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Kinetic impedance and depairing in thin and narrow superconducting films
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We use both Eilenberger-Usadel and Ginzburg-Landau (GL) theory to calculate the superfluid’s temperature-
dependent kinetic inductance for all currents up to the depairing current in thin and narrow superconducting films.
The calculations apply to BCS weak-coupling superconductors with isotropic gaps and transport mean-free paths
much less than the BCS coherence length. The kinetic inductance is calculated for the response to a small
alternating current when the film is carrying a dc bias current. In the slow-experiment/fast-relaxation limit,
in which the superconducting order parameter quasistatically follows the time-dependent current, the kinetic
inductance diverges as the bias current approaches the depairing value. However, in the fast-experiment/slow-
relaxiation limit, in which the the superconducting order parameter remains fixed at a value corresponding to the
dc bias current, the kinetic inductance rises to a finite value at the depairing current. We then use time-dependent
GL theory to calculate the kinetic impedance of the superfluid, which includes not only the kinetic reactance, but
also the kinetic resistance of the superfluid arising from dissipation due to order-parameter relaxation. The kinetic
resistance is largest for angular frequencies ω obeying ωτs > 1, where τs is the order-parameter relaxation time,
and for bias currents close to the depairing current. We also include the normal fluid’s contribution to dissipation
in deriving an expression for the total kinetic impedance. The Appendices contain many details about the
temperature-dependent behavior of superconductors carrying current up to the depairing value.

DOI: 10.1103/PhysRevB.86.174521 PACS number(s): 74.78.Na, 74.25.F−, 74.25.Sv

I. INTRODUCTION

The kinetic inductance, arising chiefly from the kinetic en-
ergy of the superfluid, plays an important role in superconduct-
ing devices fabricated using thin and narrow superconducting
films.1–3 In such cases, the kinetic inductance is generally
much larger than the geometric inductance arising from stored
magnetic energy.4–6 For example, the kinetic inductance plays
a prominent role in determining the reset time of super-
conducting single-photon detectors (SSPDs) fabricated with
meandering superconducting lines.7–9 Various calculations
of the kinetic inductance, relevant to the performance of
microstrip resonators10 and microwave kinetic inductance
detectors (MKIDs),11 have been carried out using (a) the
London equations neglecting the current-induced suppression
of the order parameter,4–6,12 (b) the Ginzburg-Landau (GL)
equations,2,13,14 (c) a GL-inspired London-equation approach
accounting for the current-induced suppression of the order
parameter,15,16 and (d) the BCS theory.2,10 Our goal in this
paper is to present theoretical calculations of the kinetic
inductance for all temperatures and for all currents up to
the depairing current for sample dimensions and properties
applicable to present experimental studies of SSPDs (Refs. 7
and 17) and microresonators.2 Because these studies have used
thin high-resistance films of NbN,1,2,7–9,18 Nb,2 NbTiN,19 and
TaN (Refs. 20 and 21) in the dirty limit, we adopt an isotropic
s-wave BCS description, although many of our results can be
extended to apply under more general assumptions.

We consider thin (d � λ0) superconducting films of width
W much less than the two-dimensional screening length
(Pearl length22) � = 2λ2

0/d, where λ0 is the temperature-
dependent weak-field London penetration depth and d is the
film thickness. The condition W � � guarantees that the
self-field generated by the current has a negligible effect upon
the current density j , which therefore flows with the same
spatial distribution as in the normal state.23 Moreover, this

condition also guarantees that the inductance L = Lm + Lk

is dominated by the kinetic inductance of the superfluid Lk ,
which is typically larger than the geometric inductance Lm

(associated with the energy stored in the magnetic field) by
a factor of order �/W .4 We focus on the calculation of
the superfluid’s kinetic inductivity Lk . For a long strip of
length �, width W , and thickness d, the kinetic inductance
is Lk = Lk�/Wd.

When the superconductor carries such a low current
that the superconducting order parameter is not significantly
suppressed, the electromagnetic behavior is well described by
the London equation, and the kinetic energy density of the
superfluid in the clean case can be expressed as5
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where ns0 is the superfluid density, m the electron mass, vs the
superfluid velocity component in the x direction, js = −ns0evs

the supercurrent density component in the x direction, and −e

the electron charge, such that the kinetic inductivity of the
superfluid obeys24,25

Lk0(T ) = μ0λ
2
0(T ) = m/ns0e

2. (2)

The subscripts 0 on ns0, λ0, and Lk0 are a reminder that these
quantities apply in the limit as js → 0. The simple relationship
given in Eq. (2) has made possible the determination of
λ0(T ) versus T in YBa2Cu3O7−δ from kinetic-inductance
measurements.26

When the superconductor carries high currents, however,
calculation of the superfluid’s kinetic inductance becomes
more complicated, especially when the current density ap-
proaches the depairing value jd . In high currents, it is no
longer possible to define the kinetic inductance by considering
only the stored kinetic energy density as in Eq. (1) because, as
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examined in detail in Appendix D, increasing js to large values
also affects the superconducting condensation energy by
suppressing the superconducting order parameter. To account
for this effect, we take advantage of Maki’s27–29 recognition
that the current-induced suppression of the order parameter
in a thin film can be treated using a pair-breaking parameter
exactly analogous to that used by Abrikosov and Gor’kov30

in their study of the effect of paramagnetic impurities upon
superconductivity. The fusion of the theories for these two
problems31 has resulted in a large body of related work,32–37

much of which we summarize for the benefit of the reader in
Sec. II and the Appendices. As noted by previous authors,38–42

a convenient starting point for this purpose is the Eilenberger-
Usadel theory.43,44

An additional complication in calculating the kinetic
inductance is that ns , which depends on the superconducting
order parameter, can change only on a time scale slower
than a variety of difficult-to-determine internal relaxation
times,13,24,45,46 which we here represent crudely by a single
relaxation time τs . As a consequence, ns may or may not be
able to follow the changes in js and vs .

Calculations of the current dependence of Lk are simplified
in two limiting cases13: (a) slow experiments (fast relaxation,
Sec. III), in which js and vs vary on an experimental time scale
τexpt much longer than the relaxation time τs , such that the order
parameter and the superfluid density ns quasistatically follow
js and vs , and (b) fast experiments (slow relaxation, Sec. IV),
in which js and vs change so rapidly about their time averages
j̄s and v̄s (on a time scale τexpt much shorter than τs) that
the order parameter and ns cannot track the time dependence,
and ns remains very close to the value corresponding to j̄s

and v̄s . To provide an approximation to the transition between
these two limiting cases, in Sec. V we employ a simplified
phenomenological model based on the time-dependent GL
(TDGL) equations24 to calculate the complex impedivity due
to the superfluid. In Sec. VI, we include the normal-fluid’s
resistive contribution to the total complex impedivity, and
in Sec. VII we provide a brief summary and discussion of
our results. Various details of the calculation are included in
Appendices A–D.

II. SUPERFLUID-VELOCITY DEPENDENCE OF THE
SUPERCURRENT DENSITY AND THE

DEPAIRING-CURRENT DENSITY

The purpose of this section is to explain clearly how to
calculate the many effects of the current-induced suppression
of the order parameter that have been obtained by previous
authors. We need a formalism that allows us to calculate
the depairing-current density jd (T ) in superconductors with
a short normal-state mean-free path at all temperatures in
the superconducting state. A compact way of doing this is to
employ the quasiclassical Eilenberger43 theory as formulated
by Usadel44 for the dirty limit.

Consider a superconducting strip extending along the x

direction when the current is uniform. Let js and As = mvs/e

denote the x components of the supercurrent density j s and
the gauge-invariant vector potential As = A + (φ0/2π )∇γ ,
where A is the gauge-dependent vector potential, φ0 = h/2e

the superconducting flux quantum, and γ the gauge-dependent
phase of the superconducting order parameter.

The supercurrent density can always be expressed as
js = −nsevs , but in general ns is a function of the superfluid
velocity vs and has the value ns0 when vs = 0 but decreases
monotonically to zero as |vs | increases. For positive js and
negative values of vs , the supercurrent density js = nse|vs |
initially increases linearly as a function of |vs |, reaches
a maximum jd (T ) (the depairing or pair-breaking current
density) at |vs | = vd (T ), then decreases to zero at |vs | =
vm(T ).

When the superconductor is current biased, only the portion
of the curve js versus |vs | for 0 � |vs | � vd (T ) is accessible.
On the other hand, following a suggestion by Fulde and
Ferrell,47 Bhatnagar and Stern48,49 showed that it is possible
to probe experimentally the shape of js versus |vs | even
for vd (T ) � |vs | � vm(T ) using a multiply connected sample
geometry. In this paper, we first examine the behavior of js

over the full range of values of vs , but later in applying these
results to study the kinetic inductance we limit our attention to
the current-biased case in which js is a single-valued function
of vs in the range 0 � js � jd .

A. Depairing-current density calculated from
the Usadel equations

For the problem at hand, the Usadel equations can be written
as44

−h̄D(GF ′ − FG′)′ = 2�G − 2h̄ωnF , (3)

G2 + |F |2 = 1 , (4)

� ln
Tc0

T
= 2πkBT

∞∑
n=0

(
�

h̄ωn

− F

)
, (5)

js = −4πeN (0)DkBT

∞∑
n=0

ImF ∗F ′ , (6)

where � is the superconducting order parameter, D =
v2

F τ/3 = vF �/3 is the diffusivity, vF is the average velocity of
electrons at the Fermi surface, τ is the normal-state transport
lifetime, � is the mean-free path, h̄ωn = (2n + 1)πkBT is the
Matsubara frequency, N (0) is the density of Bloch states
of one spin at the Fermi level, T is the temperature, and
Tc0 is the zero-current transition temperature. The primes
in Eq. (3) denote differentiation with respect to x. These
equations describe supercurrent flow in a superconductor with
an s-wave isotropic gap in the weak-coupling limit of the BCS
theory.50 However, this mean-field theory does not account for
the possibility that one- or two-dimensional fluctuations could
grow to produce phase slips or vortex crossings.

Since W � �, we can neglect the self-field of the current
and choose a gauge for which we may replace the gauge-
invariant gradient ∇ + 2πi A/φ0 by x̂∂x . Looking for solutions
of the form � = �qe

iqx , F = Fnqe
iqx , and G = Gnq , where

q is the gradient of the phase of the order parameter, we find
that Eqs. (3) and (4) become

QFnqGnq = �qGnq − h̄ωnFnq, (7)
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G2
nq + F 2

nq = 1, (8)

where Q = h̄Dq2/2.
Throughout this paper, the symbol q appears frequently;

it can be regarded as a compact abbreviation for the gauge-
invariant vector potential As , the superfluid velocity vx , or the
gradient of the phase γ of the order parameter, since all these
quantities are related via q = 2πAs/φ0 = 2mvs/h̄ = γ /x.

The presence of a subscript q indicates that the subscripted
quantity is a function of q. We show later that as q increases,
the pair-breaking effect reduces the superconducting transition
temperature Tcq , the order parameter �q (Figs. 1 and 5) and the
superfluid density nsq (Fig. 2), and increases the penetration
depth λq [Eq. (17)]. We show here that these q dependencies
combine to produce the current dependence of the kinetic
inductance shown in Figs. 7 and 8. However, the q dependence
of λq could be shown somewhat more directly in sensitive
measurements of the penetration depth in the Meissner state
as a function of applied ac and dc magnetic fields.

As noted by Maki,37 Eqs. (7) and (8) are equivalent to those
of the Abrikosov-Gor’kov (AG) theory30 for pair-breaking
scattering, except for the replacement of the AG spin-flip
scattering rate 1/τm by Dq2/2. Our results therefore share
many properties with those of the AG theory. For example, we
show that the transition temperature Tcq depends upon q and
decreases monotonically from its value Tc0 at q = 0 to zero at
a critical value of q given by qm(0) = 1/ξ (0) = (πξ0�/3)−1/2,
where ξ0 = h̄vF /π�0(0) is the BCS coherence length.50 For
a fixed value of q, the order parameter �q(T ) is nonzero only
for temperatures T less than Tcq ; equivalently, for a fixed
temperature T , the order parameter �q(T ) is nonzero only
for values of q less than qm(T ) = 1/ξ (T ).

Introducing unq = Gnq/Fnq, we find that Eqs. (7) and (8)
can be written as

η

ε
= unq

⎛
⎝1 − ζ√

1 + u2
nq

⎞
⎠ (9)

and

Fnq = 1√
1 + u2

nq

, (10)

where η = n + 1/2, ε = �q/2πkBT , and ζ = Q/�q . unq

(which depends implicity upon T ) can be obtained for arbitrary
values of η, ε, and ζ by solving Eq. (9) as a quartic equation
(see Appendix A).

With the introduction of unq , two equations remain to be
solved. The self-consistency equation (5) in the presence of
the current becomes, for general values of �q , ω, Q, and T ,

ln
1

t
=

∞∑
n=0

⎛
⎝ 1

n + 1/2
− 1

ε
√

1 + u2
nq

⎞
⎠ . (11)

In general, �q(T ) must be obtained by numerically solving
Eq. (11) using Eq. (A2), but the results can be checked
against analytic results obtainable in the limits of q → 0 and
q → qm(T ). Figure 1 shows [�q(T )/�0(0)]2 as a function
of q/qm(0) for a series of values of the reduced temperature
t = T/Tc0. (Closely related plots were given as Fig. 1 in
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FIG. 1. [�q (T )/�0(0)]2 vs q/qm(0) obtained from Eqs. (11) and

(A2) for various values of t = T/Tc0. The dotted lines show the linear
behavior as [�q (T )/�0(0)]2 → 0 in the limit as q → qm(T ).

Ref. 32 and Fig. 4 in Ref. 33.) The sums for t � 0.1 were
evaluated by summing n from 0 to 500, but for t = 0 we used
the analytic results in Eqs. (23)–(25).

From the current equation (6) we find that when the
superfluid velocity vs is in the x direction, the supercurrent
density in that direction is25

jsq(T ) = −nsq (T )evs. (12)

From Eqs. (6), (10), and (12), we obtain a general expression
for the q-dependent superfluid density,

nsq(T ) = 8πmN (0)DkBT

h̄

∞∑
n=0

1

1 + u2
nq

. (13)

When q → 0, we have un0 = 2πkBT (n + 1/2)/�0(T ) [see
Eq. (9)], and when this is used in Eq. (13), evaluation of the
sum yields

ns0(T ) = 2πmN (0)D�0(T )

h̄
tanh

(
�0(T )

2kBT

)
, (14)

such that

ns0(0) = 2πmN (0)D�0(0)

h̄
(15)

and

nsq(T )

ns0(0)
= 4kBT

�0(0)

∞∑
n=0

1

1 + u2
nq

. (16)

In general, nsq(T )/ns0(0) must be obtained by numerically
solving Eqs. (11) and (16) using Eq. (A2). Figure 2 shows
nsq(T )/ns0(0) as a function of q/qm(0) for a series of values
of the reduced temperature t = T/Tc0. The sums for t � 0.1
were evaluated by summing n from 0 to 500, but for t = 0 we
used the analytic results in Eqs. (26) and (27).
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FIG. 2. nsq (T )/ns0(0) = λ2
0(0)/λ2

q (T ) vs q/qm(0) obtained from
Eqs. (11), (16), and (A2) for various values of t = T/Tc0.
nsq (T )/ns0(0) → 0 as q → qm(T ).

As shown in Fig. 2, nsq(T )/ns0(0) depends upon q and
vanishes at q = qm(T ) (see Appendix C). The corresponding
q-dependent penetration depth λq(T ) can be obtained from

nsq(T )

ns0(0)
= λ2

0(0)

λ2
q(T )

. (17)

Note, however, that current-biased experiments can access
values of q only up to qd (T ), where the magnitude of the
current density reaches the depairing limit jd (T ).

The general expression for the supercurrent density is

jsq(T ) = −nsq (T )e2As

m
= − As

μ0λ2
q(T )

. (18)

From Eq. (12) or (18) we see that, because jsq(T ) is the product
of nsq(T ) (a monotonically decreasing function of q) and
evs = e2As/m = eh̄q/2m, the magnitude of jsq(T ) reaches
a maximum, called the depairing-current density jd (T ),
when q = qd (T ), where 0 < qd (T ) < qm(T ). We define j̃q(T )
as the magnitude of jsq(T ) normalized to ns0(0)evm(0) =
φ0/2πμ0λ0(0)2ξ (0), such that

j̃q(T ) = nsq(T )

ns0(0)

q

qm(0)
. (19)

The maximum value of j̃q(T ) versus q is the normalized
depairing-current density j̃d (T ).

In general, j̃q(T ) must be obtained numerically from
Eqs. (11), (16), (19), and (A2), but the results can be checked
against analytic results obtainable in the limits t → 0 and
t → 1, to be discussed in more detail later in Secs. II B and
II C. Figure 3 shows the general behavior of j̃q(T ) as a function
of q/qm(0) for a series of values of the reduced temperature
t = T/Tc0. (Plots similar to Fig. 3 were shown as Fig. 1 in
Ref. 28 and Fig. 2 in Ref. 39.) The points label the values

t 0
0.8

0.7

0.6
0.5

0.4

0.3
0.2

0.1

0.9
0.95

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

q qm 0

j q
T

FIG. 3. j̃q (T ) vs q/qm(0) obtained from Eqs. (11), (16), (19), and
(A2) for various values of t = T/Tc0. The points label the values of
j̃q and q corresponding to the depairing-current density jd and qd .
Current-biased experiments probe only the portions of the curves to
the left of these points. j̃q (T ) → 0 as q → qm(T ).

of j̃q and q corresponding to the depairing-current density jd

and qd . The solid curve in Fig. 4 shows [jd (T )/jd (0)]2/3 =
[j̃d (T )/j̃d (0)]2/3 as a function of t = T/Tc0, and the dotted
line illustrates how jc(T ) approaches the (1 − t)2/3 behavior
in the GL regime close to Tc0.

For all temperatures below Tc0, estimates of jd (T ) can be
obtained from

jd (T ) = pd (T )
φ0

2πμ0λ
2
0(T )ξ (T )

, (20)

jd T jd 0 2 3

kd
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FIG. 4. [jd (T )/jd (0)]2/3 (solid) vs t = T/Tc0 obtained numeri-
cally from Eqs. (11), (16), (19), and (A2). The dotted line shows
the behavior of jd (T ) in the GL limit near Tc0 [Eq. (41)], and
the long-dashed curve shows the approximation (Refs. 39, 51, and
52) jd (T )/jd (0) ≈ (1 − t2)3/2. The short-dashed curve shows the
variation of pd (T ) [Eq. (20)] from 0.475 at t = 0 to 0.385 at t = 1,
and the dotted-dashed curve shows the variation of kd (T ) [Eq. (21)]
from 0.595 at t = 0 to 0.544 at t = 1.
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where pd (T ) is a dimensionless function defined by Eq. (20).
The dashed curve in Fig. 4 shows pd (T ), which is obtained
numerically from all the other quantities in Eq. (20), varying
from 0.475 at T = 0 [Eq. (30)] to 0.385 as T → Tc0 [Eq. (42)]
with a maximum of 0.483 at t = T/Tc0 = 0.17.

Similarly, estimates of the depairing-current density also
can be obtained for all temperatures from

jd (T ) = kd (T )Hc(T )/λ0(T ), (21)

where the dimensionless quantity kd (T ), defined by Eq. (21)
and shown by the dotted-dashed curve in Fig. 4, varies from
0.595 at T = 0 [Eq. (30)] to 0.544 as T → Tc0 [Eq. (42)] with
a maximum of 0.608 at t = T/Tc0 = 0.21. The values of kd

shown in Fig. 4 were obtained from

kd (T ) = 0.595
j̃d (T )

j̃d (0)

Hc(0)

Hc(T )

λ0(T )

λ0(0)
(22)

via Eqs. (32), (D16), and (B2), where Hc(T ) is the
temperature-dependent bulk thermodynamic critical field (see
Appendix D). Plots similar to Fig. 4 were given as Fig. 9 in
Ref. 38 and Fig. 4 in Ref. 39.

B. Depairing-current density at zero temperature

At T = 0, the q dependence of �q(0) can be obtained by
converting the sum in Eq. (11) to an integral over unq . The
result is30,37

�q(0)

�0(0)
= exp(−πζ0/4), 0 � ζ0 � 1 (23)

= exp
[−(ζ0 sin−1 ζ−1

0 −
√

1 − ζ−2
0

)/
2

− cosh−1 ζ0
]
, ζ0 � 1 (24)

where

ζ0 = h̄Dq2

2�q(0)
= 1

2

(
q

qm(0)

)2
�0(0)

�q(0)
. (25)

Figure 5 shows [�q(0)/�0(0)]2, obtained from numerical so-
lution of Eqs. (23)–(25), as a function of q/qm(0) = vs/vm(0).
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FIG. 5. [�q (0)/�0(0)]2 vs q/qm(0) obtained from Eqs. (23)–(25).
The dashed line shows the linear behavior 6[1 − q/qm(0)] as q →
qm(0).
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FIG. 6. Reduced superfluid density nsq (0)/ns0(0) = λ2
0(0)/λ2

q (0)
(dashed curve) vs q/qm(0) = vs/vm(0), obtained from Eqs. (26)
and (27), and normalized q-dependent supercurrent density j̃q (0)
(solid curve) vs q/qm(0) = vs/vm(0), obtained from Eq. (29). The
black point and dotted lines indicate the maximum j̃q (0), the
normalized depairing-supercurrent density j̃d = 0.475, which occurs
at qd/qm(0) = 0.689.

The q dependence of nsq(0) can be obtained in a similar
way. The result is37

nsq(0)

ns0(0)
= exp(−πζ0/4)(1 − 4ζ0/3π ), 0 � ζ0 � 1 (26)

= exp(−πζ0/4)

{
2

3πζ 2
0

[(
1 + 2ζ 2

0

)√
ζ 2

0 − 1 − 2ζ 3
0

]

+ 2

π
sin−1 ζ−1

0

}
, ζ0 � 1 (27)

where ζ0 is given by Eq. (25). nsq(0) is shown as the dashed
curve in Fig. 6. The q-dependent penetration depth at zero
temperature λq(0) can be obtained from

nsq (0)

ns0(0)
= λ2

0(0)

λ2
q(0)

. (28)

To obtain the depairing-current density, consider
the q-dependent (or vs-dependent) supercurrent density
at T = 0 [Eq. (12)], normalized to −ns0(0)evm(0) =
−φ0/2πμ0λ0(0)2ξ (0),

j̃q(0) = nsq(0)

ns0(0)

(
q

qm(0)

)
, (29)

shown as the solid curve in Fig. 6. (Plots similar to Fig. 6 were
shown as Fig. 1 in Ref. 28 and Fig. 2 in Ref. 39) The point
and dotted lines show the maximum j̃q(0), the normalized
depairing-supercurrent density j̃d (0) = 0.475, which occurs
at qd (0)/qm(0) = 0.689 and ζ0 = 0.300.28 The resulting zero-
temperature depairing-supercurrent density can be expressed
in several ways:

jd (0) = 0.475
φ0

2πμ0λ
2
0(0)ξ (0)

(30)

= 1.491N (0)e[�0(0)]3/2
√

D/h̄ (31)

= 0.595Hc(0)/λ0(0). (32)

Equation (31) coincides with the result given for the
depairing-supercurrent density in Ref. 38. Here, Hc(T ) is the
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temperature-dependent bulk thermodynamic critical field (see
Appendix D), and Hc(0) = �0(0)

√
N (0)/μ0.

C. Depairing-current density in the GL regime

As shown by Gor’kov,53 the GL theory of
superconductivity54 is derivable from the microscopic
BCS theory50 at temperatures T close to the transition
temperature Tc0. This assures us that we also can apply the
Usadel equations to recover the GL results. We present the
GL depairing-current results here for completeness, even
though they are so well known that they appear in textbooks.24

For T close to Tcq or, equivalently, for q close to qm(T ),
the q-dependent order parameter �q(T ) becomes small, and

it is useful to expand unq and 1/ε
√

1 + u2
nq in powers of

ε = �q(T )/2πkBT :

1

ε
√

1 + u2
nq

= 1

η + α
− ε2

2

[
1

(η + α)3
− α

(η + α)4

]
+ O(ε4),

(33)

where

α = e−γ

4t

q2
m(T )

q2
m(0)

= 0.140

t

q2
m(T )

q2
m(0)

. (34)

Substituting this into Eq. (11) and keeping only the lowest-
order terms, since we know that ε = �q(T )/2πkBT � 1
when 1 − t � 1, we obtain

ln
Tc0

T
=

∞∑
n=0

{
1

n + 1/2
− 1

n + 1/2 + α

+
[

1

(n + 1/2 + α)3
− α

(n + 1/2 + α)4

]
ε2

2

}
. (35)

The sums can be expressed in terms of digamma functions and
their derivatives. When 1 − t � 1, Eq. (35) has solutions only
for α � 1 and can be expanded as

1 − t = π2e−γ q2

8q2
m(0)

+ 7ζ (3)ε2

2
. (36)

Solving for ε2, dividing by ε2
0 = 2(1 − t)/7ζ (3), and making

use of q2
m(T ) = [8eγ (1 − t)/π2]q2

m(0) (see Appendix C), we
obtain

�2
q(T )

�2
0(T )

= 1 − q2

q2
m(T )

, (37)

where qm(T ) = 1/ξ (T ).
Substituting the expansion of Eq. (33) into Eq. (16), keeping

only the lowest-order terms, we obtain

nsq (T )

ns0(T )
= λ2

0(T )

λ2
q(T )

= �2
q(T )

�2
0(T )

= f 2 = 1 − q2

q2
m(T )

(38)

and

nsq(T )

ns0(0)
= λ2

0(0)

λ2
q(T )

= 4πeγ

7ζ (3)

(
1 − q2

q2
m(T )

)
(1 − t). (39)

The reduced q-dependent supercurrent density becomes

j̃q(T ) = 4πeγ

7ζ (3)

qm(T )

qm(0)

(
1 − q2

q2
m(T )

)
q

qm(T )
(1 − t), (40)

the maximum of which occurs at qd (T )/qm(T ) = 1/
√

3, such
that (see Appendix C) the reduced depairing-current density is

j̃d (T ) = 16
√

2e3γ /2

21
√

3ζ (3)
(1 − t)3/2 = 1.230(1 − t)3/2. (41)

Thus, in the GL regime, the depairing-current density can be
expressed as

jd (T ) = 0.385
φ0

2πμ0λ
2
0(T )ξ (T )

, (42)

where 0.385 = 2/3
√

3,

jd (T ) = 3.865N (0)e[�0(0)]3/2
√

D/h̄(1 − t)3/2, (43)

or, since
√

2Hc = φ0/2πμ0λ0ξ in the GL theory,

jd (T ) = 0.544Hc(T )/λ0(T ), (44)

where 0.544 = (2/3)3/2.
To simplify calculations in the GL limit, later in Secs. III

and IV we introduce the parameter φ (0 � φ � π/2), such
that

|jsq |/jd = sin φ, (45)

q/qm(T ) = (2/
√

3) sin(φ/3), (46)

f 2 = [1 + 2 cos(2φ/3)]/3. (47)

III. SUPERFLUID KINETIC INDUCTIVITY IN SLOW
EXPERIMENTS (FAST RELAXATION)

In Sec. II, we have summarized the results of previous
authors and provided details of how to account quantitatively
for the current-induced suppression of the order parameter
in dirty thin-film superconductors at all temperatures in the
superconducting state. We are now in a position to calculate
the kinetic inductivity of the superfluid measured in slow,
low-frequency (or, equivalently, fast relaxation) current-biased
experiments, in which both js [|js | � jd (T )] and vs [|vs | �
vd (T )] vary on a time scale τexpt much longer than the
relaxation time τs required for the superconducting order
parameter to change.13,24,45

In a one-dimensional conductor carrying a uniform current,
the gauge-invariant electric potential P = � − (φ0/2π )dγ /dt

is zero,55 and the electric field along the conductor is
E = −dAs/dt = Lk(q,T )djsq(T )/dt .56 Since from Eq. (18)
we have As = (φ0/2π )q = −jsq(T )μ0λ

2
q(T ), taking the time

derivative and using df/dt = (df/dq)dq/dt , we obtain the
kinetic inductivity of the superfluid for slow experiments,

Lk(q,T ) = μ0

[
d

dq

(
q

λ2
q(T )

)]−1

=
∣∣∣∣djsq(T )

dAs

∣∣∣∣
−1

= μ0λ
2
0(T )Fs

( |js |
jd (T )

)
, (48)

where the slow-experiment function Fs is simply
Lk(q,T )/μ0λ

2
0(T ) but expressed as a function of the nor-

malized current density |js |/jd (T ) rather than as a function
of q. While q is a convenient theoretical variable, js is a
more convenient variable for the current-biased case. For
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FIG. 7. Lk0(T )/Lk(q,T ) = 1/Fs[|js |/jd (T )] for slow experi-
ments vs x = |js |/jd (T ) at t = T/Tc0 = 0 (solid line), t = 0.3
(dotted line), and t → 1 (dashed line). Note thatLk0(T ) = Lk(0,T ) =
μ0λ

2
0(T ).

|q| < qd (T ) and |js | < jd (T ), js is a single-valued function
of q, shown in Figs. 3 and 6.

In the limit of small currents, when q → 0,Lk(q,T ) reduces
to Lk(0,T ) = Lk0(T ) [Eq. (2)]. However, as can be seen
from Figs. 3 and 6, |djsq/dq| decreases monotonically for
increasing values of q and becomes zero at the depairing value.
Accordingly, as q increases, Lk(q,T ) starts from Lk0(T ),
increases monotonically, and diverges at q = qd (T ), where
|js | = jd (T ). Because Lk(q,T )/Lk0(T ) diverges as |js | → jd ,
we show in Fig. 7 the typical dependence of the inverse
Lk0(T )/Lk(q,T ) = 1/Fs[|js |/jd (T )] versus |js |/jd (T ). This
figure was obtained by (a) evaluating j̃q(T ) [Eq. (19)] and
dj̃q(T )/dq numerically for t = T/Tc0 = 0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9, and analytically [see Eq. (40)] in the
GL limit t → 1, (b) calculating

Lk0(T )

Lk(q,T )
= ns0(0)

ns0(T )
qm(0)

dj̃ (T )

dq
(49)

using Eq. (14) to evaluate ns0(0)/ns0(T ), and (c) mak-
ing a parametric plot of Lk0(T )/Lk(q,T ) versus |js |/jd =
j̃q(T )/j̃d (T ). As shown by the solid curve for t = 0, the
dotted curve for t = 0.3, and the dashed curve for t → 1,
the behavior of Lk0(T )/Lk(q,T ) versus |js |/jd (T ) is not
monotonic as the temperature changes, but the curves for all
other temperatures (not shown) lie in a narrow band between
the dotted and dashed curves. As |js |/jd → 1, all the curves
have an inverse-square-root dependence close to that in the GL
limit t → 1:

LGL
k0 (T )/LGL

k (q,T ) = (2
√

6/3)[1 − |js |/jd (T )]1/2. (50)

The curves shown in Fig. 7 can be represented by ysn(x) =
(1 − xn)1/n (not shown in Fig. 7), which fits the calculated
values of y = Lk0(T )/Lk(q,T ) versus x = |js |/jd (T ) for 0 �
x < 0.97 with 1% accuracy for (n,t) = (2.21, 0), (2.21, 0.1),
(2.27, 0.2), (2.30, 0.3), (2.28, 0.4), (2.25, 0.5), (2.22, 0.6),
(2.18, 0.7), (2.16, 0.8), (2.13, 0.9), and (2.11, t → 1).

To calculate the kinetic inductivity in the GL limit shown by
the dashed curve in Fig. 7, it is convenient to use the parametric
relations x = |js |/jd = sin φ and y = LGL

k0 (T )/LGL
k (q,T ) =

2 cos(2φ/3) − 1, where 0 � φ � π/2 [see Eqs. (45)–(47)].
The slow-experiment kinetic inductivity of the superfluid in
the GL limit is

LGL
k (q,T ) = μ0λ

2
0(T )F GL

s

( |js |
jd (T )

)
, (51)

where

F GL
s (x) = 1

2 cos(2φ/3) − 1
(52)

and φ = sin−1 x. For small values of x,

F GL
s (x) = 1 + 4

9x2 + 80
243x4 + O(x6), (53)

and F GL
s (x) diverges at x = 1, as noted in Ref. 13. (See also

the upper solid curve in Fig. 10.)

IV. SUPERFLUID KINETIC INDUCTIVITY IN FAST
EXPERIMENTS (SLOW RELAXATION)

We next consider fast experiments (or, equivalently, slow
relaxation), in which the current density js(t) = j̄s + js1(t)
as a function of the time t changes rapidly about its time
average j̄s on a time scale τexpt much shorter than the relaxation
time τs .13,24,45 In this case, neither the order parameter �q

nor the q-dependent penetration depth λq can follow the time
dependence of the current, but instead they remain frozen to
their values at q = q̄ given by j̄s = jsq̄ = −Ās/μ0λ

2
q̄ , where

Ās = mv̄s/e = h̄q̄/2e. From js(t) = −As(t)/μ0λ
2
q̄ , As(t) =

Ās + As1(t), and E(t) = −dAs(t)/dt = Lk(q̄,T )djs(t)/dt ,
we find that the kinetic inductivity of the superfluid in fast
experiments is

Lk(q̄,T ) = μ0λ
2
q̄(T ) = μ0λ

2
0(T )Ff

( |j̄s |
jd (T )

)
, (54)

which can be evaluated numerically using Eq. (16) as

Lk(q̄,T )

Lk0(T )
= ns0(T )

nsq̄(T )
=

∞∑
n=0

1

1 + u2
n0

/ ∞∑
n=0

1

1 + u2
nq̄

. (55)

(See Fig. 2.) Here, the fast-experiment function Ff is simply
Lk(q̄,T )/μ0λ

2
0(T ) but expressed as a function of the normal-

ized current density |j̄s |/jd (T ) rather than as a function of q̄.
When q̄ → 0,Lk(q̄,T ) reduces toLk(0,T ) = Lk0(T ) [Eq. (2)].

Shown in Fig. 8 is the typical dependence of
Lk(q̄,T )/Lk0(T ) versus |j̄s |/jd (T ). This figure was obtained
by (a) evaluating j̃q̄(T ) and Lk(q̄,T )/Lk0(T ) numerically for
t = T/Tc0 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9,
and analytically in the GL limit t → 1 [see Eqs. (45) and
(47)], and (b) making a parametric plot of Lk(q̄,T )/Lk0(T )
versus |j̄s |/jd = j̃q̄(T )/j̃d (T ). As shown by the solid curve for
t = 0, the dotted curve for t = 0.3, and the dashed curve for
t → 1, the behavior of Lk(q̄,T )/Lk0(T ) versus |j̄s |/jd is not
monotonic as the temperature changes, but the curves for all
other temperatures (not shown) lie in a narrow band between
the dotted and dashed curves. As |j̄s |/jd → 1, all the curves
approach their limiting values in the range 1.41–1.50 (solid
symbols in Fig. 8) with infinite slope.

174521-7



JOHN R. CLEM AND V. G. KOGAN PHYSICAL REVIEW B 86, 174521 (2012)

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

x js jd

L
k

q,
T

L
k0

T

FIG. 8. Lk(q̄,T )/Lk0(T ) = Ff [|j̄s |/jd (T )] for fast experiments
vs x = |j̄s |/jd (T ) at t = T/Tc0 = 0 (solid curve and filled circle),
t = 0.3 (dotted curve and filled square), and t → 1 (dashed curve
and filled triangle). Note that Lk0(T ) = μ0λ

2
0(T ).

The curves shown in Fig. 8 can be represented by yf n(x) =
y0 − (y0 − 1)(1 − xn)1/n (not shown in Fig. 8), which fits the
calculated values of y = Lk(q̄,T )/Lk0(T ) versus x = |js |/jd ,
where y0 is the value of Lk(q̄,T )/Lk0(T ) at x = 1, for 0 �
x < 0.97 within 0.5% for (y0,n,t) = (1.451, 2.48, 0), (1.448,
2.47, 0.1), (1.422, 2.45, 0.2), (1.412, 2.46, 0.3), (1.417, 2.50,
0.4), (1.432, 2.50, 0.5), (1.448, 2.50, 0.6), (1.463, 2.50, 0.7),
(1.477, 2.50, 0.8), (1.490, 2.50, 0.9), and (1.500, 2.50, t → 1).

To calculate Lk(q̄,T ) in the GL limit shown by the dashed
curve in Fig. 8, we used Eqs. (45)–(47). The kinetic inductivity
of the superfluid for fast experiments in the GL limit is

LGL
k (q̄,T ) = μ0λ

2
0(T )F GL

f

( |j̄s |
jd

)
, (56)

where

F GL
f (x) = 1

f 2(x)
= 3

1 + 2 cos(2φ/3)
(57)

and φ = sin−1 x. As noted in Ref. 13, for small values of x,

F GL
f (x) = 1 + 4

27x2 + 16
243x4 + O(x6), (58)

and F GL
f (x) approaches 3/2 with infinite slope as x → 1. (See

also the lower solid curve in Fig. 10.)

V. KINETIC IMPEDIVITY OF THE SUPERFLUID Zks

In the above sections, we discussed the situations when
τexpt/τs is large or small. To describe in detail the transition
between these two limits is well beyond the scope of this
paper, because this topic involves nonequilibrium processes
with numerous relaxation times.24,45,46 We present here a
simplified procedure for approximating the transition between
the two limits, which may prove instrumental in analysis of
experimental data.

For the moment, we restrict our attention to the GL regime
and employ a phenomenological model assuming that the time
dependence of f is determined by simplest version of the
time-dependent GL (TDGL) equation,24

τsdf/dt = f − f 3 − A′2
s f, (59)

where A′
s = As/(φ0/2πξ ). An important caution here is that

we are using this equation in the gapped state, even though a
nonlinear TDGL equation has been rigorously justified only in
a gapless superconductor,57 where near Tc and at frequencies
ωτs � 1, τs = πh̄/8kB(Tc − T ).24

In the GL regime [(Tc − T ) � Tc], the supercurrent density
[Eq. (18)] becomes in dimensionless quantities

j ′
s = −f 2A′

s , (60)

where j ′
s = js/(φ0/2πμ0ξλ2

0). We now consider experiments
in which the dimensionless supercurrent density j ′

s(t) as a
function of the time t changes about its time average on a time
scale τexpt comparable with the relaxation time τs . In particular,
we consider the linear response of the superconducting strip
to a time-dependent supercurrent density given by j ′

s(t) =
j ′
s0 + j ′

s1e
iωt , where j ′

s0, the bias current current density, is
fixed to be in the range 0 � |j ′

s0| < j ′
d , and j ′

s1, the amplitude
of the ac current density, obeys j ′

s1 � j ′
s0. In this section,

we assume that the frequencies are sufficiently low that
normal-fluid currents are not excited such that the current
is all supercurrent. To analyze the linear response of the
reduced order parameter to the ac current, we substitute j ′

s =
j ′
s0 + j ′

s1e
iωt and f = f0 + f1e

iωt (|f1| � f0) into Eq. (59),
where f0 (

√
2/3 � f0 � 1) is the solution of Eq. (59) in

the time-independent case when j ′
s = j ′

s0. We then linearize
Eq. (59) by neglecting terms of order j̃ 2

s1 and f 2
1 . The solution

is

f1 = − 2j ′
s0j

′
s1

f 3
0

(
6f 2

0 − 4 + iωτs

) . (61)

(Note that this result is obtained for sinusoidal variation of
the supercurrent around a fixed value of j ′

s0. A different
result would be obtained for sinusoidal variation of the
gauge-invariant vector potential around a fixed value of A′

s0.)
From E = −dAs/dt , Eq. (60), and j ′2

s0 = f 4
0 (1 − f 2

0 ) we
obtain the electric field in the linear-response approximation:

E = μ0λ
2
0

(
2f 2

0 + iωτs

f 2
0

(
6f 2

0 − 4 + iωτs

))djs1

dt
(62)

= Zksjs1 = (Rks + iXks)js1 (63)

= (Rks + iωLk)js1. (64)

The coefficient of djs1/dt on the right-hand side of Eq. (62) re-
duces to the slow-experiment inductivity LGL

k (q,T ) [Eq. (51)]
in the limit ωτs → 0 and to the fast-experiment inductivity
LGL

k (q̄,T ) [Eq. (56)] in the limit ωτs → ∞.

The complex kinetic impedivity (specific impedance or
complex resistivity) of the superfluid Zks , here evaluated in
the GL regime, can be conveniently expressed in terms of F GL

s

[Eq. (52)] and F GL
f [Eq. (57)] as

Zks = iωμ0λ
2
0

(
F GL

s + F GL
f iωτeff

1 + iωτeff

)
, (65)
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where

τeff = F GL
s τs/2. (66)

(For a long strip of length �, width W , and thickness d, the
complex kinetic impedance is Zks = Zks�/Wd.)

The real part Rks of the superfluid kinetic impedivity is
the frequency-dependent resistivity of the superfluid due to
order-parameter relaxation. Using the the parametric relation
x = |js0|/jd = sin φ as above, we obtain

Rks = μ0λ
2
0

τs

G

( |js0|
jd

,ωτs

)
, (67)

G(x,ωτs) = β(φ)(ωτs)2

α2(φ) + (ωτs)2
, (68)

α(φ) = 4 cos(2φ/3) − 2, (69)

β(φ) = 16 sin2(φ/3)

1 + 2 cos(2φ/3)
. (70)

G(x,ωτs) is shown in Fig. 9 as a function of x for various
values of ωτs . In limiting cases, we have

G(x,ωτs) = 16

27
x2 + 64

243
x4 + O(x6), ωτs 	 1 (71)

=
[

4

27
x2 + 16

81
x4 + O(x6)

]
(ωτs)

2, ωτs � 1

(72)

and G(x,ωτs) approaches 2 with infinite slope as x → 1.
Although the superconducting strip has zero dc electrical

resistivity, under ac conditions order-parameter relaxation
contributes to dissipation of energy in a manner similar to
the way it contributes to flux-flow dissipation.24,58–61 The
time-averaged rate of energy dissipation per unit volume via
order-parameter relaxation is (1/2)Rksj

2
s1, which also can be

calculated using the dissipation function discussed in Refs. 59
and 60.
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FIG. 9. G(x,ωτs), which describes the alternating-current resis-
tivity of the superfluid due to order-parameter relaxation [Eqs. (67)
and (68)], vs x = |js0|/jd for ωτs = 0.1 (dotted line), ωτs = 0.3
(dotted-dashed line), ωτs = 1 (dashed line), ωτs = 3 (long dashed
line), and ωτs = ∞. G(1,ωτs) = 2.
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FIG. 10. H (x,ωτs), which describes the superfluid’s kinetic
inductivity [Eqs. (73) and (74)], vs x = |js0|/jd for ωτs = 0 [upper
solid curve, for which H (x,0) = F GL

s (x), Eq. (52)], ωτs = 0.3
(dotted-dashed line), ωτs = 1 (dashed line), ωτs = 3 (long dashed
line), and ωτs = ∞ [lower solid curve, for which H (x,0) = F GL

f (x),
Eq. (57)]. For nonzero ωτs , H (1,ωτs) = 1.5 (black point).

The superfluid’s kinetic reactivity is Xks = ωLk , where the
superfluid’s kinetic inductivity Lk is

Lk = μ0λ
2
0H

( |js0|
jd

,ωτs

)
, (73)

H (x,ωτs) = 1

1 + 2 cos(2φ/3)

[
3 + 16α(φ) sin2(φ/3)

α2(φ) + (ωτs)2

]
.

(74)

Shown in Fig. 10 are plots of H (x,ωτs) versus x for
various values of ωτs . As expected, H (x,ωτs) approaches
the slow-experiment result F GL

s (x) when ωτs → 0 and the
fast-experiment result F GL

f (x) as ωτs → ∞.
In the above, we have used the relatively simple formalism

of the time-dependent GL theory, bearing in mind that there
are questions of whether this theory can legitimately be used
for gapped superconductors and how τs can be determined. A
reasonable starting point for an approximate phenomenologi-
cal theory of the complex kinetic impedivity of the superfluid
Zks at lower temperatures outside the GL regime would be to
replace the quantities F GL

s and F GL
f in Eqs. (65) and (66) by

the more general expressions Fs and Ff given in Eqs. (48) and
(54). Note from Figs. 7 and 8 that Fs = Lk(q,T )/μ0λ

2
0(T ) and

Ff = Lk(q̄,T )/μ0λ
2
0(T ) as functions of |js |/jd and |j̄s |/jd do

not differ greatly from their GL counterparts F GL
s and F GL

f .
Although the theory we have presented here is not rigorous,
our results suggest that when ωτs 	 1 but when ω is well
below the superconducting gap frequency 2�q(T )/h̄, order-
parameter relaxation gives rise to a current- and frequency-
dependent contribution to the ac resistivity separate from that
due to the normal fluid (thermally excited quasiparticles).
However, as discussed above, remaining unknown is how to
calculate order-parameter relaxation and how to determine the
relaxation times that should replace τs in a more complete
theory.45
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VI. KINETIC IMPEDANCE INCLUDING THE
NORMAL-FLUID RESPONSE

We examine next the current dependence of the dissipation
arising from the flow of thermally excited quasiparticles at
frequencies ω well below the superconducting gap frequency
2�q(T )/h̄. This is the frequency regime where a two-fluid
approach is generally applicable.24 However, the two-fluid ter-
minology needs to be used with caution because, as explained
below, coherence-factor effects can produce dissipation greater
than in the normal state.62 Although the quasiparticles have
their own kinetic inductivity,5 their reactive contribution to
the total kinetic impedivity is negligible at the frequencies of
interest here. The quasiparticles’ only significant contribution
to the ac normal-fluid current density is therefore

jn1 = σ1E, (75)

where σ1 corresponds to the real part of the complex conduc-
tivity σ = σ1 − iσ2, the linear-response function connecting
j and E calculated by Mattis and Bardeen.63

We begin by reexpressing σ1 for the BCS case as64

σ1 = σn

ω

∫ ∞

−∞
dω′

[
f
(
ω′ − ω

2

)
− f

(
ω′ + ω

2

)]

×
[
n1

(
ω′− ω

2

)
n1

(
ω′+ ω

2

)
+p1

(
ω′− ω

2

)
p1

(
ω′+ ω

2

)]
,

(76)

where ω is expressed in energy units (h̄ = 1) and f (ω) =
1/(1 + eβω) is the Fermi function. For the BCS case,

n1(ω) = Re
ω√

ω2 − �2
, (77)

p1(ω) = Re
�√

ω2 − �2
, (78)

n1(ω) = p1(ω) = 0 for |ω| < �(T ), and the signs of the square
roots are chosen such that n1(ω) is an even function and p1(ω)
an odd function of ω. At T = 0, the Fermi functions freeze-out
all contributions to σ1 for ω < 2�(0), such that σ1 is nonvan-
ishing only for ω > 2�(0), when the integral of Eq. (76) can
be expressed in terms of complete elliptic integrals.24,63 For
T > 0 and frequencies obeying ω � 2�(0), σ1/σn plotted
as a function of temperature is found theoretically in dirty
superconductors62 to be very small at low temperatures, rising
to a maximum at which σ1/σn > 1 [for example,62 σ1max/σn =
2.17 at t = 0.864 when ω/�(0) = 0.02] and returning to 1 at
t = T/Tc0 = 1. A similar temperature dependence has been
seen experimentally in several materials.65–68

Because the coherence-factor terms n1 and p1 in Eq. (76)
yield a logarithmic divergence for ω = 0, σ1 can be evaluated
approximately at low temperatures [�(T )/kBT � 2] and low
frequencies [ω � 2�(0)] by introducing a cutoff energy ε ∼
ω. The leading term in the result is

σ1 ≈ 2σn

[
�(T )

kBT

]
exp

[
−�(T )

kBT

]
ln

(
kBT

ε

)
. (79)

The expressions for σ1 derived by Nam34–36 for strong-
coupling superconductors also can be put into the form of

Ω 0 0 0.02

t 0.8

0.6

0.4

0.2
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

js jd

Σ
1
Σ

n

FIG. 11. σ1/σn vs |js |/jd calculated from Eqs. (76), (80), and (81)
for ω/�0(0) = 0.02 and t = T/Tc0 = 0.2, 0.4, 0.6, and 0.8.

Eq. (76), except that � in Eqs. (77) and (78) must then be
replaced by the complex gap function �(ω), which contains
additional phonon-related ω dependence due to the electron-
phonon interaction.69

For the pair-breaking theory of superconductors with
paramagnetic impurities32–36 or, as in the case of interest here,
current-carrying thin films,27–29,31,37,70,71 Eqs. (77) and (78) are
replaced by

n1(ω) = Re
u√

u2 − 1
, (80)

p1(ω) = Re
1√

u2 − 1
, (81)

where u is given by Eq. (D3), n1(ω) = p1(ω) = 0 for |ω| <

ωg with32 ωg/�q = (1 − ζ 2/3)3/2, and the signs of the square
roots are chosen such that n1(ω) is an even function and p1(ω)
an odd function of ω. (See, for example, Fig. 4 in Ref. 32
or Fig. 6 in Ref. 33.) Numerical evaluation of Eq. (76) using
Eqs. (80) and (81) in the limit as ζ → 0 yield σ1(ω) values in
agreement with the dirty-limit Mattis-Bardeen results.24,63

Figure 11 shows σ1/σn versus |js |/jd for ω/�0(0) = 0.02
and several values of t = T/Tc0. σ1/σn was first calculated
from Eq. (76) as a function of q/qm(0) up to qd (T )/qm(0),
accounting for the q and temperature dependence of ζ =
(q2/2q2

m)�0(0)/�q(T ). (See Fig. 1.) Figure 11 was then
constructed as a parametric plot using |js |/jd versus q/qm(0)
up to qd (T )/qm(0) obtained as in Fig. 3. The main features of
the dependence of σ1/σn can be understood from Eq. (79), but
where �(T ) is replaced by �q(T ) (see Fig. 1) and the cutoff
ε is replaced by the larger of εω ∼ ω or the peak width in
n1(ω), εζ ∼ �q − ωg ≈ (3/2)�qζ

2/3. The exponential term
in Eq. (79) tends to make σ1 increase as q and |js | (see Figs. 3
and 6) increase, as seen in Fig. 11 for small values of |js |/jd ,
where εω > εζ and the ln(kBT /εω) term is a constant. Maxima
occur when εω ≈ εζ . To the right of the maxima, εζ > εω, and
the term ln(kBT /εζ ), which is a decreasing function of q and
|js |, plays a stronger role.

The current density carried by the normal fluid, accounting
for the effects of the coherence factor, is given by Eq. (75).
We also can express the normal-fluid response in terms of
the normal fluid’s kinetic impedivity Zkn = 1/σ1. Because the
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total ac current density carried by the strip is j1 = js1 + jn1,
and E = Zkjs1, the overall kinetic impedivity Zk = Rk +
iXk = Rk + iωLk of the strip, including the normal-fluid
response, is the impedances-in-parallel combination

Zk = (
Z−1

ks + Z−1
kn

)−1
. (82)

Note that as T → Tcq , |Zks | diverges, Zkn → 1/σn, and Zk

approaches the normal-state resistivity.
In the limit as js0 → 0, our results reduce to the well-known

two-fluid description24 when the impedivity can be expressed
in terms of the complex conductivity σ = σ1 − iσ2, the linear-
response function connecting j and E calculated by Mattis and
Bardeen.63 As j s0 → 0, Rks → 0, Xks → ωLks = μ0ωλ2

0 =
1/σ2, σnf → σ1, Zks → i/σ2, Zkn → 1/σ1, and Zk → (σ1 −
iσ2)−1 = σ−1.

At temperatures above Tcq , the normal-state impedance is
Z = Rn + iω(Lk + Lm), where Lm is the geometric induc-
tance associated with stored magnetic energy and, for a long
strip of conduction-electron density nc, total length �, width
W , and thickness d, Lk = (m/nce

2)(�/Wd) is the normal-state
kinetic inductance.5 The impedance is usually dominated by
the normal-state resistance Rn = ρn�/Wd except at very high
frequencies.5

VII. DISCUSSION

In this paper, we have presented fundamental theoretical
calculations of the kinetic impedance of thin and narrow
impure superconducting films for all temperatures and for
all currents up to the depairing current. Our results should
be applicable to ongoing experimental studies of small-scale
superconducting devices in which the kinetic inductance plays
an important role. Our calculations have shown examples of
how the kinetic inductance and the normal-fluid dissipation
depend upon the dc applied current. However, experiments
examining the in-phase and out-of-phase third and higher
harmonics might provide a more sensitive means of revealing
the influence of the nonlinearities implied by these current
dependencies.72

Our results in the GL regime for the bias-current de-
pendence of the kinetic inductance are in agreement with
those of Anlage et al.13 and Annunziata et al.2 for the
slow-experiment case and with the result of Anlage et al.13

for the fast-experiment case. However, Annunziata et al.,2 in
examining the case of T = 0 and noting correctly that λ2

0(0) is
inversely proportional to �0(0) (in our notation) [see Eq. (B3)],
assumed that λ2

q(0) is inversely proportional to �q(0). This
assumption is incorrect, as can be seen from Eqs. (23), (26),
and (28). As a consequence, their prediction for the current
dependence of the kinetic inductance does not agree with our
results for either slow or fast experiments.

In practice, the depairing current density might be smaller
than calculated here for a number of reasons. In thin and
narrow strips with sharp corners, current crowding leads to
suppression of the order parameter in the immediate vicinity
of sharp inner corners, and this can cause the critical current
in such devices to be considerably lower than the depairing
value.19,23,73–76 By optimally rounding the inner corners, one

should be able to raise the critical current to values close to
the depairing value.19,23,75

As discussed in Sec. II, our calculation of the critical
depairing-current density jd has been carried out within a
mean-field approach disregarding fluctuations. However, the
experimental critical current density jc could be somewhat
smaller than jd as a result of thermal or quantum fluctua-
tions, which can initiate phase slips in one-dimensional (1D)
wires77,78 or vortex nucleation at the edges of strips15,16,23,79

when an energy barrier is overcome or suppressed to zero. The
fluctuation limited jc therefore may prevent the observation of
both the predicted divergence of the slow-experiment kinetic
inductivity at jd and the approach to the maximum values
of the fast-experiment kinetic inductivity (shown by the filled
symbols in Fig. 8). In fact, previous experimental observations
of a relatively small kinetic inductance rising to a peak and then
rapidly dropping to smaller values with increasing applied
current2,14,80,81 are explainable in terms of the growth of
high-resistance normal regions as the current density rises
above jc.

As discussed in Secs. III–V, relaxation of the superfluid,
approximately characterized here by the relaxation time τs ,
plays an important role in determining both the real and
imaginary parts of the kinetic impedance. To examine the
physics of relaxation dynamics is beyond the scope of this
paper, and for further discussion we refer the reader to
Refs. 24 and 45 and references therein. Nevertheless, Figs. 9
and 10 suggest means by which τs could be estimated from
experimental determinations of the superfluid’s ac resistivity
and inductivity. At the very least, such experiments should be
able to reveal whether they are in the slow- or fast-experiment
limit, and experiments carried out at different frequencies and
temperatures might be able to show the transition between
these two limits.

In this paper, we have used the concept of the q-dependent
penetration depth, which increases as the current density in-
creases. This occurs because an increase of the current density
causes a decrease in the magnitude of the superconducting
order parameter. This concept is the basis of the effective
field-dependent penetration depth in type-II superconductors
λ(B,T ), which diverges as B → Bc2(T ). This quantity has
been introduced to understand such phenomena as small-angle
neutron-scattering form factors,82 magnetic coupling of vortex
lattices in dc superconducting transformers,83,84 magnetization
curves in low-pinning superconductors,85 elastic properties
of the vortex lattice,86 and μSR measurements in the mixed
state.87,88
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APPENDIX A: unq

The function unq(η,ε,ζ ) is the solution of the quartic
equation

ε2u4 − 2ηεu3 + (η2 + ε2 − ε2ζ 2)u2 − 2ηεu − η2 = 0,

(A1)

obtained from Eq. (9). The desired solution of the quartic
equation is

unq = (f + g + η/ε)/2, (A2)

where

a = −2[ε6(ζ 2 − 1)3 − 3ε4(1 + 16ζ 2 + ζ 4)η2

+ 3ε2(ζ 2 − 1)η4 − η6], (A3)

b =
√

−4c6 + a2, (A4)

c = ε2(ζ 2 − 1) − η2, (A5)

d = (a + b)1/3, (A6)

e = 22/3c2 + d2

21/33ε2d
, (A7)

f =
√

2ε2(ζ 2 − 1) + η2

3ε2
+ e, (A8)

g =
√

2[2ε2(ζ 2 − 1) + η2]

3ε2
− e + 2(ζ 2 + 1)η

εf
. (A9)

Similar solutions of the quartic equation that arises in
the closely related problem of the density of states in
the Abrikosov-Gor’kov theory30 were obtained in Refs. 35
and 89.

APPENDIX B: ZERO-CURRENT LIMIT

In the limit of zero current, q → 0 (vs → 0), un0 = η/ε,
and we obtain from Eq. (11), after defining t = T/Tc0 and
δ0(T ) = �0(T )/2πkBTc0,

ln
1

t
=

∞∑
n=0

⎛
⎝ 1

n + 1/2
− 1√

(n + 1/2)2 + δ2
0(T )/t2

⎞
⎠ , (B1)

which yields the temperature dependence of �0(T ) for all
temperatures between 0 and Tc0, the transition temperature
for q = 0. An analysis of this equation as t → 0 reveals
that 4πδ0(0) = 2�0(0)/kBTc0 = 2πe−γ = 3.528, which is
consistent with the fact that the above form of the Usadel
theory coincides with the weak-coupling BCS theory for an
s-wave isotropic gap on a spherical Fermi surface. Values
of �0(T )/�0(0) versus t = T/Tc0, which reproduce well-
known results,50,90 can be obtained by numerically carrying
out the sum in Eq. (B1), and it can be shown analytically

Bc2 T
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Ξ 2 0

Ξ 2 T

qm
2 T
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FIG. 12. Upper curve: reduced superfluid density
ns0(T )/ns0(0) = [λ0(0)/λ0(T )]2 vs t = T/Tc0, obtained from
Eq. (14). The dashed line 2.660(1 − t) shows the slope as
t → 1. Lower curve: reduced upper critical field Bc2(T )/Bc2(0) =
[ξ (0)/ξ (T )]2 vs t = T/Tc0, obtained from Eqs. (C9) and (C10). The
dotted line 1.444(1 − t) shows the slope as t → 1.

that [�0(T )/�0(0)]2 → [8e2γ /7ζ (3)](1 − t) = 3.016(1 − t)
as t → 1.

In the zero-q limit, the sum in Eq. (16) can be evaluated
analytically as shown in Eq. (14), such that, as previously
discussed in Refs. 91 and 24,

ns0(T )

ns0(0)
= λ2

0(0)

λ2
0(T )

= �0(T )

�0(0)
tanh

[
�0(T )

2kBT

]
. (B2)

From Eq. (2), ξ0 = h̄vF /π�0(0), and the normal-state con-
ductivity σn = 2e2N (0)D, we obtain

1

μ0λ
2
0(T )

= ns0(T )e2

m
= πσn�0(T )

h̄
tanh

[
�0(T )

2kBT

]
. (B3)

Figure 12 exhibits the temperature dependence of
ns0(T ). As t → 1, ns0(T )/ns0(0) → [4πeγ /7ζ (3)](1 − t)
= 2.660(1 − t).

At T = 0, we can write

1

μ0λ
2
0(0)

= 2

3
N (0)e2v2

F

(
�

ξ0

)
, (B4)

but because the zero-temperature London penetration depth
λL(0) can be expressed as50

1

μ0λ
2
L(0)

= 2

3
N (0)e2v2

F , (B5)

we see that λ0(0) = λL(0)(ξ0/�)1/2. (Recall that � � ξ0 in the
dirty limit under consideration here.)

APPENDIX C: ZERO-GAP LIMIT

To find the boundary in the t-q plane where
�q(T ) is reduced to zero, note from Eq. (9) that

ε
√

1 + u2
nq → n + 1/2 + Q/2πkBT in the limit ε = �q(T )/

2πkBT → 0, such that Eq. (11) then yields the
q-dependent transition temperature. Defining tcq = Tcq/Tc0,
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FIG. 13. tcq = Tcq/Tc0 (solid) vs q/qm(0) obtained from
Eqs. (23)–(25). Also shown are expansions of tcq about q = 0 [dashed
line, Eq. (C3)] and q = qm(0) [dotted line, Eq. (C4)]. This figure is
the same as a plot of t = T/Tc0 along the ordinate vs qm(T )/qm(0)
along the abscissa. �q (T ) > 0 only for values of t and q/qm(0) under
the curve.

P = Q/2πkBTc0, Pm = Qm/2πkBTc0 = eψ(1/2) = e−γ /4 =
0.140, Qm = πkBTc0e

−γ /2 = h̄Dq2
m(0)/2, qm(0) =

(πkBTc0e
−γ /h̄D)1/2 = (3/πξ0�)1/2, and vm(0) = (h̄/2m)

(πkBTc0e
−γ /h̄D)1/2, we obtain

ln
1

tcq
=

∞∑
n=0

(
1

n + 1/2
− 1

n + 1/2 + P/tcq

)
(C1)

= ψ

(
1

2
+ P

tcq

)
− ψ

(
1

2

)
, (C2)

where ψ is the digamma function and P/Pm = [q/qm(0)]2 =
[vs/vm(0)]2. Figure 13 shows tcq as a function of q/qm(0) =
vs/vm(0). Expansions of tcq about q = 0 and q = qm(0) yield,
respectively, the approximations

tcq = 1 − π2e−γ

8

q2

q2
m(0)

= 1 − 0.693
q2

q2
m(0)

(C3)

=
√

3e−γ

√
1 − q

qm(0)
= 0.972

√
1 − q

qm(0)
, (C4)

which are shown as the dashed and dotted curves in Fig. 13.
A similar procedure can be used to determine qm(T ), the

value of q that drives �q(T ) to zero for a given value of t .
Equation (11) then yields

ln
1

t
=

∞∑
n=0

(
1

n + 1/2
− 1

n + 1/2 + α

)
(C5)

= ψ

(
1

2
+ α

)
− ψ

(
1

2

)
, (C6)

where α is given in Eq. (34). Since tcq and qm(T ) are both
determined by the equation obtained by setting �q(T ) = 0, it
should not be surprising that a plot of t versus qm(T )/qm(0) is
exactly the same as the plot of tcq versus q/qm(0), shown in
Fig. 13. Expansions of qm(T )/qm(0) about t = 0 and 1 yield,

respectively, the approximations

qm(T )

qm(0)
= 1 − e2γ

3
t2 = 1 − 1.057t2 (C7)

=
√

8eγ

π2
e−γ

√
1 − t = 1.202

√
1 − t, (C8)

which correspond to the dotted and dashed curves in Fig. 13.
Equations (C7) and (C8) are most easily obtained by making
the replacements q → qm(T ) and tcq → t in Eqs. (C3)
and (C4).

The upper critical field is related to the temperature-
dependent coherence length via Bc2(T ) = φ0/2πξ 2(T ), and,
as discussed in Ref. 92, in the dirty limit Bc2 can be obtained
from the equation

ln

(
1

t

)
= ψ

(
1

2
+ ρ

)
− ψ

(
1

2

)
, (C9)

where t = T/Tc0 and

ρ =
(

e−γ

4

)(
Bc2(T )

Bc2(0)

)
1

t
, (C10)

where Bc2(0) = φ0/2πξ 2(0) and ξ (0) = (πξ0�/3)1/2. At
t = 0, we have λ0(0)/ξ (0) = √

3/πλL(0)/� = 0.977λL(0)/�.
As t → 0, Bc2(T )/Bc2(0) ≈ 1 − (2eγ /3)t2. As

t → 1, Bc2(T )/Bc2(0) → (8eγ /π2)(1 − t) = 1.444(1 − t).
Note that this result is consistent with what Helfand
and Werthamer93 found for their normalized field
h∗(0) = Bc2(0)/(dBc2/dt)t=1 = 0.69 = 1/1.444 in the
dirty limit. Since ξ (T ) →

√
π3e−γ /24

√
ξ0�/

√
1 − t =

0.852
√

ξ0�/
√

1 − t, we have in this limit λ0(T )/ξ (T ) = κ =√
42ζ (3)/π4λL(0)/� = 0.720λL(0)/�.
A plot of Bc2(T )/Bc2(0) is equivalent to a plot of

[ξ (0)/ξ (T )]2, as shown in Fig. 12. Moreover, comparing
Eqs. (C9) and (C9) with Eqs. (C5) and (34), we see that
qm(T ) = 1/ξ (T ) and qm(0) = 1/ξ (0), and for all temperatures
we have

Bc2(T )

Bc2(0)
= ξ 2(0)

ξ 2(T )
= q2

m(T )

q2
m(0)

. (C11)

APPENDIX D: WORK DONE AND FREE-ENERGY
CHANGES RESULTING FROM CURRENT CHANGES

It is of interest to examine the changes in energy as the
current increases from zero to some final value. The work
done per unit volume is

Wv =
∫ t

0
jsq ′Edt ′ = −

(
φ0

2π

)∫ q

0
jsq ′dq ′, (D1)

which is equal to the change in the free-energy density, as we
show in the following.

The free-energy density �q(T ) = FS(T ) − FN (T ) of a
current-carrying superconductor relative to the energy density
of the normal state can be obtained by taking advantage of
the theoretical similarities to the problem of superconducting
alloys containing paramagnetic impurities. The expression
for �q(T ) = FS(T ) − FN (T ) for the latter case obtained by

174521-13



JOHN R. CLEM AND V. G. KOGAN PHYSICAL REVIEW B 86, 174521 (2012)

Skalski et al.32 in their Eq. (5.6) can be rewritten compactly
for the current-carrying superconductor as

�q = N (0)
∫ ∞

0
Re

[
2p(ω) + �q√

u2 − 1

]
tanh

βω

2
dω, (D2)

using the replacements and changes in notation � →
Q, �(T ,�) → �q(T ), N0 → N (0), and ω′

D → ∞ (weak-
coupling limit). Here, β = 1/kBT ,

ω

�q

= u

(
1 − i

ζ√
u2 − 1

)
, (D3)

and

p(ω) = −
∫ ∞

ω

[
u′

√
u′2 − 1

− 1

]
dω′ (D4)

= �q

[(
1 − i

ζ√
u2 − 1

)
(
√

u2 − 1 − u)

− i
ζ

2(u2 − 1)

]
(D5)

is a quantity arising from partial integration of the term
proportional to ln(1 + e−βω) in the entropy contribution to
�q(T ). Some useful relations are Re[p(0)] = 0 and

∫ ∞

0
Re

[
p(ω) + ω

(
u

(u2 − 1)1/2
− 1

)]
= −�2

q

2
. (D6)

The quantity within the brackets in the integrand of Eq. (D2)
can be expressed in terms of u as

ω

(
2
√

u2 − 1

u
− 2 + 1

u
√

u2 − 1

)
, (D7)

and the integral in Eq. (D2) can be evaluated using contour
integration around the boundaries of the first quadrant of
the complex ω plane, taking into account the poles along
the imaginary axis at the Matsubara frequencies iωn =
i2πkBT (n + 1/2) = i2πkBT η. The result is

�q(T ) =−N (0)(2πkBT )2
∞∑

n=0

η

⎡
⎣2

⎛
⎝ unq√

1 + u2
nq

− 1

⎞
⎠

+ 1

unq

√
1 + u2

nq

⎤
⎦ . (D8)

Differentiation of Eqs. (11) and (D8) with respect to q

yields the general result that

d�q(T )

dq
= N (0)(2πkBT )

dQ

dq

∞∑
n=0

1

1 + u2
nq

(D9)

= −
(

φ0

2π

)
jsq(T ). (D10)

This result agrees with Eq. (D1).
In the zero-temperature limit, the sum in Eq. (D8) can

be converted to an integral over η using Eq. (9), with the

result37

�q(0) = −N (0)�q(0)2

2

(
1 − πζ0

2
+ 2ζ 2

0

3

)
, ζ0 � 1 (D11)

= −N (0)�q(0)2

2

(
1 − πζ0

2
+ 2ζ 2

0

3

−
(2ζ 2

0 +1)
√

ζ 2
0 − 1

3ζ0
+ ζ0 tan−1

√
ζ 2

0 − 1

)
, ζ0 � 1

(D12)

where �q(0) is given by Eqs. (23) and (24), and ζ0 by Eq. (25).
It is possible to write the free-energy density as the sum

of two terms �q(T ) = Fcq(T ) + Fkq(T ), where we identify
Fcq(T ) as the condensation-energy density and Fkq(T ) as the
kinetic-energy density:

Fcq(T ) = −N (0)(2πkBT )
∞∑

n=0

⎡
⎣2h̄ωn

⎛
⎝ unq√

1 + u2
nq

− 1

⎞
⎠

+ �q√
1 + u2

nq

⎤
⎦ , (D13)

Fkq(T ) = N (0)(2πkBT )Q
∞∑

n=0

1

1 + u2
nq

. (D14)

Note, however, that both terms depend upon q and interact.
As q increases from zero, Fkq(T ) initially increases from
zero and the magnitude of Fcq(T ) decreases, but their sum
�q(T ) decreases to zero as q → qm(T ). Figure 14 shows the q

dependence of the energy densities �q , Fcq , and Fkq at T = 0.
It is important to note that Fkq(T ) is not equal to Lk(q,T )j 2

sq/2
except in the limit as q → 0 [see Eq. (1)].

The bulk thermodynamic critical field Hc(T ) is defined via
the superconducting condensation energy at q = 0:

1
2μ0H

2
c (T ) = −�0(T ) (D15)
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FIG. 14. Energy densities at T = 0: �q (0) [solid curve,
Eqs. (D11) and (D12)], Fcq (0) [dotted curve, Eq. (D13)], and Fkq (0)
[dashed curve, Eq. (D14)], normalized to N (0)�2

0(0)/2. The black
points identify the values of these energy densities at qd/qm(0) =
0.689, where �q (0) has its maximum slope and the depairing-current
density is achieved.
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= N (0)(2πkBT )2
∞∑

n=0

⎛
⎝2
√

η2 + ε2
0 − 2η − ε2

0√
η2 + ε2

0

⎞
⎠ ,

(D16)

where η = n + 1/2 and ε0 = �0(T )/2πkBT . Equation (D16),
which follows from Eq. (D8) when q → 0 and unq → un0 =
η/ε0 [see Eq. (9)], reproduces the BCS (Ref. 50) temperature
dependence of Hc(T ).
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and A. Semenov, Phys. Rev. B 81, 024502 (2010).
19H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren,

and J. R. Clem, Appl. Phys. Lett. 100, 182602 (2012).
20A. Engel, A. Aeschbacher, K. Inderbitzin, A. Schilling, K. Il’in,

M. Hofherr, M. Siegel, A. Semenov, and H.-W. Hübers, Appl.
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