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Adsorption of He isotopes on fluorographene and graphane: Fluid and superfluid phases
from quantum Monte Carlo calculations
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Monolayer films on graphite, remarkably diverse examples of two-dimensional matter, are now well understood
in terms of semiempirical interactions. We explore the phase behavior of helium films on two variants of graphene:
graphane (graphene coated with H, denoted GH) and graphene fluoride (GF). The behaviors predicted with
quantum Monte Carlo differ qualitatively from those on graphite because of the different surface composition,
symmetry, and spacing of the adsorption sites. On both substrates we find that the analog of the standard√

3 × √
3 R30◦ commensurate state on graphite is unstable. Results include a superfluid ground state for 4He

and a fluid ground state for 3He, neither of which has been found for the monolayer film on any substrate;
these two-dimensional fluids are anisotropic because of the symmetry imposed by the honeycomb lattice of
adsorption sites. In the case of 4He on GF the anisotropy is as large as if the superfluid were restricted to move
in a multiconnected space, along the bonds of a honeycomb lattice. The superfluid transition temperature at the
ground-state density of 4He on GF (GH) is of order 0.25 (1.1) K. At higher coverages both an incommensurate
triangular solid and a commensurate state at filling factor 2/7 are found.
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I. INTRODUCTION

A focus of research in condensed matter physics is the study
of strongly interacting systems, with a remarkable variety of
phase transitions.1 The effects of fluctuations are enhanced in
low dimensions and in the presence of frustration.2 These
represent some of the motivations for studying adsorption
phenomena, where important roles are played by the gas-gas
interaction and the “tunable” effect of the substrate. The
surface of graphite has long been a playground for studying
two-dimensional (2D) monolayer phases of diverse gases.3

The behavior depends sensitively on the commensurability,
i.e., the relationship between the size parameter σ of the gas
and the lattice constant of the surface. Among the simple gases,
one encounters dramatic effects of the periodic potential for
both isotopes of He and for H2 (the smallest σ values). This
corrugation leads to the existence, up to a relatively high
order-disorder temperature Tod (∼3 K for He and 20 K for
H2), of a

√
3 × √

3 R30◦ commensurate state on graphite. In
striking contrast, Ar and CH4 (σ ∼ 30% greater than He and
H2) films are relatively well described by simple 2D models, in
which the corrugation plays a negligible role. At high coverage
a common feature of all of these gases is the presence of a
solid phase, incommensurate with the substrate. In the second
layer of 4He on graphite some experiments have hinted at the
presence of a supersolid phase.4 When Fermi statistics are
relevant, as in the case of 3He, diverse many-body magnetic
phenomena are also present.5

The recent interest in graphene (Gr) has led us to consider
it as a logical substrate for adsorption studies. Since Gr is a
single plane of graphite, the symmetry is identical and the
corrugation is very similar in the two cases. If Gr is rigid,
no new phenomena are expected for adsorption on one side
of Gr, in comparison with graphite,6 as has been verified by
recent quantum simulations of 4He.7,8 The situation is different
for the derivatives of Gr, graphene fluoride (GF),9 also called

fluorographene, and graphane (GH),10 that have been recently
obtained experimentally. Because GF and GH have surface
symmetries and compositions which are quite different from
Gr, adsorbed gases will have very different properties. This
article presents results for adsorbed He isotopes, including
both energy bands and monolayer phase behaviors. A major
prediction for 4He is that the analog of the standard

√
3 × √

3
R30◦ commensurate state is unstable on both GF and GH and
that the ground state is a self-bound liquid that is superfluid and
strongly modulated by the adsorption potential. A self-bound
liquid is a state in which the energy per atom is less than that
of a single atom. At larger coverage, both an incommensurate
solid and a commensurate state at coverage x = 2/7 are found.
We predict that 3He on GF and GH at low coverage forms
an anisotropic Fermi fluid and present evidence that on GF
there might be found a self-bound liquid 3He ground state (in
contrast with the strictly 2D limit, for which a gas is the ground
state11).

The structure of the paper is the following. In Sec. II
we describe the geometry of the substrates and some char-
acteristics of the adopted adsorption potential; in Sec. III
we show our results for 4He and 3He one-body properties;
Sec. IV contains the results for the many-body properties
of the first 4He layer on the substrates, ranging from low
coverages to completion; in Sec. V we show our calculation
for 3He at low coverages; Sec. VI contains our conclusions.
Appendix A contains the details of the adopted adsorption
potential; Appendix B contains some computational details of
the quantum Monte Carlo simulations.

II. GEOMETRY OF SUBSTRATES AND
ADSORPTION POTENTIAL

In suspended GF (GH), half of the F (H) atoms are attached
above the graphene sheet to C atoms forming one of the two
sublattices of graphene and half are attached below to C atoms
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of the other sublattice. With such a sandwich geometry a He
atom approaching GF (GH) from above interacts primarily
with the top F (H) overlayer, but only weakly with the C
atoms and the F (H) atoms of the underlayer. Recently,12

we developed a model adsorption potential Vad(�r) of a He
atom at position �r near these surfaces, adopting a traditional
semiempirical model to construct the potential energy of a
single He atom at position �r near a surface.13–15 The adopted
adsorption potential for a He atom at position �r above the
substrate reads

Vad (�r) = vrep (�r) + vatt (�r) , (1)

where the repulsive term vrep (�r) = γρ (�r) is proportional to the
electron density of the substrate and the attractive part is a sum
of the contributions of the different layers of the substrate.
The atomic positions of GF (GH) and ρ (�r) come12 from a
density functional theory (DFT) computation with interaction
parameters12 taken from the literature (see Appendix A for
details).

The F (H) atoms of the upper plane of GF (GH) form a
triangular lattice; adsorption sites lie above the centers of each
nearest-neighbor triplet of F (H) atoms of the upper plane [see
Fig. 1(a)]. There is one site per C atom, twice as many sites
as occur on Gr and graphite. These sites form a honeycomb

FIG. 1. (Color online) He on GF. (a) View of GF (GH) from
above. Green circles represent F (H) atoms in the upper plane, dark
gray circles represent half of the C atoms, and the other C atoms lie
below the green circles. The other half of the F (H) atoms lie below
the dark gray circles. The two blue circles represent two adsorption
sites; one is on top of a C atom and the other has no atoms directly
below. (b) Details of the geometry of the unit cell; a1 and a2 indicate
the sides of the unit cell, d is the C-C distance projected on the x-y
plane, and b is the buckling displacement of the C atoms. Values for
a1, a2, d , and b have been obtained from a DFT computation (Ref. 12)
and are reported in Appendix A.

FIG. 2. (Color online) He on GF. Plot of the minimum value with
respect to z of Vad(�r) in K as a function of x-y.

lattice; the two sites in the unit cell are not equivalent, as seen
in Fig. 1(a), but the difference in adsorption energy between
them is very small, <1% (see Fig. 2): On GF, the potential
energy at the site which has no atoms directly below is about
−496.467 K, to be compared with the potential energy at the
other site which is about −496.122 K; both adsorption sites
are located at z = 3.6 Å above the mean position of the C
atoms. On GH, the potential energies which correspond to the
same sites turn out to be about −195.015 K and −195.074 K,
respectively, and the sites are located at z = 3.7 Å. Throughout
this article we express energies in kelvins; this corresponds
in showing the values obtained dividing the energies by the
Boltzmann constant, kB .

Figure 2 presents Vad (�r) for He GF. The depth of the
potential well is about 496.5 (195) K for GF (GH) and
the intersite energy barriers are 24 and 13 K, respectively.
For comparison, on graphite the well depth is 224 K and
the barrier is 41 K.16 The potentials on GF and GH are
remarkably different from those on graphite because of the
different symmetry of the sites (honeycomb vs triangular)
and the different energy parameters, and because the intersite
distance (1.49 Å on GF, 1.45 Å on GH) is much smaller than
on graphite (2.46 Å). On GF and GH Vad(�r) is characterized
by narrow canyons between adsorption sites, with a relatively
low energy barrier compared to graphite as shown in Fig. 3.

III. N = 1 4He AND 3He PROPERTIES

We have computed12 the exact ground state energy E0 of
one 4He and one 3He atom on GF and GH with the path-
integral ground state (PIGS) method.17 See Appendix A for
details on our computational method. Also, we computed the
energy as a function of wave vector �k in the lowest energy
band from the imaginary time correlation function, F (�k,τ ) =
〈ρ̂�k(τ )ρ̂ �−k(0)〉 (ρ̂�k(τ ) = exp[i�k · �r(τ )], where �r is the position
of the He atom), using powerful inversion methods: the genetic
inversion via falsification of theories method18 (GIFT). The
results12 for E0, the bandwidth of the lowest band, and the
effective mass of 4He on GF and GH are given in Table I.
The ground-state energy E0 has a significant contribution from
kinetic energy K: K = 46.78(2) K on GF and K = 20.51(1) K
on GH. On graphite K = 25.30(4) K when the Carlos-Cole
adsorption potential is used.

The excited states of a He atom on a periodic potential are
characterized by a series of energy bands as a function of wave
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TABLE I. Left columns: Substrate and N = 1 properties. (Uo) Depth of potential well; (�) intersite energy barrier; (ds) intersite distance;
(E0) ground-state energy; (BW) bandwidth; (m∗/m) effective mass to bare mass ratio. Right columns: Many-body properties. (ρeq) Equilibrium
density; (xeq) coverage; (E0) ground-state energy; (Eb = E0 − E0) binding energy; T = 0 K condensate fraction (n0) and superfluid fraction
(ρs/ρ); (Tc) transition temperature; (ρI−sat) first-layer completion density.

Substrate and N = 1 properties Many-body properties

Property GF GH Property GF GH

U0 496.5 K 195 K ρeq 0.049 Å−2 0.042 Å−2

� 24 K 13 K xeq 0.142 0.115
ds 1.49 Å 1.45 Å E0 −377.71(4) K −134.02(5) K
E0 for 4He −376.16(2) K −133.07(1) K Eb 1.55(6) K 0.95(6) K
E0 for 3He −362.33(1) K −126.97(2) K n0 (T = 0 K) 11 ± 1% 22.6 ± 1.3%
BW of 4He 9.6 K 13.6 K ρs/ρ (T = 0 K) 0.60(3) 0.95(3)
BW of 3He 13.7 K 19.4 K Tc 0.2–0.3 K 1.0–1.2 K
m∗/m of 4He (3He) 1.40 (1.26) 1.05 (1.01) ρI−sat 0.136 Å−2 0.108 Å−2

vector �k = (kx,ky). In the case of He on graphite the lowest
energy band16 is separated from the next one by a gap. In the
case of He on GF or GH, due to the honeycomb lattice, the first
and the second bands should cross; i.e., the band gap should
vanish, at the K and K′ points of the first Brillouin zone (BZ),
the famous Dirac points.

The computed F (�k,τ ) is exact within the statistical errors,
but the Laplace inversion is an ill-posed problem so the excited-
state energy is affected by the uncertainty due to the inversion
method. For each �k the GIFT method is able to extract in a
reliable way only the energy of one of the excited states, that
state which has the strongest weight in the spectral function
of the chosen correlation function, F (�k,τ ) in the present case,
and this usually corresponds to the state of the lowest band. In
Fig. 4 the computed energy bands for 3He and 4He on GF and
GH are reported along two directions in reciprocal space. As
seen in Table I, the effective mass enhancement on GF is much
larger than that found on graphite (m�/m = 1.06 and 1.03 for
4He and 3He, respectively), while the enhancement on GH is
similar to that on graphite.
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FIG. 3. Energy barrier in GF, GH, and graphite along a line at
an angle θ with the horizontal direction, following the height z(x,y)
giving the minimum of Vad(�r). Plotted energy is relative to energy at
the adsorption site.
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FIG. 4. (a) Energy of the first band along two directions of the
first Brillouin zone for 4He (triangles) and 3He (circles) on GF. Data
along 	K beyond the Dirac point K give the results in the second
Brillouin zone. The dashed lines are fits made with the tight-binding
model on a honeycomb lattice with nearest-neighbor parameter γ1 =
3.63 (5.695) for 4He (3He) and next-nearest-neighbor parameter γ2 =
−0.16 (−0.33). Close to the K point the second band given by the
tight-binding model is also plotted in order to show the presence of
the the Dirac point in the spectrum. (b) Same as for (a) for 4He and
3He on GH. The fit parameters for the dashed lines are γ1 = 4.514
(6.434) for 4He (3He) and γ2 = −0.021 (−0.04). More information
can be found in Ref. 12.
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IV. RESULTS FOR FIRST 4He ADSORBED LAYER
ON GF AND GH

A. Low-coverage regime

With the PIGS method we computed the exact ground state
properties of N 4He atoms on GF and GH as a function of the
density, ρ. As interatomic potential we used an Aziz potential19

and 10 < N < 200, with a number of unit cells which ranges
between 12 × 5 and 24 × 12.

The ground state of 4He in mathematical 2D is a self-
bound superfluid at density ρeq = 0.044 Å−2 and energy
per atom E0 = −0.84 K.20 In the 3D model of an x-y
translationally invariant potential with z dependence appro-
priate for 4He/graphite, the ground-state values are similar:
ρeq = 0.044 Å−2 and E0 = −0.91 K21 relative to the single
atom’s energy. When the corrugation of the graphite adsorption
potential is turned on, the superfluid state is suppressed;
the atoms localize in a nonsuperfluid commensurate solid
(CS) phase, with

√
3 × √

3 R30◦ order. They occupy second-
nearest–neighbor sites, separated by 4.26 Å, with x = 1/3 as
the filling fraction of the adsorption sites.22 This agrees with
experiment.3 A commensurate state similar to the

√
3 × √

3
R30◦ on graphite could, in principle, be present also on GF
and GH; such a state corresponds to a filling factor x = 1/6
(ρ = 0.0573 Å−2 on GF and ρ = 0.0608 Å−2 on GH, different
due to lattice expansions relative to Gr), with fifth-neighbor
sites occupied. A simple consideration suggests the instability
of a similar commensurate state. Using the curvature of the
He-substrate potential at an adsorption site, the 2D zero point
energy is estimated to be 55 (40) K on GF (GH), much larger
than the minimum potential barrier 23 (13) K, so that such
a localized state should be unstable. This is indeed what we
find with a many-body computation. At x = 1/6 starting the
simulation from an ordered configuration, after a short Monte
Carlo evolution the system becomes disordered, as seen in
the static structure factor S(k) of Fig. 5 for 4He on GF. It
displays only those Bragg peaks, i.e., sharp peaks that scale
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FIG. 5. S(k) of 4He on GF in the kx or (1,0) and ky or (0,1)
directions at coverage x = 1/6 for indicated numbers of particles.
Notice the logarithmic scale for S(k). The dotted lines represent a
guide to the eye.
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FIG. 6. (a) Energy per particle of 4He as function of the density ρ

on GF at T = 0 K. (b) Same as for (a) for 4He on GH. In both cases,
the used particle numbers ranged between N = 60 and N = 120. The
dotted line represents a guide to the eye.

as N , with the periodicity of the substrate potential, while
no peaks corresponding to occupation of fifth neighbors are
present. At k 
 1.8 Å broad peaks, independent of N , appear
representing anisotropic short-range order. The same behavior
is found for 4He on GH.

In Fig. 6 the energy per particle of 4He on GF and 4He on
GH is reported. In both the cases a liquid phase has been found
at least for densities up to filling factors x = 1/4, which for
the GF case correspond to a density ρGF

1/4 = 0.0861 Å−2, and
for the GH case to a density ρGH

1/4 = 0.0912 Å−2.
The equilibrium density for 4He on GF is ρGF

eq = 0.049(1)
Å−2 with a binding energy of 1.55(6) K; for 4He on GH
we found a self-bound state at equilibrium density ρGH

eq =
0.042(1) Å−2 with a binding energy of 0.95(6) K. In both
cases, E0 is below the adsorption energy of a single 4He
atom, meaning that the ground state is a self-bound liquid,
strongly modulated by the substrate potential; in the GF case
the cohesive energy is almost twice its 2D value (0.84 K). A
manifestation of the strong anisotropy in the GF case is seen
in Fig. 8(a) [plot of S(k) in the (kx,ky) plane] and of Fig. 7
(plot of the local density as function of x-y); this ground state
is superfluid, with a condensate fraction n0 = 11 ± 1% (see
Fig. 9).

In Fig. 8(b) the static structure factor of 4He on GH in
the (kx,ky) plane at equilibrium density is shown. The sharp
peaks reflect the density modulation due to the corrugation of
the adsorption potential. The crater-like structure at smaller k

represents short-range He-He correlations. It can be noticed
that short-range correlations are much less anisotropic than
that in the GF case [see Fig. 8(a)]; this reflects the smaller
corrugation of the adsorption potential of GH.

B. Bose-Einstein condensate and superfluid density

As discussed above, at coverage x = 1/6 4He on GF and
GH is not a commensurate solid but it is a fluid. Actually, it is
a modulated superfluid as shown by the exact off-diagonal one
body density matrix ρ1 computed with PIGS (see Appendix B).
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FIG. 7. (Color online) Upper panel: Local density ρ(x,y) (in units
of Å−2) as function of x-y for 4He at equilibrium density on GF. Lower
panel: Local density ρ(x = 0,y) (in units of Å−2) in the unit cell (with
side a = 4.486 Å in the GF case and a = 4.347 Å in the GH case)
along the y direction for 4He at equilibrium density on GF and GH;
note the logarithmic scale used for ρ(x = 0,y). Error bars are below
the symbol size; lines are guides to the eye.

ρ1 has a plateau at large r (see Fig. 9) corresponding to a
Bose-Einstein condensate (BEC) fraction n0 = 7.3 ± 1.5% for
4He on both GF and GH. A larger value of the condensate
is present at the equilibrium density, 11 ± 1 % on GF and
22.6 ± 1.3% on GH. Some of the ground-state properties are
given in Table I for both substrates.

A quantity of major interest is the superfluid fraction
ρs/ρ. Notice that also the value of ρs/ρ at T = 0 K is
of great interest because this quantity is less than unity
in a nonuniform superfluid, as predicted by Leggett.23 We
computed the superfluid fraction ρs/ρ at T = 0 K from
the diffusion coefficient of the center of mass �RCM (τ ) in
imaginary time24 with PIGS:

ρs

ρ
= lim

τ→∞ Ds(τ ),

(2)

Ds(τ ) = N

4λ

〈[ �RCM (τ ) − �RCM (0)]2〉
τ

,

FIG. 8. (Color online) (a) Static structure factor, S(kx,ky), at
equilibrium density on the kx-ky plane for N = 96 atoms of 4He on
GF. (b) The same for 4He on GH at equilibrium density. kx and ky axis
are expressed in Å−1. These static structure factors are characteristic
of a modulated liquid; sharp peaks represent the first two stars of
Bragg peaks due to the substrate, while the broad peaks indicate
anisotropic short-range order.

where the squared distance [ �RCM (τ ) − �RCM (0)] is evaluated
without invoking periodic boundary conditions, i.e., including
boundary crossing if �RCM (τ ) leaves the main simulation box.
At T = 0 the superfluid fraction has been computed from
the winding numbers given by path-integral Monte Carlo
(PIMC)25 simulations. In Fig. 10 the superfluid fraction
ρs/ρ is shown in function of the temperature for a system
of N = 26 atoms of 4He on GF and N = 20 atoms of
4He on GH at their respective equilibrium densities. It is
noticeable that ρs/ρ for 4He on GH at the lowest T joins
smoothly with the T = 0 K value. This is a strong test
on our algorithms since these values come from completely
different computations. In the case of GF, the low transition
temperature does not allow us to reach the T � Tc regime.
At T = 0 K, for 4He on GF we obtain ρs/ρ = 0.60(3) and
ρs/ρ = 0.95(3) on GH. From ρs/ρ at finite T and taking
into account how size effects affect the superfluid fraction, we
estimate the superfluid transition temperature Tc 
 0.2–0.3 K
for GF and Tc 
 1.0–1.2 K on GH. These values should be
taken with some caution because the number of particles in
our computations is rather small so that a significant size
effect could be present. It should be noticed that the present
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FIG. 9. Off-diagonal density matrix ρ1(r) on GF and GH at ρ1/6

and at ρeq.

QMC computations are very demanding due to the very strong
adsorption potential with large corrugation. For this reason we
have not attempted a careful study of size effects so that our
results are semiquantitative for an infinite system.

In conclusion, we predict that a submonolayer 4He film on
GF (GH) is an anisotropic superfluid up to 0.2–0.3 K (1.0–
1.2 K); this represents a long-sought phase, found so far only
with trapped cold atoms.26

C. High coverages

We have studied the stability of two other hypothetical
commensurate phases on GF and GH. At coverage x =
1/4 (corresponding to occupying sites that are third-nearest
neighbors) we find that the ordered state is unstable.

At coverage x = 2/7 it is possible to put the He atoms in a
triangular lattice with 1/3 of the atoms located at adsorption
sites. At this coverage, which corresponds to ρ = 0.0984 Å−2
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FIG. 10. The superfluid fraction ρs/ρ at ρeq as function of
temperature for a system of N = 20 atoms of 4He on GH and a
system of N = 26 atoms of 4He on GF. The transition temperature
can be roughly estimated in the range 1.0–1.2 K for 4He GH and
0.2–0.3 K for 4He GF. In the inset the superfluid fraction can be read
as the long-τ limit of Eq. (2).

FIG. 11. (Color online) Local density (in Å−2 units) on the x-y
plane of the 2/7 phase of 4He on GF (a) and on GH (b) compared
with the geometry of the substrate. Small red balls are centered on
the position of fluorine atoms and the small green ones on the carbon
atoms. Thin white lines enclose the unit cell of the commensurate
2/7 phase.

on GF and ρ = 0.105 Å−2 on GH, on both substrates we
find that a commensurate triangular solid is stable, or at least
metastable, containing 4 atoms in the unit cell of the triangular
lattice rotated by 19.1◦ with respect to the substrate potential.
In the unit cell one of the 4He atoms is localized on an
adsorption site in the middle of a graphene hexagonal ring,
two other atoms approach adsorption sites of the other kind,
and finally the fourth one is centered on a saddle point of
the potential. This state has some similarity with the 4/7
commensurate state found for 3He in the second layer on
graphite5 preplated by one 4He layer. The local densities
Fig. 11(a) for 4He on GF and Fig. 11(b) on GH manifest the
presence of a superlattice with four atoms in the unit cell of
the triangular lattice.

The static structure factors, S(kx,ky) (see Fig. 12), have
prominent Bragg peaks forming three stars. The star of the
six highest peaks is the main Bragg peaks of a triangular
lattice with lattice parameter equal to that of a triangular
lattice at this density. Another star represents the density
modulation due to the adsorption potential. The third star
formed by six less intense peaks at a smaller wave vector
is a combination of vectors of the two previous stars, thus
corresponding to interference between the triangular and the
honeycomb modulation. The intensities of all these peaks scale
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FIG. 12. (Color online) Static structure factor on the kx-ky plane
of the 2/7 phase of N = 112 atoms of 4He on GF (a) and on GH
(b). kx and ky axes are expressed in Å−1. Red arrows point to the peaks
corresponding to the density modulation imposed by the adsorption
potential.

with the number of particles (data not shown). Additional
peaks are present reflecting the superlattice but these peaks are
very weak and hardly visible in the figure. It can be noticed
that the much smaller intensity of the Bragg peaks is due to the
adsorption potential in the case of GH as can be expected due
to the weaker corrugation of the adsorption potential of GH.

At large coverage at densities in the neighborhood of this
2/7 phase we find an incommensurate triangular state, which is
strongly deformed by the substrate potential. The local stability
of the three phases, modulated liquid, 2/7 commensurate
triangular solid, and incommensurate triangular solid, is shown
in the equation of state in Fig. 13 by the different symbols. It
should be noticed that this is not a true phase diagram because
we have not studied the possibility of coexistence of phases.

We have estimated the first layer’s completion density,
ρI−sat (results in Table I), by increasing N until some atoms
spill out of the first layer and the density profile in the
direction normal to the surface develops two well-separated
peaks. The promotion to the second layer takes place at
a density ρGF

sat =0.136 Å−2 for the GF case and a density
ρGH

sat =0.108 Å−2 for the GH case. Beyond such densities, the
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FIG. 13. (a) Energy per particle of 4He as function of the density
ρ on GF at T = 0 K. (b) Same as for (a) for 4He on GH. The
filled diamonds mark the energy of the 2/7 phase on both substrates;
the stars represent the energies of incommensurate phases before
completion. The dashed line represents a guide to the eye.

occupation of the second layer is clearly visible as a secondary
peak in the local density along the z direction (Fig. 14). We
note that the monolayer completion density on graphite is 0.12
atoms per Å2, intermediate between the values found here for
GF and GH.

A systematic search for other possible commensurate
phases for densities between ρeq and ρI−sat and a study of phase
coexistence at large coverage remain to be done. In the GF case
we have investigated the density range between ρGF

2/7 = 0.0984
Å−2 and ρGF

sat = 0.136 Å−2 and as an example S(kx,ky) at
ρ = 0.123 Å−2 is shown in Fig. 15. As initial configuration
we have used a disordered one as well as an ordered triangular
configuration. The runs converge to the same results: S(kx,ky)
is dominated by a star of six peaks as expected for a triangular
solid. The wave vectors of these peaks are not exactly equal to
the value of an ideal triangular solid at this density implying
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100
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FIG. 14. Local density along the z direction of 4He on GF (with
N = 111) and 4He on GH (with N = 79) at a density beyond the
promotion density. The occupations of the first and the second layers
are clearly visible as two peaks. The area under the peaks represents
the number of 4He atoms in the corresponding layer.
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FIG. 15. (Color online) Static structure factor on the kx-ky plane
of the incommensurate solid phase of N = 86 atoms of 4He on GF
at density ρ = 0.123 Å−2. kx and ky axis are expressed in Å−1. Red
arrows point to the peaks corresponding to the density modulation
imposed by the adsorption potential.

that the triangular order is deformed in order to better fit
within the simulation box. S(kx,ky) has additional Bragg peaks
corresponding to the modulation of the substrate potential
and to the interference between the previous two sets of
peaks. Additional smaller peaks are present presumably as
consequence of the presence of defects. The modulus of the
main Bragg peaks increases in a smooth way as the density is
increased as expected for an incommensurate triangular solid.
The observed deviations from the value kB = 4π (ρ/2

√
3)1/2

of an ideal triangular solid are explained by the deformations
of the lattice and by the presence of some defects, mainly
dislocations, that can be observed from the configuration of
the atoms (data not shown).

In the case of GH we have investigated the density range
0.0916 Å−2 to ρGH

2/7 = 0.105 Å−2. Here, too S(kx,ky) is dom-
inated by the Bragg peaks of a triangular lattice [see Fig. 16

FIG. 16. (Color online) Static structure factor on the kx-ky plane
of the incommensurate solid phase of N = 66 atoms of 4He on GH
at density ρ = 0.102 Å−2. kx and ky axes are expressed in Å−1. Red
arrows point to the peaks corresponding to the density modulation
imposed by the adsorption potential.

for S(k) at density ρ = 0.102 Å−2] that is incommensurate
with respect to the substrate periodicity. The six peaks that in
Figs. 12, 15, and 16 are marked by the red arrows represent
the density modulation induced by the adsorption potential
like the peaks in Fig. 8. The third set of peaks is merely an
interference pattern of the first two sets.

V. 3He ON GF AND GH AT LOW COVERAGE

The ground state of 3He on graphite is the
√

3 × √
3 R30◦

state. We expect that the analogous commensurate state on
GF and GH is unstable, as for 4He, because the smaller
mass makes 3He localization more expensive. Indeed, we
have verified that this commensurate state for a mass 3 boson
system is unstable toward a fluid state on both substrates.
We determined the Fermi-Bose gap with a recently proposed
method27,28 based on the computation of the imaginary time
correlation function of a Slater determinant. Given a specific
Hamiltonian, this technique extracts the energy gap between
the symmetric and antisymmetric ground state from a suitable
fermionic imaginary-time correlation function computed as an
exact average on the Bose ground state:

CF (τ ) ≡
〈
ψB

0

∣∣(eτĤ Â†
F e−τĤ )ÂF ψB

0

〉
H(N)〈

ψB
0

∣∣ψB
0

〉
H(N)

, τ � 0, (3)

where ÂF is, typically, a Slater determinant. The lowest
energy contribution in CF (τ ) yields the exact gap between
the fermionic and the bosonic ground states, provided that
one is able to obtain the inverse Laplace transform of CF (τ );
this can be readily seen by formally expressing (3) on the
basis {ψF

n }n�0 of eigenvectors of Ĥ corresponding to the
eigenvalues {EF

n }n�0:

CF (τ ) =
+∞∑
n=0

e−τ (EF
n −EB

0 )

∣∣〈ÂF ψB
0

∣∣ψF
n

〉
H(N)

∣∣2

〈ψB
0 |ψB

0 〉H(N)
. (4)

We have shown that the inverse Laplace transform of CF (τ )
can be handled efficiently with statistical inversion procedures,
like the GIFT algorithm.18,29 The Fermi-Bose gap EF

0 − EB
0 is

an extensive quantity, so this method in practice can be applied
provided that the system is not too large.

The ground-state energies as function of density of mass 3
bosons and of the fermionic 3He on GF and on GH are plotted
in Fig. 17 as function of density; the gap EF

0 − EB
0 is a smooth

function of ρ and the energy at the density corresponding to
the

√
3 × √

3 state is well above the energy at lower densities
implying that this ordered commensurate state is indeed
unstable and the system is in a fluid state. In the figure we plot
also the 3He energy based on the crude approximation of taking
as Fermi-Bose gap the kinetic energy Kfree = h̄2πρ/2m∗ of
free fermions, where m∗ is the effective mass of a 3He atom on
the substrate (m∗/m = 1.26 for GF, m∗/m = 1.01 for GH).
For mass 3 bosons we find a bound state with a binding
energy E0 = −0.22 K at density ρeq = 0.03 Å−2. Adding
to the boson energy the Fermi-Bose gap the energy yields
a shallow minimum in the density range 0.015–0.025 Å−2,
with a value equal within the statistical error to the energy
of a single adsorbed 3He on GF. Hence, the existence of a
self-bound state on GF is an unresolved possibility.
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FIG. 17. (a) Ground-state energy as a function of density of mass
3 bosons on GF (circles), fermionic 3He GF obtained via the fermionic
correlations method (triangles), and fermionic 3He GF obtained by
approximating the Bose-Fermi gap with the kinetic energy of the free
fermion gas (diamonds). (b) Same as for (a) for 3He on GH. In both
cases, the system under study was composed of N = 18 atoms of
3He.

In conclusion, we predict the existence of two anisotropic
Fermi fluids, in the sense that the local density is nonuniform
and anisotropic, with a tunable density depending on the 3He
coverage. The density range depends on whether the 3He atoms
form a self-bound state. Our computations indicate that a self-
bound liquid state is not present for 3He on GH but it might be
present on GF.

VI. CONCLUSIONS

In summary, our exploration of adsorbed 4He and 3He on the
graphene derivatives, GF and GH, has been very rewarding.
The corrugation of the adsorption potential is characterized
by a much larger anisotropy around an adsorption site than
on graphite and by a much smaller intersite distance. As
a consequence, the predicted monolayer phase diagram is
very different from that on graphite. The commensurate state
analogous to the

√
3 × √

3 R30◦ on graphite turns out to be
unstable. In the case of 4He the ground state is a self-bound
superfluid with ρs/ρ = 0.60 and BEC fraction n0 = 11% on
GF and ρs/ρ = 0.95 and n0 = 23% on GH. The superfluid
transition temperature is about 0.25 K on GF and 1.1 K on
GH. On both substrates the superfluid is nonuniform, with a
honeycomb symmetry imposed by the adsorption potential.
In the case of GF such nonuniformity is so extreme (the 4He
density above a F atom is one hundredth of the density at the
adsorption site) as if the superfluid were restricted to move
in a multiconnected space, along the bonds of a honeycomb
lattice. At coverage close to completion of the first layer on

both substrates we find an incommensurate triangular solid
and, in addition, a commensurate triangular solid at coverage
2/7 of the adsorption sites. In both states the 4He atoms are
rather mobile, so these are good candidates for supersolidity.
The study of this possibility is beyond the scope of the present
paper. 3He atoms on GF and GH at low coverage form a fluid
so this offers the possibility of studying an anisotropic Fermi
fluid, possibly superfluid at low temperatures.

We notice that the qualitative results presented here do
not depend on the precise values of parameters entering the
model adsorption potential. We have modified the less certain
parameters by up to 20%, finding only quantitative changes,
without modifying the qualitative aspects. Notice that in the
case of GF our predictions are insensitive to the presence
of regions of unreacted graphene by fluorine atoms as long
as such regions leave a percolating GF substrate. In fact the
twice greater adsorption energy on GF, compared to graphite,
guarantees that the He atoms are preferentially adsorbed on the
GF regions. Measurement of thermodynamic properties and
He beam scattering experiment from GF and GH will provide
sensitive tests of the accuracy of our model potential. We have
predicted a number of phenomena for the He atoms on GF
and GH that are quite different from those on any other known
substrate and this calls for experimental verification. From
the theoretical point of view many extensions of the present
computations can be foreseen, e.g., study of the collective
mode spectrum30 of 4He or the system under rotation. In
the case of 3He a full microscopic study of this nonuniform
Fermi system has yet to be done. We have developed a model
adsorption potential also for molecular hydrogen.12 It will be
very interesting to study the phase diagram of para-H2 on GF.
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APPENDIX A: ADSORPTION POTENTIAL DETAILS

The geometry of GH and GF, their electronic charge density,
and the electrostatic potential have been obtained12 using DFT.
As a result of the DFT calculation, the C-F distance is 1.38 Å,
the C-C distance is 1.57 Å, the C-C distance projected on
the x-y plane is d = 1.495 Å, and the buckling displacement
b = 0.484 Å; while in GH, the C-H distance is 1.11 Å, the C-C
distance 1.52 Å, d = 1.453 Å, and b = 0.45 Å [see Fig. 1(b)].

In the case of graphene fluoride (GF) we have

vatt(�r) = vF+(�r) + vgr (�r) + vF− (�r). (A1)

The first term on the right-hand side of Eq. (A1) is the van
der Waals (vdW) interaction between the helium atom and the
fluorine overlayer atoms damped at small distances with the
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TABLE II. Parameters for the adsorption potential of He on GH
and GF.

Parameter Value Type

C6F 4.2 eV Å6 GF
C6H 1.206 eV Å6 GH
C6C 3.447 eV Å6 GF/GH
AF 1.1 eV Å4 GF
AH 0.3455 eV Å4 GH
βF 3.2125 Å−1 GF
βH 3.77945 Å−1 GH
γ 53.9392 eVÅ3 GF/GH

Tang-Toennies procedure15

vF+(�r) = C6F

∑
j

1 − e(βF �xj ) ∑6
i=0

(βFxj )i

i!

x6
j

, (A2)

where xj = |�r − �rj | and �rj is the position of the j th fluorine
atom in the overlayer of the substrate. The vF− term is the
interaction with the fluorine underlayer atoms; such atoms are
far from the helium atoms so that this contribution has been
integrated over the positions of the F− atoms giving

vF− (�r) = −AF

z4
, (A3)

where z is the distance of the He atom at �r from the fluorine
underlayer. The remaining term vgr is the vdW interaction of
He with the graphene sheet; this has been considered as

vgr (�r) = −C6C

∑
j

1

x6
j

(A4)

with the sum running over the positions of the carbon
atoms. We have also considered the induced electric dipole
energy Upol(�r) = −αHeE

2(�r)
2 where αHe = 0.205 Å3 is the static

polarizability of the He atom and �E(�r) is the electric field
due to the substrate. We have verified that this contribution is
below 1% of vatt(�r) so that it is safely negligible.12 The adopted
parameters are shown in Table II. The less certain parameters
are βF(H) and C6F(H); the robustness of the results of the present
work have thus been checked against variation up to ±20% of
these two parameters.

APPENDIX B: COMPUTATIONAL DETAILS

For the zero-temperature simulations we used the path-
integral ground state (PIGS) method17 with an eight-order
multiple product expansion31 of the propagator. The PIGS
method can compute quantum averages of the ground state of
the system using the quantum evolution in imaginary time τ of
a trial wave function �t . If �t is not orthogonal to the ground
state �0, and τ is large enough, the quantum evolution removes
from �t the contributions of the excited states allowing the
sampling of the configurations of the system on its ground
state.

�0(R) ∝ lim
τ/2→∞

∫
dR′ G

(
R,R′,

τ

2

)
�t (R

′), (B1)

where R and R′ are many-body coordinates (i.e., R = {�ri}Ni=1).
The propagator G(R,R′, τ

2 ) is in general unknown but valid
approximations can be obtained in the limit of small imaginary
times. The propagator is thus exactly expressed as a convo-
lution of M/2 propagators G(Ri,Ri+1,dτ ) where dτ = τ

M
.

The configurations of the system are thus sampled from the
following probability distribution:

p(R0, . . . ,RM ) = 1

N �t (R0)G(R0,R1,dτ ) . . .

×G(RM−1,RM,dτ )�t (RM ). (B2)

Chosen a sufficiently long τ , a local operator Ô(R) can be
evaluated on the ground state of the system by applying the
operator in the center of the path integral,

ÔG(RM/2,RM/2+1,dτ ) = Ô(RM/2)G(RM/2,RM/2+1,dτ ),

〈�0|Ô|�0〉 =
∫

dR0 . . . dRM Ô(RM/2)p(R0, . . . ,RM ).

In PIGS, the expectation value in Eq. (B3) is evaluated with
Monte Carlo methods using the Metropolis algorithm. The
PIGS method is in principle exact, in the sense that the results
are independent32 of �t and systematic errors may be reduced
below the statistical uncertainty.

A convergence test showed that a sufficiently small
imaginary-time discretization is 6 ∗ dτ = 1

160 K−1. The trial
wave function that we have used is the product of a Jastrow-
McMillan wave function and a Gaussian along the z direction,

�t = exp

[
−

N∑
i<j=1

(
b

rij

)m]
exp

[
− A

N∑
i=1

(z0 − zi)
2

]
, (B3)

where N is the particle number and rij = |�ri − �rj | is the
distance between two atoms labeled i and j . The Jastrow
parameters are b = 2.84 Å and m = 5. The Gaussian along
the z direction (i.e., the direction perpendicular to the substrate
plane) was used only far away from the layer promotion
density; its parameters have been obtained with a fit of the
density along the z direction: For GF A = 5.6 Å−2 and
z0 = 3.72 Å; for GH A = 3.0 Å−2 and z0 = 3.85 Å. At
high densities, where the probability to occupy the second
layer is not negligible, a Jastrow wave function has been
used,

�hd
t = exp

[
−

N∑
i<j=1

(
b

rij

)m
]
. (B4)

With these trial wave functions, we allowed a �τ =
0.15 K−1 imaginary-time projection before computing the
ground-state expectation values. The total imaginary time
sampled in our calculations was τ = 0.4 K−1. The value of
τ has been chosen following a convergence test of the total
energy versus the imaginary-time projection.

For the finite-temperature simulations we used the path-
integral Monte Carlo (PIMC) method33 in the canonical
ensemble, with an eight-order multiple product expansion of
the propagator. These calculations have been employed in
order to obtain an estimation of the superfluid density. Due
to the computational complexity of PIMC especially at low

174509-10



ADSORPTION OF He ISOTOPES ON FLUOROGRAPHENE . . . PHYSICAL REVIEW B 86, 174509 (2012)

temperatures (i.e., 0.5 K), the imaginary-time discretization
that was used is 6 ∗ dτ = 1

40 K−1.
The worm algorithm34 was used at both finite and zero

temperature respectively for the sampling of the permutations
and the computation of the one-body density matrix that

has been obtained from the distribution function (B2) upon
breaking up one of the paths.31 The computations required
on average 105 Monte Carlo steps; the heaviest computations
were those made for the superfluid fraction at zero temperature
and required approximately 106 Monte Carlo steps.
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