are generated for slow relaxation of the magnetic
moments and the vortex configuration becomes modulated. This dynamics of vortices and magnetic moments
can be probed by transport measurements.
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Introduction. Superconductivity (SC) and magnetism are
at the heart of modern condensed matter physics. While they
seem to be antagonist according to the standard BCS theory,
a large family of magnetic superconductors was discovered in
the past decades. Examples include the coexistence of antifer-
romagnetism or helical ferromagnetic (FM) order in ternary
superconducting compounds,1 uniform ferromagnetism in
triplet superconductors,2–4 and antiferromagnetism in the
ReNi2B2C borocarbides5 (Re represents a rare-earth element)
and in the recently discovered iron-based superconductors.6

The interplay between SC and magnetism allows to control the
superconducting properties through the magnetic subsystem,
and vice versa. These phenomena open new possibilities
for applications to superconducting electronics and magnetic
storage devices.7,8

The Abrikosov vortices of superconductors are a natural
link between the superconducting condensate and the magnetic
moments (MMs). Vortices are induced either by external
magnetic fields or by the MMs.9 On the other hand, the
magnetic subsystem supports collective spin waves and topo-
logical excitations that are domain walls. Because vortices
are magnetic objects, they are expected to interact strongly
with MMs via Zeeman coupling. Indeed, as we discuss below,
vortex motion can drive magnetic domain walls.

The MMs provide a novel handle to control the vortex be-
havior in the static and dynamic regimes. It was demonstrated
that magnetic domains induce a vortex pinning that is 100
times stronger than the one induced by columnar defects.10

In the flux flow regime, vortex motion radiates magnons by
transferring energy into the magnetic system. This effect has
been recently proposed by Shekhter et al. for antiferromagnetic
superconductors.11 By assuming a rigid vortex lattice and fast
relaxation of the MMs, it is demonstrated that Cherenkov
radiation of magnons occurs when the vortex lattice velocity v
satisfies G · v = �(G), where G is the vortex lattice wave
vector and �(G) is the magnon dispersion. This emission
gives an additional contribution to the vortex viscosity that
manifests as a voltage drop in the I-V characteristics. Thus,
the overall dissipation is reduced for a given current. Vortex
motion can also be used to probe the spectrum of excitations
in the magnetic subsystem.12

Several questions remain to be addressed. It is known that
intrinsic nonlinear effects of the magnetic subsystem become

important for high energy magnon excitations. However, it is
unclear if magnon excitations remain stable in this nonlinear
regime. On the other hand, the interaction between the
magnetic subsystem and vortices may become comparable
or even stronger than the intervortex repulsion. Therefore,
the vortex lattice may be modified by this effect. Finally,
the dominant dissipation mechanism of vortices when domain
walls are excited by the vortex motion is unknown.

Here we study the vortex dynamics in FM superconductors.
The Zeeman coupling between vortices and MMs induces
an additional vortex-vortex attraction that is comparable
to the intervortex repulsion for a large enough magnetic
susceptibility. This attraction leads to the formation of vortex
clusters at low vortex densities. We also show that magnetic
domain walls are created when vortex clusters driven by
the Lorenz force reach a threshold velocity. The interaction
between domain walls and vortices greatly enhances the vortex
viscosity and causes hysteresis in the dynamics of the whole
system. The vortex configuration is modulated by the domain
walls.

Model. Uniform FM order and SC suppress each other
because of the exchange and electromagnetic coupling be-
tween the MMs and Cooper pairs.1 However, they could
coexist in triplet FM superconductors,2–4 such as UGe2,
layered magnetic superconductors consisting of FM and SC
layers,13,14 such as Sm1.85Ce0.15CuO4, or artificial bilayer
systems.8,15 Here we study the vortex dynamics in these FM
superconductors. An applied dc magnetic field perpendicular
to the ferromagnetic easy axis creates a vortex lattice that is
driven by a dc in-plane current. We use the approximation
of straight vortex lines and the description of vortices is two
dimensional.

The total Gibbs free energy functional of the system, in
terms of the vector potential A, magnetization M, and vortex
position Ri = (xi,yi), is

G(A,M,Ri) = d

∫
dr2(gsc + gM + gint) + 1

8π

∫
out

dr3B2,

(1)

where d is the thickness of the system and the last term is
the magnetic energy outside the superconductor. The energy
functional density for the SC subsystem in the London
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approximation is

gsc(A) = B2

8π
− B · Hext

4π
+ 1

8πλ2
L

(
�0

2π
∇φ − A

)2

, (2)

with B = ∇ × A. φ is the superconducting phase, Hext is the
applied magnetic field, λL is the London penetration depth,
and �0 = hc/2e is the flux quantum. The energy functional
density of the magnetic subsystem is

gM = J

2
(∇M)2 − JA

2
M2

x , (3)

where J and JA are the exchange and anisotropy parameters.
The easy axis is taken along the x direction. We assume
that the magnitude of the magnetic moment is conserved,
|M| = Ms , where Ms is the saturated magnetization value.
Because of the anisotropy, the magnetic Hamiltonian has two
degenerate minima and supports stable domain walls. The
Zeeman interaction between MMs and SC is

gint = −B · M. (4)

The vortex axis is taken along the z direction. The straight
vortex lines approximation is valid when d � λL or d � λL.
The spreading of magnetic field associated with vortices near
the surface of superconductors has to be taken into account
for d ∼ λL.16 By minimizing gsc + gint with respect to A, we
obtain the magnetic field associated with vortices

λ2
L∇ × ∇ × (B − 4πM) + B = �0

∑
i

δ(r − Ri)ẑ. (5)

Mz(k) = Bz(k)χ̃zz(k) in the linear response region when
Mz/Ms � 1. As λL is much larger than the magnetic correla-
tion length ξm ∼ √

J/JA, we can use a local approximation for
χ̃zz(k) � 1/JA = χ0/(1 + 4πχ0). The uniform susceptibility
χ0 ∝ 〈Mz(k = 0)Mz(k = 0)〉 diverges at JA = 4π , which
signals an instability of the magnetic subsystem. The FM
ordering along the x direction coexists with superconductivity
only when JA > 4π .17

According to Eq. (5), the magnetic field of a vortex at Ri is

Bz(k,Ri) = �0

1 + λ2
ek2

exp(ik · Ri), (6)

with a renormalized penetration depth λe ≡ λL/
√

1 + 4πχ0.
Attraction between vortices via MMs. We calculate now the

interaction between two vortices at Ri and Rj . Vortices interact
with each other through the exchange of massive photons
described by gsc, which leads to a short-range repulsion. As
was first discussed by Pearl, vortices also interact through the
exchange of massless photons outside the SC, as described by
the last term in Eq. (1). This contribution leads to a long-range
repulsion.18,19 The total repulsion energy is

Ur (R) = �2
0d

8π2λ2
e

K0

(
R

λe

)
+ �2

0

8π


[
H0

(
R




)
− Y0

(
R




)]
,

(7)

with R ≡ Ri − Rj and 
 = 2λe coth[d/λe] is the modified
Pearl length. Ki is the modified Bessel function, H0 is the
Struve function, and Y0 is the Weber function.

FIG. 1. (Color online) Vortex-vortex interaction potential for
different values of χ0 according to Eqs. (7) and (8). Attraction is
induced due to the Zeeman coupling between vortices and MMs,
and the long-range repulsion arises from the electromagnetic fields
outside the SC.

A vortex at Ri polarizes the surrounding MMs. This effect
leads to an effective attraction to a vortex at Rj . The magnetic
energy due to the presence of vortices is d

∫
dr2(gM + gint),

with Bv
z = Bz(Ri) + Bz(Rj ) and Mv

z = χ0B
v
z /(1 + 4πχ0).

The contribution from the gradient term in Eq. (3) is much
smaller than the anisotropic contribution because kξm � 1
with k ∼ 1/λe. By using M2

x + M2
z = M2

s , we obtain the
attractive interaction

Ua(R) = −d

2

∫
dr2Bv

z Mv
z = − dχ0�

2
0R

4π (1 + 4πχ0)λ3
e

K1

(
R

λe

)
.

(8)

In the presence of attraction, the repulsion through the
electromagnetic fields outside the SC in Eq. (7) cannot be
neglected because it prevents the formation of a single cluster.
The physics here is similar to the laminar phase in conventional
type I superconductors.20

The effect of finite velocity v on the vortex-vortex inter-
action is negligible because χ̃zz depends weakly on v for
ξm/λe � 1. The attractive component is comparable to the
repulsion for χ0 ∼ 1 and the energy minimum takes place at
Rm ∼ λe. Figure 1 shows the energy of two vortices separated
by a distance R. For χ0 ∼ 1, the net interaction is attractive for
large separations λe < R < 
 and repulsive at short distances
R < λe. There is also a long-range repulsion for R > 
 due
to the surface effect. Since the susceptibility χ0 decreases with
JA, the attractive component drops as anisotropy increases.
The intervortex interaction becomes purely repulsive for
χ0 � 1.

Excitation of domain walls. We introduce the equation of
motion for MMs and vortices that is used in the numerical
simulation. The FM subsystem is described by the Landau-
Lifshitz-Gilbert equation21

∂tm = −γ m × Beff + αm × ∂tm, (9)

where γ is the gyromagnetic ratio, m = M/Ms is the nor-
malized MM, α is the damping coefficient, and the effective
magnetic field is Beff = −δ[gM + gint]/δM. The vortex sub-
system is described by the time-dependent Ginzburg-Landau
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equations

h̄2

2mD
∂t� = −

[
αs� + β|�|2� + h̄2

2m

(
i∇ + 2π

�0
A

)2

�

]
,

(10)

σ

c
∂tA = Js + Jext − c

4π
∇ × (∇ × A − 4πM), (11)

with the supercurrent

Js = eh̄

im
(�∗∇� − �∇�∗) − 4e2

mc
|�|2A, (12)

D is the diffusion coefficient, σ is the conductivity in the
normal state, Jext is the external current, and the other
parameters are defined according to the usual convention. The
MMs stop responding to the vortex motion when the average
magnetic field, B̄z ≈ nv�0 with nv being the vortex density,
is larger than the saturation value, Bs = MsJA, and the two
subsystems become decoupled. Therefore, we shall consider
the interesting region B̄z < Bs .

In the long wavelength and weak damping α � 1 limits,
the magnon dispersion for the FM system of Eq. (9) is

�2 = ω2
0 + v2

s k
2, vs = γMs

√(
2 − m2

z0

)
JAJ , (13)

ω2
0 = J 2

Aγ 2M2
s

(
1 − m2

z0

)[
1 + iα

(
2 − m2

z0

)(
1 − m2

z0

)−1/2]
,

(14)

where mz0 is the z component of the MMs in the ground state
and vs is the magnon velocity. Re(ω0) is the energy gap and
Im(ω0) is the magnon relaxation rate. Re(ω0) = 100 GHz and
vs = 50 m/s for typical ferromagnets.22

We then establish general relations of the energy transfer
between MMs and vortices. The vortex velocity acquires an ac
part, ṽi , because of the interaction between vortices and MMs,
vi = v̄ + ṽi . The energy balance for the whole system reads

ηv̄2 + η〈ṽi
2〉i,t + 1

nv

α

Msγ

〈 ∫
dr2(∂tM)2

〉
x,t

= FL · v̄, (15)

where 〈· · ·〉i,t denotes the average over vortices and time, and
〈· · ·〉x,t denotes the average over space and time. The first and
second terms on the left-hand side (lhs) correspond to Bardeen-
Stephen (BS) damping with coefficient η = �2

0σ/(2πc2ξ 2),20

where ξ =
√

h̄2/(2m|αs |) is the coherence length. The third
term on the lhs accounts for the dissipation due to precession
of MMs. The term on the right-hand side is the work done by
the Lorentz force FL. The effective viscosity ηeff = FL/v̄ is
enhanced due to the interaction between vortices and MMs,

ηeff = η + η

v̄2
〈ṽi

2〉i,t + 1

nvv̄2

α

Msγ

〈 ∫
dr2(∂tM)2

〉
x,t

. (16)

Off resonance, the contribution of the magnetic damping
is small, thus v̄ ≈ FL/η. Since FL = Jext�0/c and E =
v̄nv�0/c with an external current Jext and electric field E, the
underlying dynamics can be probed by an I-V measurement.

The effect of magnons on the vortex dynamics depends
on the vortex density. When the average intervortex distance is
smaller than the value corresponding to the potential minimum,
nv < 1/R2

m, the attraction between vortices dominates. Vor-
tices form circular clusters with the internal triangular structure

in the ground state, as shown in Fig. 2(a) obtained from
our simulations.23 The distance between neighboring vortices
inside the cluster is of order λe, and the separation between
neighboring clusters is of order

√
πR2

c /(nvλ2
e), with a cluster

radius given by Rc ≈ 
[−ua/(3ur )]1/3.24 The attractive, ua <

0, and repulsive, ur > 0, energies are defined in Fig. 1.
The vortex clusters start to merge and more complex vortex
configurations, such as stripes, are possible for larger values
of nv . The H = Hc1 transition from the uniform Meissner
state to the state with vortex clusters is of first order,25–27

in contrast to the second order phase transition expected for
conventional type II superconductors.20 Vortex clusters have
been observed experimentally in conventional superconduc-
tors with intervortex attraction, such as Nb (see Ref. 28 for a
review).

For finite transport current, each cluster moves as a whole
driven by the Lorentz force and polarizes the MMs along its
way. The MMs relax to their positions of equilibrium after
the vortex cluster leaves that region. The polarization and
excitation of magnons, and subsequent relaxation of MMs thus
causes vortex dissipation through the magnetic subsystem.29

The static structure of the vortex clusters remains the same for
a small v because the change of the vortex-vortex interaction
is negligible for ξm/λe � 1.

Here we derive a resonant condition between the motion
of vortex clusters and magnon emission. The magnetic field
distribution produced by the vortex motion has a dominant
wave vector Gx = 2π/Rm, with Rm ≈ λe as shown in Fig. 1.
The unperturbed ordered state has Mz0 = 0. The resonant
condition Gxv = �(Gx) gives a resonant velocity for vortices
moving along the x direction,

vt = γMs

√
2JAJ + R2

mJ 2
A

4π2
. (17)

This linear analysis is correct as long as the canted MMs
satisfy the condition that Mzc ≈ �0/(JAR2

m) � Ms [or JA �
�0/(R2

mMs)].
The oscillation amplitude of MMs and the ac part of the

vortex velocity are greatly enhanced in resonance and ηeff

increases according to Eq. (16). Two competing processes
are involved in the magnetic subsystem: the energy input
from vortex motion and the magnetic relaxation. For large
dissipation (α � 1), the excited magnon is quickly dissipated
and the vortex cluster with canted MMs remains stable. On
the contrary, the incoming energy accumulates for weak
magnetic dissipation, α � 1, and increases with time. This
effect leads to an instability of the magnon excitations that
has been discussed decades ago both experimentally30 and
theoretically.31–33 For a large enough oscillation amplitude,
the MMs are no longer restricted to one of the symmetry-
breaking states (there are two degenerate ground states with
Mx0 = ±Ms

√
1 − m2

z0) and they can flip to the other ground
state (with opposite Mx0). Domain walls are then created
as shown in Figs. 2(b)–2(d). Mz becomes large inside the
domains walls and this effect increases the coupling between
the magnetic subsystem and vortices. For v � vt , the cluster
structure evolves into vortex stripes along the driving direction
[Figs. 2(b)–2(d)]. The domain walls are oriented along the
vortex stripes due to the strong attraction between vortices
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FIG. 2. (Color online) (a), (b) Development of the amplitude of the superconducting order parameter |�|, magnetic structure (x component
of the magnetic moment: Mx), and Bz as the current increases. The vortex positions correspond to the regions with suppressed |�|. (a) Static
configuration with Jext,y = 0. In (b)–(d), domain walls are created and the vortex configuration is modulated. |�| is suppressed (top row) and
Bz is maximal (bottom row) in the normal core of vortices. MMs are canted by vortices so Mx is reduced (middle row).

and domain walls. Vortex stripes for large driving forces
and random pinning potentials have also been observed in
numerical simulations without MMs.34 As vortex clusters drive
domain walls, the dissipation increases and the vortex velocity
(voltage) drops, as shown in Fig. 3. The threshold velocity

Δ

FIG. 3. (Color online) Difference between the electric fields
induced with and without magnetic moments as a function of current
Jext,y , �E = EM − EB , where EM is the electric field for the system
with magnetic moments and EB is the electric field for the system
without magnetic moments. The vortex viscosity increases when
domain walls are created, resulting in a drop of the electric field
(vortex velocity).

obtained from simulations where the domain walls are created
is compatible with that estimated from Eq. (17).

Discussions. The magnetic susceptibility is small, χ0 � 1,
in bulk FM superconductors such as UGe2.35 Thus, the
attraction between vortices is negligible and the ground state
is a triangular vortex lattice. In the flux flow regime, the
vortex lattice is resonant with the oscillations of the MMs
when G · v = �(G). We predict an enhancement of the vortex
viscosity at resonance, which can be probed by the I-V
measurement. A large susceptibility, χ0 ∼ 1, is needed to
realize the vortex cluster configuration. This requirement can
he fulfilled by some cuprate superconductors with rare-earth
elements (Re), such as ReBa2Cu3Ox , where Re ions order
antiferromagnetically below TN ∼ 1 K. Spins are free from
the molecular field above the Néel temperature TN ∼ 1 K
and can be easily polarized36,37 to mediate the attraction
between vortices in the low magnetic field region. The vortex
cluster phase can also be achieved in heterostructures of
superconductors and ferromagnets with large susceptibility.38

On the other hand, random pinning centers may prevent
the formation of vortex clusters because pinning is strong
for a small vortex densities. However, vortex motion in
the flux flow regime quickly averages out the effect of
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random pinning centers39,40 and the cluster structure may be
recovered.
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