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Quantum efficiency of a microwave photon detector based on a current-biased Josephson junction
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We analyze the quantum efficiency of a microwave photon detector based on a current-biased Josephson
junction. We consider the Jaynes-Cummings Hamiltonian to describe coupling between the photon field and the
junction. We then take into account the coupling of the junction and the resonator to the environment. We solve
the equation of motion of the density matrix of the resonator-junction system to compute the quantum efficiency
of the detector as a function of detection time, bias current, and energy relaxation time. Our results indicate that
junctions with modest coherence properties can provide efficient detection of single microwave photons, with
quantum efficiency in excess of 80%.

DOI: 10.1103/PhysRevB.86.174506 PACS number(s): 85.60.Gz, 85.25.Cp, 03.65.Yz, 03.67.Lx

I. INTRODUCTION

Quantum optical photodetectors have contributed
significantly to the development of quantum optics and atomic
physics1 and now play an essential role in optical quantum
information applications, such as quantum computing and
quantum key distribution.2–4 Recently, circuit quantum
electrodynamics (cQED) has emerged as a novel paradigm
for the study of radiation-matter interaction in mesoscopic
systems.5–7 Moreover, cQED is an attractive candidate for
scalable quantum computing and transmission of quantum
information.8–10 Following the original proposal, a variety of
cQED architectures demonstrating strong coupling between
single photons and superconducting integrated circuits have
been realized experimentally.11,12 This work has paved the
way for the development of a superconducting microwave
photon detector13–15 with possible applications to quantum
information processing and communication.16

The microwave photon detector is based on the current-
biased Josephson junction (JJ): the JJ is biased so that
absorption of a single microwave photon induces a transition
to the voltage state, producing a large and easily detected
classical signal.14 While these detectors are straightforward
to operate and show potential for scalability, performance is
degraded by spurious dark counts due to quantum tunneling
events in the absence of an absorbed photon; moreover, energy
relaxation within the detector results in photon loss and leads
to a reduction in measurement efficiency.

In this work, we theoretically determine the quantum
efficiency of a microwave photon detector based on a current-
biased JJ. Previous analysis14,15,17 of this system was focused
on a wave-packet formulation of the photon field in a
transmission line coupled to the detector. Here we study
the probability of photon detection by a JJ coupled to a
microwave cavity mode that is loaded with a fixed number
of photons.18 We solve the equation of motion for the density
matrix of the cavity-JJ system to obtain detector efficiency for
different values of operation time, current bias, and relaxation
time of the junction. Our results indicate that a JJ with a
decay time around 10 ns can detect a single microwave
photon in the cavity with an efficiency greater than 80%
for readily achievable circuit parameters. We also find that
the detector efficiency increases significantly with increasing
energy relaxation time T1 of the junction, suggesting that a

highly efficient single microwave photon detector is attainable
for moderate improvements in junction quality.

II. JOSEPHSON JUNCTION BASED PHOTON DETECTOR

The circuit diagram of the JJ-cavity system is shown in
Fig. 1(a). The JJ is biased with a current I close to the critical
current I0. The junction Hamiltonian can be written in terms of
the charge operator Q̂ and the operator δ̂ of the phase difference
across the JJ:19

ĤJJ = Q̂2

2C
+ U (δ̂) , U (δ̂) = −I0�0

2π

(
cos δ̂ − I

I0
δ̂

)
.

(1)

Here C is the junction capacitance, and �0 = h/2e is the
magnetic flux quantum. For I � I0, the potential energy
landscape U (δ) takes on a “tilted washboard” shape, with a
few discrete energy levels in shallow minima separated from
the continuum by a barrier; see Fig. 1(b). We truncate the
junction Hamiltonian to the ground |g〉 and first excited states
|e〉 and obtain the following Hamiltonian for the JJ:

ĤJJ = h̄ωeg�̂e, (2)

where �̂e = |e〉〈e| is the projection operator to the excited
state and ωeg = (εe − εg)/h̄.

The coupling of the cavity with the JJ is modeled by the
Jaynes-Cummings (JC) Hamiltonian:20

ĤJC = h̄ωr

(
â†â + 1

2

)
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FIG. 1. (Color online) (a) Schematic circuit diagram of a JJ-based
microwave photon detector coupled to a resonator. (b) Potential
energy landscape of the detector when bias current is close to the
critical current of the JJ. The junction is initialized in the |g〉 state and
upon absorbing an incident photon transitions to the |e〉 state, which
rapidly tunnels to the continuum.
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where ωr is the cavity resonance frequency, � is the
vacuum Rabi frequency, and â† (â), σ̂+ (σ̂−) are the creation
(annihilation) operators of the cavity and the junction,
respectively. The time evolution of the density matrix ρ̂(t) of
the cavity-JJ system coupled to its environment is governed
by the following equation:

dρ̂(t)

dt
= 1

ih̄
[ĤJC, ρ̂(t)] + L̂γ [ρ̂(t)] + L̂κ [ρ̂(t)] + L̂T [ρ̂(t)] ,

(4)

where L̂γ [ρ̂(t)] and L̂κ [ρ̂(t)] are superoperators that
capture damping in the JJ and the cavity at low temperatures
T � h̄ωeg , h̄ωr :21

L̂κ [ρ̂(t)] = κ
(
âρ̂â† − 1

2 {â†â,ρ̂}), (5a)

L̂γ [ρ̂(t)] = γ
(
σ̂−ρ̂σ̂+ − 1

2 {σ̂+σ̂−,ρ̂}) . (5b)

To account for the switching of the ground and the first excited
states of the JJ to the voltage state, we introduce the tunneling
superoperator LT [ρ̂(t)]:22–25

L̂T [ρ̂(t)] = −
⎛
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where e,g are the tunneling rates from the ground (|g〉) and
first excited (|e〉) states of the junction. If we approximate the
potential in Eq. (1) by a cubic potential, then the tunneling rate
of the ground and the first excited states of the cubic potential
can be computed by WKB approximation:

j = ωp/2π [432�U/h̄ωp]j+1/2/πj/2 exp[−36�U/5h̄ωp] ,

where j=0 ≡ g and j=1 ≡ e represent the tunneling
rates from the |g〉 and |e〉 states of the JJ, respectively. The
ratio e/g ≈ 250�U/h̄ωp. Here �U = 4I0�0/3

√
2π (1 −

I/I0)3/2 is the barrier height, and ωp = 21/4 √
2πI0/C�0(1 −

I/I0)1/4 is the plasma frequency of the cubic potential. The
junction frequency ωeg is related to the plasma frequency by
ωeg � ωp(1 − 5h̄ωp/36�U ). The tunneling rate of the first
excited state of the junction is then given by e ≈ 500 g =
7.3 × 107 s−1 for �U/h̄ωp ≈ 2.

III. QUANTUM EFFICIENCY

The system is originally prepared in a pure state ρ̂n(0) =
|n,g〉〈n,g| with n photons in the cavity and the junction in
the ground state |g〉. We assume n photons are loaded into
the cavity in a manner similar to that described by Hofheinz
et al.,26 with loading rate faster than the interaction rate
between the JJ and the cavity. With this assumption, the
detector efficiency is unaffected by how photons are loaded
into the cavity. We numerically solve the above equation for the
time evolution of the density matrix to compute the occupation
probabilities of the cavity and junction states. The probability
that the JJ has switched to the voltage state at time t is
given by

Pn(t) = 1 − Tr [ρ̂n(t)]. (7)

We consider the following set of parameters for the JJ-cavity
system, typical of those realized in experiments:14 JJ frequency
ωeg/2π = 4.8 GHz, junction decay rate γ = 108 s−1, cavity
decay rate κ = 106 s−1, and vacuum Rabi frequency �/2π =
200 MHz.

In Fig. 2, we plot switching probabilities P1(t) and P0(t)
of the junction for initial states |1,g〉 (dashed red line) and
|0,g〉 (dash-dotted black line), respectively. In this simulation,
the parameters we consider are �U/h̄ωp = 2, and we set
the detuning between the cavity and the JJ to zero, i.e., � ≡
ωr − ωeg = 0. The switching probability P1 in Fig. 2 features
steps whose periodic occurrence is a manifestation of Rabi
oscillations of the JJ with period 2π/� = 5 ns. This result is
consistent with the picture that the switching of the JJ halts
momentarily when the junction returns to the ground state in
the course of the Rabi oscillations.

Next, we discuss the presence of the wide plateau of P1

in Fig. 2. The occurrence of this plateau can be understood
from the fact that the switching of the junction is briefly frozen
when the junction relaxes to the ground state due to dissipation.
The JJ then switches to the voltage state after time ∼1/g ,
the characteristic time scale for the switching of the junction
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FIG. 2. (Color online) Switching probability P1 (P0) vs photon
detection time for initial states |1,g〉 (|0,g〉). Parameters used in this
plot are junction T1 = 10 ns, barrier height �U/h̄ωp = 2, vacuum
Rabi frequency �/2π = 200 MHz, and cavity decay time 1/κ =
1 μs. Here the detuning between the cavity and the junction � = 0.
The solid blue curve is the quantum efficiency η1 ≡ P1 − P0 (see
text). The maximum quantum efficiency of the detector is 50% for an
optimal detection time of 45 ns (the optimal point is marked by the
filled blue circle).
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in the case of zero photons. The height of this plateau can
be estimated as e/(e + γ ) ≈ 0.5, which agrees with the
numerical result in Fig. 2.

In order to determine the quantum efficiency of the detector,
we must properly treat dark counts due to quantum tunneling
from the |0,g〉 state in the absence of photon absorption.
The quantum efficiency η1 of the detector is defined as the
difference between the switching probabilities for an initial
state with one photon P1(t) and for an initial state with no
photons P0(t): η1 ≡ P1(t) − P0(t). The quantum efficiency is
shown in Fig. 2 by the solid blue curve. For our choice of
parameters e � γ , the detector has a maximum efficiency
of about 50% for the optimal detection time td around
45 ns.

Next, we demonstrate that the bandwidth of the Josephson
microwave photon detector is broadened due to the finite
lifetime of the junction excited state. Here, we vary the
frequency ωr of the cavity and compute the quantum efficiency
of the detector for the optimal detection time td obtained at
zero detuning � = 0. The detector bandwidth is then given by
the detuning at which the quantum efficiency of the detector
is reduced to half the efficiency obtained at zero detuning.
For a dissipation-free junction, the detector bandwidth is
approximately given by the vacuum Rabi frequency. However,
in the presence of dissipation and tunneling, the first excited
state of the junction is broadened by ∼γ + e. This broad-
ening of the energy level roughly accounts for the increased
bandwidth of the detector. We find that bandwidths are factors
of 1.6, 2, and 2.3 larger than the vacuum Rabi frequency
for bias points �U/h̄ωp = 2,1.9, and 1.8, respectively, as
shown in Fig. 3. As we lower the ratio �U/h̄ωp, the
tunneling rate e of the first excited state of the junction
increases. This in turn causes further broadening of the
junction excited state, thereby increasing the bandwidth of the
detector.

Next, we analyze the effect of dissipation and bias point
on the efficiency of the detector. In Fig. 4(a), we plot the
quantum efficiency of the detector for different values of the
junction relaxation time T1 from 10 to 500 ns, keeping all other
parameters the same as in Fig. 2. We find that the quantum
efficiency increases with increasing junction relaxation time
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FIG. 3. (Color online) Quantum efficiency η1 vs detuning �/�

for optimal detection time obtained at � = 0 for various bias points:
�U/h̄ωp = 2 (solid blue line), 1.9 (dash-dotted black line), and 1.8
(dashed red line). The bandwidths of the detector are 1.6� (solid
blue line), 2� (dash-dotted black line), and 2.3� (dashed red line),
respectively. The remaining parameters are as in Fig. 2.
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FIG. 4. (Color online) (a) Quantum efficiency η1 vs photon
detection time for �U/h̄ωp = 2 and for various decay times of the
junction: T1 = 10 ns (solid blue line), T1 = 20 ns (dashed green line),
T1 = 50 ns (dash-dotted red line), and T1 = 500 ns (dotted black
line). For T1 = 500 ns, the maximum quantum efficiency is 94%.
(b) Quantum efficiency η1 vs photon detection time for junction T1 =
10 ns for various bias points of the junction: �U/h̄ωp = 2 (dotted
blue line), 1.9 (dash-dotted green line), 1.8 (dashed red line), and
1.7 (solid black line). The maximum quantum efficiency is 84% for
�U/h̄ωp = 1.7. The remaining parameters are as in Fig. 2.

T1 and reaches 94% for T1 = 500 ns and for a detection time
around 95 ns.

The change in bias current I of the junction modifies the
ratio of barrier height �U to the junction plasma frequency
ωp. Taking different values of this ratio, we compute the
efficiency of the detector at fixed relaxation time T1 = 10 ns;
the results are shown in Fig. 4(b). Upon decreasing the ratio
�U/h̄ωp, the potential well becomes shallower, leading to
enhanced tunneling out of the first excited state and increased
efficiency of the detector. Our simulation results indicate that
a significant improvement in detector efficiency is achieved
when the tunneling rate exceeds the dissipation rate of the
junction. We find that for the bias point �U/h̄ωp = 1.7, the
efficiency of the detector is about 84% for a detection time
around 9 ns.

Finally, we analyze the efficiency of the detector to detect
single photons when the cavity is loaded with n > 1 photons.
Generalizing the previous case of a single photon in the cavity,
the efficiency to detect a single microwave photon in a cavity
loaded with n photons is given by ηn = Pn(t) − P0(t). In Fig. 5,
we plot the efficiency at fixed bias point �U/h̄ωp = 2 and
T1 = 10 ns for different numbers of photons in the cavity:
n = 1 (solid blue line), 2 (dashed blue line), and 3 (dash-dotted
blue line). We find that detection efficiency increases with the
increasing number of photons in the cavity and reaches 85%
for three photons in the resonator. This result is consistent with
previous studies14,17 that reported a higher detection efficiency,
for the same parameters as above, when a continuous flux
of photons was incident on the detector. For the case of a
single photon in the cavity, the detector returns to the ground
state after the photon is absorbed by the environment, and no
further excitation of the junction is possible. However, when
multiple photons are present in the cavity, other photons are
available to induce excitation if the junction relaxes, thereby
increasing the probability of photon detection. We note that for
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FIG. 5. (Color online) Efficiency ηn to detect a photon vs
detection time for n = 1 (solid blue line), 2 (dashed blue line),
and 3 (dash-dotted blue line) photons in the cavity. The rest of
the parameters are as in Fig. 2. For three photons in the cavity, the
efficiency to detect a photon is 85%.

multiple photons in the cavity, the measured efficiency η can
also be used to estimate the average number of photons in the
cavity.

IV. DISCUSSION AND CONCLUSIONS

In conclusion, we have presented a model to determine the
quantum efficiency of a microwave photon detector based on
a current-biased JJ. We have demonstrated that the efficiency
to detect a single photon loaded in a cavity has maximal value
e/(e + γ ). We have also determined that the bandwidth
of the detector is characterized by the sum of the vacuum
Rabi frequency and the broadening of the first excited state
of the JJ due to tunneling and relaxation processes. Our

simulations indicate that for currently used JJ photon detectors,
the quantum efficiency is about 50% for the bias point
�U/h̄ωp = 2 and about 85% for �U/h̄ωp = 1.7. We have
finally investigated the probability to detect a photon in the
case of a multiphoton initial resonator state and have found
that the detection efficiency quickly approaches 100% as the
initial number of photons increases, consistent with previous
studies14,17 of a continuous flux of photons incident on the
detector.

Recently, Peropadre et al.15 proposed a phenomenological
model for the JJ-based microwave photon detector that fails to
address specific microscopic details of experimentally realized
detectors.14 Specifically, (1) Peropadre et al. treat tunneling
from the excited state of the junction by a non-Hermitian term
in the junction Hamiltonian; this is not consistent with the
standard form of quantum tunneling. (2) These authors do not
consider tunneling from the low-energy state of the junction,
which is responsible for dark counts of the detector. (3) Finally,
their model does not take into account the relatively strong
relaxation from the excited to the ground state of the junction.
This relaxation corresponds to a T1 time of the order of a few
nanoseconds in present devices, which are strongly coupled
to a 50 � readout line, and is responsible for a significant
suppression of detector efficiency.14 If the relaxation time were
above 500 ns, the efficiency would reach nearly 100%; see
Fig. 4(a).
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