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Interlayer exchange coupling (IEC) between next nearest neighbor magnetic layers is investigated. For a
multilayer system that contains three magnetic layers (with magnetization directions m̂1, m̂2, and m̂3, respectively)
separated by two nonmagnetic layers, the angle dependence of the coupling energy and the thickness dependence
of coupling constants were obtained. In addition to the well known nearest neighbor IEC of the form −J̃12m̂1 · m̂2

and −J̃23m̂2 · m̂3, we find the next nearest neighbor IEC of the form −J̃123(m̂1 · m̂2)(m̂2 · m̂3), which is different
from the Heisenberg type next nearest neighbor coupling −J13m̂1 · m̂3. The strength of the next nearest neighbor
IEC oscillates with respect to the thickness of both magnetic and nonmagnetic layers. The strength of the next
nearest neighbor IEC is generally smaller than the conventional nearest neighbor IEC, but is large enough to
allow for experimental detection.
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I. INTRODUCTION

Since the discovery of giant magnetoresistance (GMR) in
the late 1980’s,1,2 magnetic multilayer systems have received
much attention and have been studied extensively. One of the
heavily examined properties is the coupling between magnetic
layers, which is called interlayer exchange coupling (IEC).
The leading order term of IEC between two adjacent magnetic
layers has a form E/A = −J m̂1 · m̂2, where E is the exchange
coupling energy, A is the cross sectional area of the multilayers,
m̂1 and m̂2 are unit vectors along the magnetization of the two
magnetic layers, and J is the IEC constant. If J > 0, a parallel
configuration is preferred (ferromagnetic coupling) and if J <

0, an antiparallel configuration is preferred (antiferromagnetic
coupling).

When the two magnetic layers are separated by a nonmag-
netic spacer layer located in between, the coupling constant J

between the two magnetic layers has an oscillatory dependence
on the thickness of the spacer layer. This oscillation was first
observed in Fe/Cr, Co/Cr, and Co/Ru superlattice structures,3

and systematically studied for various systems thereafter. For
samples with ferromagnetic Co layers, various choices of
nonmagnetic spacer layers such as V, Mo, Rh, Cu, and Re
produce an oscillation with a period 1–2 nm (Refs. 4–8)
when samples are grown by sputtering. For samples grown
by molecular-beam epitaxy, an additional oscillation with a
shorter period is observed in Co/Cu, Cr/Fe, Ag/Fe, and Au/Fe
samples.9–16

This oscillatory behavior of J is due to the presence
of a sharp Fermi surface and the formation of quasibound
states in spacer layers.17–20 Since electrons are reflected at the
ferromagnetic/nonmagnetic layer interfaces, the quasibound
states are formed in the spacer layers. When the thickness
of the spacer increases, the energies of the quasibound states
change and cross the Fermi level periodically. This crossing
gives rise to the variation of J with respect to the spacer layer
thickness. It was demonstrated19 that critical spanning vectors
in the Fermi surface of the spacer affect the variation most
strongly and determine the periods of the variation.

In later studies on multilayer systems containing just two
magnetic layers, such as NFNFN (F: ferromagnetic metal; N:
nonmagnetic metal), it was found that the IEC constant J

between the two magnetic layers is not completely fixed by
the central N layer and its interfaces with the two neighboring
F layers. The oscillation of J with respect to the thickness of
the ferromagnetic layers was observed in Co/Cu systems.21

Moreover, oscillation with respect to the thickness of the
capping layer (uppermost N layer) was also observed.22 Thus
the IEC in the central trilayer FNF does depend on system
configurations outside the central trilayer. This dependence
may be counterintuitive but is consistent with the quantum well
state picture: Since quasibound states are not strictly localized
at the central N layer, their energy levels and J may depend
on the outside configuration.23

Implications of the quantum well picture are not limited to
the thickness dependence. In an FNFNF structure, for instance,
the quantum well picture implies that J for the IEC between
the first two magnetic layers may depend on the magnetization
vector at the third magnetic layer, thereby generating the
effective IEC between next nearest magnetic layers (between
the first and third magnetic layers).

The IEC is an important factor affecting the energy
landscape of magnetic multilayer structures and the knowledge
of next nearest neighbor (NNN) IEC will be helpful to design
the energy landscape more accurately. One particular example
where the energy landscape is important is current-driven
magnetization switching through the spin-transfer torque
(STT) mechanism.24–26 Such switching has a high application
potential towards nonvolatile memory and logic devices.27–30

Recalling that practical STT switching devices employ three
or more magnetic layers to minimize unwanted long-range
magnetostatic interactions,31,32 NNN IEC becomes relevant
and modifies the energy landscape of the devices, which in
turn affects the energy cost for the switching operation and
the thermal stability of stored information. Thus to achieve
energy-friendly devices with a long information retention time,
the energy landscape of the devices needs to be carefully
designed, to which the knowledge of NNN IEC can contribute.

Another important direction of research for the current-
driven magnetization switching is to enhance the magnitude
of the spin-transfer torque, which is desired for faster device
operation. Interestingly, IEC is directly connected to the so-
called perpendicular spin-transfer torque.33,34 Recently there

174426-11098-0121/2012/86(17)/174426(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.174426


JAE-HO HAN AND HYUN-WOO LEE PHYSICAL REVIEW B 86, 174426 (2012)

FIG. 1. (Color online) Schematic figure of the FNFNF structure.
Two ferromagnetic layers, F1 and F3, are semi-infinite, and the
other layers have a finite thickness with lengths given in the figure.
Magnetizations are all in the same plane (x-z plane).

were efforts35–42 to understand the properties of the perpen-
dicular spin-transfer torque, and the existence of NNN IEC
implies that NNN effects may exist even for the perpendicular
spin-transfer torque, which may be useful for more accurate
assessment of the perpendicular spin-transfer torque.

In this paper, we explore this NNN IEC by using a simple
free-electron model. We found that the NNN IEC is generally
weaker than the conventional nearest neighbor (NN) IEC but
may be comparable in certain situations. We also found that
both types of IEC have oscillatory dependence on the thickness
of layers, but specific forms of the dependence are different
for the two types of IEC.

II. FREE-ELECTRON MODEL

A. System and calculation scheme

Figure 1 shows schematically the FNFNF system that we
are considering. In this configuration, interactions between
F1 and F2, and between F2 and F3 are an ordinary NN
IEC, whereas the interaction between F1 and F3 is a NNN
IEC, which is the theme of this paper. All magnetizations
of the ferromagnetic layers are assumed to be in the layer
plane (x-z plane) and the magnetization of F3 is fixed to the
z axis without loss of generality since we expect that the
total IEC energy does not change when all magnetization
directions are simultaneously rotated by the same angle. In
F1 and F2, the angle between the magnetization and z axis is
θi3 (i = 1,2). For simplicity, we assume that the saturation
magnetizations are the same for all ferromagnetic layers,
conduction electrons interact with the magnetizations through
an s–d type interaction, and no impurities are present.

In theoretical works, IEC was investigated17–20 usually
by evaluating the total energy of systems as a function of
magnetization directions. In view of its relevance to emerging
applications of magnetic multilayer systems based on the
spin-transfer torque, here we evaluate it by calculating instead
the torque exerted on the magnetization. Although this torque
approach is less direct than the total energy approach, it is illus-
trative in clarifying the connection between IEC and the spin-
transfer torque. When the angle of a magnetization is changed,
the energy of IEC changes and a torque arises. For instance,
the conventional NN IEC −J m̂2 · m̂3 generates a torque
proportional to −J m̂2 × m̂3 (magnitude −J sin θ23) on m̂3. In
the sense that IEC is an interaction mediated by the conduction
electrons (here, we assume the carrier of charge and spin to be
electrons), it has the same origin as the spin-transfer torque.
Actually the perpendicular spin-transfer torque acting on F3

is also proportional to m̂2 × m̂3, and it is known that at zero
voltage bias the perpendicular spin-transfer torque is identical
to the torque due to the IEC. Therefore, we calculate torque
as a function of magnetization angles, and integrate it with
respect to the angle of the magnetization to evaluate the total
IEC energy. By the way, we will ignore the so-called in-plane
spin-transfer torque proportional to m̂3 × (m̂2 × m̂3) since it
vanishes at zero voltage bias24,33 and is irrelevant for IEC.

The calculation scheme is as follows. First, one solves the
one-electron Schrödinger equation. In nonmagnetic layers, a
conduction electron is subject to a spin-independent potential
energy. In magnetic layers, however, the conduction electron
and magnetization interact via the s-d exchange interaction,
which gives rise to a spin-dependent potential energy for a
conduction electron proportional to σ · m̂, where σ is the
Pauli matrix representing the conduction electron spin and
m̂ is the unit vector along the magnetization direction of the
magnetic layer. Then the spin currents are calculated from
the wave function, and one adds up this spin current for all
occupied conduction electrons. This total spin current has a
spatial dependence. Then the torque acting on a ferromagnetic
layer can be evaluated from the difference between the
incoming spin current at the left interface of the magnetic
layer and the outgoing spin current at the right interface of
the magnetic layer.34 Finally, the IEC energy can be obtained
by integrating the torque over the magnetization angle. By the
way, our explicit calculation results confirm that the torque is
indeed along the direction m̂3 × m̂2 and the in-plane torque
m̂3 × (m̂3 × m̂2) is absent, justifying our approach to evaluate
IEC from the perpendicular spin-transfer torque at zero bias.

B. One-electron Schrödinger equation

The dynamics of an electron in the multilayer can be
described by the following one-electron Schrödinger equation,

− h̄2

2m
∇2�s(x,y,z) + Uss ′ (y)�s ′ (x,y,z) = E�s(x,y,z), (1)

where

Uss ′ (y) =
{−�(σ · m̂)ss ′ (in F’s),

Ecδss ′ (in N’s).
(2)

σ = (σx,σ y,σ z), σx,y,z is the Pauli matrix, and m̂ is m̂1, m̂2,
and m̂3 when an electron is in F1, F2, and F3, respectively. � is
the exchange interaction constant, Ec is the conduction band
bottom energy, and m is the effective mass of an electron. s

and s ′ (=±) are indices of spin space with the z axis chosen as
the spin quantization axis, and δss ′ is the Kronecker delta. The
summation over the repeated index s ′ is implicit in Eq. (1).

Since there is translational symmetry in the layer plane
direction (x, z direction), we can factorize �s(x,y,z) as
�s(x,y,z) = 1√

V
eikxxeikzzψs(y) = 1√

V
ei�k‖·�r‖ψs(y), where �k‖,

�r‖ are the in-plane component of the wave vector and position
vector, and V is the total volume of the system which tends to
infinity. Substituting this into Eq. (1) yields the equation for
ψs(y),

− h̄2

2m

d2

dy2
ψs(y) + Uss ′ (y)ψs ′ (y) = εψs(y), (3)

where ε = E − h̄2k2
‖/2m.
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Within each ferromagnetic layer, U is diagonalized by
choosing a quantization axis parallel to the magnetization.
In this axis choice, U = diag(U↑,U↓), where ↑ and ↓ denote
the majority and minority spin component, respectively, and
U↑,↓ = ∓�. Because the potential U (y) is spatially uniform
within each layer, the solution of Eq. (3) in each layer is a
linear combination of plane waves. Explicitly,

ψ
Fa

↑,↓ = Aa
↑,↓eik↑,↓y + Ba

↑,↓e−ik↑,↓y,
(4)

ψ
Nb± = Cb

±eiκy + Db
±e−iκy,

where k↑,↓ = √
ε − U↑,↓/h̄, κ = √

ε − Ec/h̄, a (=1,2,3)
indicates each ferromagnetic layer, and b (=1,2)
indicates each nonmagnetic layer. In a FNFNF system,
there are thus 5 (layers) × 2 (spin components) ×
2(longitudinal momentum directions)=20 coefficients, which
should satisfy the boundary conditions arising from the
wave function matching at the interfaces between layers.
Since the spin quantization axes in magnetic layers are
in general different from the z axis, which we choose as
the spin quantization axis in nonmagnetic layers, the wave
function matching at each interface between a magnetic and
nonmagnetic layer generates the following four boundary
conditions: two for the continuity of wave functions,

ψN
+ = ψF

↑ cos(θ/2) + ψF
↓ sin(θ/2),

ψN
− = −ψF

↑ sin(θ/2) + ψF
↓ cos(θ/2),

and the other two for the continuity of the derivatives of wave
functions,

dψN
+

dy
= dψF

↑
dy

cos(θ/2) + dψF
↓

dy
sin(θ/2),

dψN
−

dy
= −dψF

↑
y

sin(θ/2) + dψF
↓

dy
cos(θ/2),

where θ is the angle between the two different spin
quantization axes in the two neighboring layers. Since there
are four interfaces in a FNFNF system, four (=20 − 4 × 4)
independent coefficients remain to be determined. These four
coefficients are determined by choosing four scattering states:
(i) electrons with a majority spin component injected from
the left (AF1

↑ = 1,A
F1
↓ = B

F3
↑ = B

F3
↓ = 0), (ii) electrons with

a minority spin component injected from the left (AF1
↓ =

1,A
F1
↑ = B

F3
↑ = B

F3
↓ = 0), (iii) electrons with a majority spin

component injected from the right (BF3
↑ = 1,A

F1
↑ = A

F1
↓ =

B
F3
↓ = 0), and (iv) electrons with a minority spin component

injected from the right (BF3
↓ = 1,A

F1
↑ = A

F1
↓ = B

F3
↑ = 0).

Thus these four scattering states exhaust the degrees of
freedom and constitute a complete set of bases.

C. Spin current density and perpendicular spin torque

From the wave function �s(x,y,z), we can calculate the
spin current density j

spin
i for each scattering state. Here, i

denotes the spin direction (x, y, or z) and the direction of
motion is chosen to be y since only this direction of motion is
relevant in the present situation. Then the spin current density

generated by an electron in the state �s is given by

j
spin
i = 1

m
Re

[
�†

s

(
h̄

i

∂

∂y

) (
h̄

2
σ i

ss ′

)
�s ′

]

= 1

mV
Re

[
ψ†

s (y)

(
h̄

i

d

dy

) (
h̄

2
σ i

ss ′

)
ψs ′ (y)

]
, (5)

where Re(ω) is the real part of complex number ω.
j

spin
i in the above is the spin current density for one electron,

and we have to sum it up to Fermi energy to get the total spin
current density. First, let us consider the scattering state in
which spin-up electrons are injected from the left [case (i)].
Since electrons are filled up to a Fermi energy of F1, and only
electrons with ky > 0 (ε = h̄2k2

y/2m) can be injected, we have
a total spin current density J

spin
i (L, ↑) due to these spin-up

electrons injected from the left as

J
spin
i (L, ↑) =

∑
k<k

↑
F1

,ky>0

j
spin
i (ε(ky))

= V

2

∫
k<k

↑
F1

d3k

(2π )3
j

spin
i (ε(ky))

= h̄2

4m

∫
k<k

↑
F1

d3k

(2π )3
Im

[
ψ†

s σ
i
ss ′

d

dy
ψs ′

]
, (6)

where k
↑
F1

is the Fermi wave vector of majority electrons in
F1 and Im(ω) is the imaginary part of the complex number ω.
Similarly, the spin current for the other scattering states (ii),
(iii), and (iv) can be calculated as J

spin
i (L, ↓), J

spin
i (R, ↑),

and J
spin
i (R, ↓), respectively. The total spin current density

J
spin,total
i is

J
spin,total
i = J

spin
i (L, ↑) + J

spin
i (L, ↓)

+ J
spin
i (R, ↑) + J

spin
i (R, ↓). (7)

Since m̂3 × m̂2 is along the y direction, the perpendicular spin
torque (perpendicular to the plane spanned by magnetizations)
exerted on F3 can be calculated by using a total spin current
density due to the angular momentum conservation. The
perpendicular component of the angular momentum absorbed
by F3 per unit time per unit area is J

spin,total
y within N3

(J spin,total
y is conserved in N3), which is minus the perpendicular

spin-transfer torque per unit area (from the angular momentum
conservation):

τ3/A = −J spin,total
y . (8)

III. RESULTS

Figure 2 shows perpendicular torque τ3 in terms of the angle
θ23 between m̂2 and m̂3, while the angle θ13 − θ23 between m̂1

and m̂2 is fixed. The parameters used in calculations are as
follows: � = 1.96 eV, Ec = −1 eV, EF = 2.62 eV, d1 = d2 =
1 nm, L = 2 nm.24,33,43 The black solid curve in Fig. 2 is the
result for θ13 = θ23 (m̂1 = m̂2), while the blue dashed curve
is for θ13 = θ23 + π (m̂1 = −m̂2). In both cases, τ3 shows
the sine behavior as a function of θ23, τ3/A = −J23 sin θ23,
implying that the total IEC energy is proportional to cos θ23 =
m̂2 · m̂3 when the difference θ13 − θ23 (or m̂1 · m̂2) is fixed.
In the two cases, however, the amplitudes J23 of the sine
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FIG. 2. (Color online) τ3 vs θ23 for parallel (m̂1 = m̂2, θ13 = θ23),
antiparallel (m̂1 = −m̂2, θ13 = θ23 + π ), and perpendicular (m̂1 ⊥
m̂2, θ13 = θ23 + π/2) configurations. All have the same sinusoidal
form but with different amplitudes.

oscillation are different, implying that J23 does depend on
m̂1 · m̂2. We find J23 = 5.59 ± 1.32 mJ/m2 for m̂ = ±m̂2.
Here 1.32 mJ/m2 is a measure of how sensitively the IEC
between F2 and F3 depends on the configuration in F1. Note
that this is smaller than but not negligible compared to the
average value of 5.59 mJ/m2. To investigate the dependence
of J23 on m̂1 · m̂2, we calculate τ3 as a function of θ23 when
m̂1 · m̂2 is fixed to 0 (red dashed-dotted curve in Fig. 2). Again
τ3/A is excellently fitted by the sine curve −J23 sin θ23 if we
choose J23 = 5.46 mJ/m2. Note that this value agrees with the
average value of 5.59 mJ/m2 of the two earlier cases, within
2% accuracy. Thus within this accuracy, the dependence of J23

on m̂1 · m̂2 is described by J23 = J̃23 + J̃123m̂1 · m̂2 and we
can write the torque as

τ3/A = −(J̃23 + J̃123m̂1 · m̂2) sin θ23, (9)

where J̃23 = 5.59 mJ/m2 and J̃123 = 1.32 mJ/m2 are con-
stants independent of the relative directions of the magneti-
zation vectors.

The IEC energy related to magnetic layer F3 can be obtained
by integrating the torque in Eq. (9) with respect to the
angle −θ23, which yields E/A = −J̃23m̂2 · m̂3 − J̃123(m̂1 ·
m̂2)(m̂2 · m̂3) + C12. The integration constant C12 is a function
of the angle between magnetizations m̂1 and m̂2. One can
perform a similar analysis for the torque τ1 acting on m̂1, as a
function of the relative angle between m̂1 and m̂2, while the
relative angle between m̂2 and m̂3 stays fixed. Through this
analysis, we find E/A = −J̃12m̂1 · m̂2 − J̃123(m̂1 · m̂2)(m̂2 ·
m̂3) + C23, where the integration constant C23 is a function of
the angle between m̂2 and m̂3. From these two analyses, we
conclude that the total IEC energy is

E/A = −J̃12m̂1 · m̂2 − J̃23m̂2 · m̂3

− J̃123(m̂1 · m̂2)(m̂2 · m̂3). (10)

The first two terms on the right-hand side are conventional NN
IEC’s in the sense that they do not depend on the “outside”
configuration (m̂3 in the case of the first term and m̂1 in the
case of the second term). In the third term, in contrast, the NNN
magnetizations m̂1 and m̂3 couple to each other through the
inner products with the magnetization m̂2 of the intervening
layer. Although the third term is different from a pure NNN
coupling (m̂1 · m̂3), it still involves the NNN pair layers and
we call it NNN IEC. Note that its strength constant J̃123 =

1.32 mJ/m2 is not negligible compared to the conventional
NN IEC constant J̃12 = J̃23 = 5.59 mJ/m2.

It is well known that the IEC is mediated by conduction
electrons. Thus, to generate the NNN IEC in Eq. (10), the spin
information should be carried by these electrons from one
ferromagnetic layer (F1) to the NNN layer (F3) without being
completely destroyed (or randomized) by the intermediate
ferromagnetic layer (F2). In this regard, the form of the
NNN IEC can be understood as follows. When conduction
electrons are incident onto a metallic ferromagnetic layer, the
spin component of the conduction electrons perpendicular to
the magnetization of the ferromagnetic layer decays rapidly34

within a few atomic monolayers of the ferromagnetic layer.
There are various mechanisms34 contributing to the decay
such as spin dephasing in the ferromagnet, spin-dependent
reflection, and spin rotation at the ferromagnet-nonmagnet
interface. Thus when m̂1 · m̂2 = 0, the intermediate ferromag-
netic layer (F2) blocks almost completely the spin information
propagation from F1 to F3. On the other hand, the longitudinal
spin component of the conduction electrons parallel or antipar-
allel to the magnetization direction is not diminished by such
mechanisms and can be maintained over a longer distance.
Thus, if m̂1 · m̂2 �= 0, conduction electrons coming from F1

can deliver its spin component parallel to the magnetization of
F2 (m̂2), which is (m̂1 · m̂2)m̂2 to F3, and give rise to the IEC
proportional to (m̂1 · m̂2)(m̂2 · m̂3) when they are incident on
F3. This IEC is nothing but the NNN IEC, the last term in
Eq. (10). This mechanism also explains the absence of the
pure Heisenberg-type NNN interaction J̃13m̂1 · m̂3; since the
interaction between m̂1 and m̂3 is mediated by conduction
electrons (we ignore the magnetic dipole interaction) and these
electrons pass through F2, the spin filtering effect in F2 allows
coupling of the form J̃123(m̂1 · m̂2)(m̂2 · m̂3) only for IEC.
We find that this form of NNN IEC explains our calculation
results excellently except those data obtained for a very small
thickness L (�0.5 nm) of F2 (Appendix B).

Next, we examine the thickness-dependent oscillation of
NN and NNN IEC. The d2 dependence of J̃23 [Fig. 3(a)] has
a single oscillation period of about 0.3 nm. This period arises
from the critical spanning vector 2kF (period = 2π/2kF ) of
the spherical Fermi surface of N2 (kF is the Fermi wave vector
in N2).

J̃23 depends on the thickness L of F2 as well [Fig. 3(b)].
The L dependence is oscillatory, as discussed in Ref. 23, but
unlike Ref. 23 we find that the L-dependent oscillation is a
superposition of two oscillations with two different periods
0.3 and 0.75 nm, which agree with the periods corresponding
to the critical spanning vectors 2k

↑
F2

and 2k
↓
F2

of the majority

and minority Fermi surfaces of F2, respectively. Here k
↑
F2

and

k
↓
F2

are the Fermi wave vectors in F2 for the majority and
minority electrons. In contrast, the L dependence in Ref. 23
has only one oscillation period corresponding to the critical
spanning vector of the minority Fermi surface of F2 and the
critical spanning vector of the majority Fermi surface does
not lead to the oscillatory L dependence. We believe that this
difference arises because Ref. 23 considered a special case
where the majority electrons of F2 do not get reflected at all at
the interfaces between F2 and N2 and between F2 and N1. Our
result in Fig. 3(b) indicates that when this special assumption
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FIG. 3. (Color online) Thickness dependence of J̃23 with respect
to layer thicknesses. The reference thicknesses are d1 = d2 = 1 nm
and L = 2 nm. (a) The d1 dependence, (b) the L dependence, and
(c) the d1 dependence of the NN IEC constant J̃23. In (a), (b), and
(c), only one of the three thicknesses d1, d2, and L are varied while
the other two remain at the reference values. (d) The d1 dependence
of J̃23 at L = 2.5 nm with d2 at the reference value. The black dots
in (a), (b), and (c) are the points where Fig. 2 is calculated.

is lifted, the majority electrons also generate the oscillatory L

dependence of J̃23.
We find that J̃23 depends on the thickness d1 of N1 as well

[Figs. 3(c) and 3(d)]. The d1 dependence exhibits oscillation
with a single period corresponding to the critical spanning
vector 2kF of N1. Note that the d1-dependent oscillation
may not be centered at zero [Figs. 3(c) and 3(d)]. This
oscillation away from zero is understandable considering that
the oscillation amplitudes of the d2, L, and d1 dependences
of J̃23 are getting progressively smaller. Thus when d2 and L

values prefer, say, large positive values of J̃23, the d1-dependent

FIG. 4. (Color online) Thickness dependence of the NNN IEC
constant J̃123 with respect to layer thicknesses. (a) The d1 dependence,
(b) the L dependence, and (c) the d1 dependence of the NNN IEC
constant J̃123. In (a), (b), and (c), only one of the three thicknesses
d1, d2, and L are varied while the other two remain at the reference
values. (d) The d1 dependence of J̃123 at L = 2.5 nm with d2 at the
reference value. The black dots in (a), (b), and (c) are the points where
Fig. 2 is calculated.

oscillation of J̃23 is biased towards the positive side. We remark
that the L dependence of J̃23 is not centered at zero either.

The thickness dependences of the NNN IEC J̃123 are shown
in Fig. 4. Each of the d1- and d2-dependent oscillations
[Figs. 4(c) and 4(a)] of J̃123 has a single oscillation period
(0.3 nm) determined by the critical spanning vector 2kF of N1

and N2, and the L-dependent oscillation has two oscillation
periods (0.3 and 0.75 nm) determined by the critical spanning
vectors of 2k

↑
F2

and 2k
↓
F2

, the majority and minority Fermi
surfaces of F2. Thus the oscillation periods of J̃123 with respect
to d1, d2, and L are identical to the corresponding periods of
J̃23. However, unlike the oscillations of J̃23, the oscillations
of J̃123 are all centered at zero [Fig. 4(d)]. We attribute this
difference to the fact that for the NNN IEC between F1 and
F3, all three thicknesses d1, L, and d2 are length scales of the
“spacer” between F1 and F3, whereas for the NN IEC between
F2 and F3 and the thickness d1 and L are length scales of the
“outside” configurations.

IV. DISCUSSIONS

The numerical calculation results in Fig. 3 indicate that
the NN IEC interaction strength oscillates not only when the
spacer thickness changes but also when the thicknesses of the
“outside” configuration change. The three types of oscillations
(d1, d2, and L dependences) in Fig. 3 are qualitatively
consistent with the following expression,

J̃23 = Im
{
e2ikN2 d2

[
A + e

2ik
↑
F2

L(B + Ce2ikN1 d1 )

+ e
2ik

↓
F2

L(D + Ee2ikN1 d1 )
]}

, (11)

which is a generalization of the theoretical results in Ref. 23.
In Eq. (11), A, B, C, D, and E are nonoscillating decaying
functions of d1, d2, and L. Equation (11) generalizes the result
in Ref. 23 in two ways: (i) Spin-up electrons also experience
scattering at the interfaces and are responsible for the term
proportional to exp(2ik

↑
F2

L). This term is absent in Ref. 23.
(ii) The finite thickness d1 of the “outside” normal metal layer
gives rise to the oscillating factor exp(2ikN1d1), which is again
absent in Ref. 23 since d1 = ∞ is assumed in Ref. 23. d1-
dependent oscillation was reported in the experiment.22 When
d1, d2, and L are sufficiently large, an analytic expression for
J̃23 can be derived (Appendix A) by generalizing the method
in Ref. 23.

The numerical calculation results in Fig. 4 indicate the d1-,
d2-, and L-dependent oscillations of the NNN IEC constant
J̃123. Since all these three oscillations of J̃123 are centered at
zero, the expression for J̃123 should be different from Eq. (11).
We expect that in the F1N1F2N2F3 system the trilayer N1F2N2

as a whole serves as a spacer for the IEC coupling between F1

and F3. Then, since the spacer itself contains a ferromagnetic
layer, quasibound states in the spacer will be spin dependent,
and spin-up and spin-down electrons will produce separately
their own oscillations. Note that Figs. 4(a) and 4(c) are the
same since N1 and N2 play a symmetric role in the spacer.
Thus this expectation leads to the following expression,

J̃123 = Im
(
Ãe

2ikN1 d1+2ik
↑
F2

L+2ikN2 d2

+ B̃e
2ikN1 d1+2ik

↓
F2

L+2ikN2 d2
)
, (12)
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where Ã and B̃ are nonoscillating decaying functions of d1, d2,
and L. We remark that Eq. (12) is consistent with all qualitative
features of the oscillations in Fig. 4. When d1, d2, and L are
sufficiently large, an analytic expression for J̃123 can be derived
(Appendix A) by generalizing the method in Ref. 23.

Next we discuss the oscillation amplitude of the NNN
IEC. In Fig. 4, the oscillation amplitude of the NNN IEC
constant J̃123 falls in the range 3–5 mJ/m2. This value is much
smaller than the spacer d2-dependent oscillation amplitude of
the NN IEC constant J̃23 [Fig. 3(a)]. This explains why the
NNN IEC has not been recognized in previous experiments.
However, we remark that the oscillation amplitude of the NNN
IEC is comparable to the amplitude of the “outside” layer
thickness dependence of J̃23 [Figs. 3(b)–3(d)]. Considering
that the “outside” layer thickness dependence was measurable
in the experiment,22 we expect that the oscillation of the
NNN IEC is also measurable in experiments. The experimental
confirmation of the NNN IEC is most probable in situations
when the NN IEC is suppressed. For the reference thicknesses
d1 = d2 = 1 nm and L = 2 nm (black dots in Fig. 3), J̃23 is
only about 5 mJ/m2. In this situation, if one varies only d1 and
L and keeps d2 at the reference value, J̃23 remains comparable
to J̃123, facilitating the experimental test of the NNN IEC.

We also remark that even though the results in Figs. 3
and 4 are obtained from a simple model that contains only
one energy band, the main results such as the existence and
the oscillation of the NNN IEC will persist even when a more
realistic energy band structure is taken into account since
the NNN IEC is governed by the critical spanning vectors of
the Fermi surface, and this physics is not altered by
complications in a realistic energy band structure.

Lastly, we explore the possibility of even longer-range
coupling by examining the F1N1F2N2F3N3F4 multilayer sys-
tem. This system contains four magnetic layers and allows
the examination of the next next nearest neighbor (NNNN)
IEC. We again calculate the torque acting on the last
ferromagnetic layer F4 and integrate it over the angle θ34

(angles are defined in a similar way) to obtain the total
IEC acting on F4. To decompose the total IEC into NN,
NNN, and NNNN components, we calculate the torque
as a function of θ34 under three different configurations:
(1) while maintaining m̂1//m̂2//m̂3, (2) m̂1//−m̂2//m̂3,
and (3) −m̂1//−m̂2//m̂3. The torque τ4 has a sinusoidal
dependence on θ34 in all three configurations. The oscillation
amplitude difference between case (2) and (3) determines the
strength of the NNNN IEC coupling J̃1234 between F1 and F2

of the form −J̃1234(m̂1 · m̂2)(m̂2 · m̂3)(m̂3 · m̂3). To evaluate
J̃1234, we perform a numerical calculation with the thicknesses
d1 = d2 = d3 = 1 nm for all three nonmagnetic layers, and the
thicknesses L2 = L3 = 2 nm for the two ferromagnetic layers
F2 and F3. All other material parameters are the same as before.
Figure 5 shows the calculation results, and from the amplitudes
we find the NN IEC strength J̃34 = 5.34 mJ/m2, the NNN
IEC strength J̃234 = 1.61 mJ/m2, and the NNNN IEC strength
J̃1234 = −0.15 mJ/m2. Thus the strength of the IEC becomes
progressively smaller for longer-range coupling. The values
of NN and NNN IEC constants J̃34 and J̃234 are similar but
slightly different from the corresponding constants J̃23 and J̃123

in the FNFNF system (Fig. 2). Interestingly, the differences are
of the same order as J̃1234. The differences can be understood
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FIG. 5. (Color online) The torque τ4 acting on the magnetization
of F4 as a function of θ34. The deviation between red (dotted-dashed)
and blue (dotted) lines shows the existence of the interaction between
F1 and F4.

as follows: If m̂1//m̂2 and the spin information loss in N1 is
negligible, the leftmost FNF layers in the FNFNFNF system
may be regarded as a single F layer and the FNFNFNF system
reduces to the FNFNF system. In this reduction, the sum of the
NNN IEC and the NNNN IEC in the FNFNFNF system should
be identified with the NNN IEC in the FNFNF system, which
explains why the difference between J̃234 in the FNFNFNF
system and J̃123 in the FNFNF system is of the order of J̃1234.
In turn, this difference in the NNN IEC constants can propagate
to the evaluation of the NN IEC constants, as supported by the
excellent agreement between J̃34 + J̃234 for the FNFNFNF
system and J̃23 + J̃123 for the FNFNF system (a difference of
only 0.04 mJ/m2). Thus the differences of the IEC constants in
the FNFNFNF and FNFNF systems are natural consequences
of the long-range nature of the IEC.

In summary, we have calculated the IEC energy via a spin-
transfer torque in a free-electron model. The (perpendicular)
spin-transfer torque, which is an angle derivative of the energy
and has sine dependence, depends on magnetic configurations.
From these results, we can deduce that the energy has an
angle dependence of the form of Eq. (10), indicating the
existence of the NNN IEC. The strength of the NNN IEC
is generally smaller than the NN IEC. Nevertheless, our
estimation indicates that the strength of the NNN IEC is large
enough to allow for its experimental detection.
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APPENDIX A: IEC IN LARGE LAYER THICKNESS LIMIT

In this Appendix, we will calculate NN IEC and NNN IEC
in a large layer thickness limit using Bruno’s free-electron
model.18,23 To do so, we regard F1N1F2 in the F1N1F2N2F3

system as a single synthetic ferromagnetic layer, say FA, and
apply Bruno’s formula to evaluate the IEC in FANFB (FB = F3,
N = N2). Bruno’s formula reads as follows [Eqs. (1) and (4)
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in Ref. 23],

J1 = − 1

4π3
Im

∫
d2�k‖

∫ ∞

−∞
dεf (ε)

× 2�rA�rBeiqzD

1 − 2r̄Ar̄BeiqzD + (
r̄2
A − �r2

A

)(
r̄2
B − �r2

B

)
eiqzD

(A1)

where qz is change in the electron wave vector impinging
from N to F and reflecting back, D is the thickness of the N
layer (D = d2 in our system), f (ε) is the Fermi-Dirac function,
r̄A,B = (r↑

A,B + r
↓
A,B)/2, �rA,B = (r↑

A,B − r
↓
A,B)/2, and r

↑,↓
A,B is

the reflection coefficient of up and down electrons reflecting
FA and FB with obvious notation.

Here, we generalize Ref. 23 a little more, and the majority
spin electrons are not assumed to be reflectionless. In our

case, r
↑,↓
A have a dependence on the angle between the

magnetizations of F1 and F2. We can calculate r
↑,↓
A as a

function of cos θ12 and expand it into a Taylor series in powers
of cos θ12 up to first order. These r’s are also functions of r

↑
∞

and r
↓
∞, which are reflection coefficients of electrons incident

from the nonmagnetic layer to a semi-infinite ferromagnetic
layer having a majority and minority spin, respectively.

Inserting the results for r’s into Eq. (A2), we have J1 in the
form of J1 = J̃23 + J̃123 cos θ12. In the large layer thickness
limit, we can obtain a simple expression for J̃23 and J̃123,
since there are many cancellations during the integration:
Oscillatory components with different wave vectors cancel
each other except for the Fermi wave vector kF , which is a
stationary value in �k‖ (critical spanning vector).17,18,23 Then we
have

J̃23 = 1

4π2

h̄2

2m
Im

(
e2ikF d2

{
1

2
(r↑

∞ − r↓
∞)2

(
d2

kF

)−2

+ e2ik
↑
F L

[
−1

2
(r↑

∞ − r↓
∞)r↑

∞(1 − r↑2
∞ )

(
d2

kF

+ L1

k
↑
F

)−2

+ 1

4
(r↑2

∞ − r↓2
∞ )(1 − r↑2

∞ )2

(
d2

kF

+ L

k
↑
F

+ d1

kF

)−2

e2ikF d1

]

+ e2ik
↓
F L

[
1

2
(r↑

∞ − r↓
∞)r↓

∞(1 − r↓2
∞ )

(
d2

kF

+ L1

k
↓
F

)−2

− 1

4
(r↑2

∞ − r↓2
∞ )(1 − r↓2

∞ )2

(
d2

kF

+ L

k
↓
F

+ d1

kF

)−2

e2ikF d1

]})
(A2)

J̃123 = 1

4π2

h̄2

2m
Im

[
1

4
(r↑2

∞ − r↓2
∞ )(1 − r↑2

∞ )2

(
d2

kF

+ L

k
↑
F

+ d1

kF

)−2

e2ikF d1+2ik
↑
F L+2ikF d2

+ 1

4
(r↑2

∞ − r↓2
∞ )(1 − r↓2

∞ )2

(
d2

kF

+ L

k
↓
F

+ d1

kF

)−2

e2ikF d1+2ik
↓
F L+2ikF d2

]
, (A3)

which have the same form as Eqs. (11) and (12), respectively.

APPENDIX B :SMALL F2 THICKNESS

For very small L, the spin component perpendicular to m̂2

may not completely decay in F2, thereby opening an additional
channel for the NNN coupling. In this situation, the third term
in Eq. (10) cannot fully capture the NNN coupling. To explore
this possibility, we calculate τ3/A in terms of θ23 for a small
thickness of F2, L = 0.5 nm. Other parameters are the same
as those in the main text. We can see that for a perpendicular
configuration (m̂1 ⊥ m̂2) the angle dependences are shifted
with respect to the corresponding dependence for the parallel
(m̂1//m̂2) or antiparallel (m̂1//−m̂2) configurations (Fig. 6).
This shift indicates that for a conduction electron originating
from F1, its transverse spin component perpendicular to m̂2

still survives even after passing through F2. In the limit
L → 0, the transverse component is as likely to survive as
the longitudinal component after passing through F2, and in
this limiting case, the NNN IEC should be the Heisenberg-like
form proportional to (m̂1 · m̂3). If this limiting case were
achieved, the result for the perpendicular configuration (m̂1 ⊥
m̂2) in Fig. 6 should have exhibited the relative phase shift of
π/2. However, the actual phase shift is only about one third of

the expected value, which indicates that even for L = 0.5 nm
the longitudinal component still survives significantly better
than the transverse component after passing through F2. As
increasing the thickness of F2, the shift of the sinusoidal
functions becomes smaller and essentially disappears for
L � 1 nm, justifying the analysis in the main text. For our
parameter set, this threshold value of L is comparable to
ldep ≡ 2π/(k↑

F2
− k

↓
F2

) = 0.9 nm.
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FIG. 6. (Color online) The torque τ3 acting on the magnetization
of F3 as a function of θ23 with L = 0.5 nm, which is smaller than ldep.
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5F. Petroff, A. Barthélemy, D. H. Mosca, D. K. Lottis, A. Fert, P. A.
Schroeder, W. P. Pratt, Jr., R. Loloee, and S. Lequien, Phys. Rev. B
44, 5355 (1991).

6K. Ounadjela, D. Muller, A. Dinia, A. Arbaoui, P. Panissod, and
G. Suran, Phys. Rev. B 45, 7768 (1992).
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