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Co3V2O8 is an orthorhombic magnet in which S = 3/2 magnetic moments reside on two crystallographically
inequivalent Co2+ sites, which decorate a stacked, buckled version of the two-dimensional kagome lattice,
the stacked kagome staircase. The magnetic interactions between the Co2+ moments in this structure lead to
a complex magnetic phase diagram at low temperature, wherein it exhibits a series of five transitions below
11 K that ultimately culminate in a ferromagnetic ground state below T ∼ 6.2 K. Here we report magnetization
measurements on single- and polycrystalline samples of (Co1−xMgx)3V2O8 for x < 0.23, as well as elastic
and inelastic neutron scattering measurements on single crystals of magnetically dilute (Co1−xMgx)3V2O8 for
x = 0.029 and x = 0.194, in which nonmagnetic Mg2+ ions substitute for magnetic Co2+. We find that a dilution
of 2.9% leads to a suppression of the ferromagnetic transition temperature by ∼15% while a dilution level
of 19.4% is sufficient to destroy ferromagnetic long-range order in this material down to a temperature of at
least 1.5 K. The magnetic excitation spectrum is characterized by two spin wave branches in the ordered phase
for (Co1−xMgx)3V2O8 (x = 0.029), similar to that of the pure x = 0 material, and by broad diffuse scattering
at temperatures below 10 K in (Co1−xMgx)3V2O8 (x = 0.194). Such a strong dependence of the transition
temperatures on long-range order in the presence of quenched nonmagnetic impurities is consistent with two-
dimensional physics driving the transitions. We further provide a simple percolation model that semiquantitatively
explains the inability of this system to establish long-range magnetic order at the unusually low dilution levels
which we observe in our experiments.
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I. INTRODUCTION

Geometrically frustrated materials that are based on mag-
netic moments which decorate a lattice of triangular networks
have been of great recent interest due to their intriguing low
temperature magnetic properties and a rich variety of exotic
ground states such as spin glasses, spin ices, and spin liquids
which they exhibit.1,2

Co3V2O8 belongs to the M3V2O8 family (M = Co, Ni, Cu,
Mn)3–5 which incorporates into its structure an anisotropic
variation of the ideal two-dimensional (2D) kagome lattice.
The kagome lattice is itself a network of corner-sharing
triangles. Within this structure, the magnetic moments are
carried by 3d transition metal M2+ ions that decorate kagome
layers. These layers buckle in and out of the plane, forming
the kagome staircase structure. Co3V2O8 (CVO) crystallizes in
the orthorhombic space group Cmca.6 Edge-sharing Co2+O6

octahedra are situated slightly below and above the a-c
plane, stacked along the crystallographic b axis, and are
separated by nonmagnetic V5+O4 tetrahedra. A representation
of the structure including only the Co2+ ions is shown
in Fig. 1(a). The magnetic interactions between the Co2+

S = 3/2 moments are mediated by Co-O-Co superexchange;
the resulting magnetic exchange pathways are indicated in
Fig. 1(a) as grey bonds. Within the buckled kagome layers
that form the a-c plane [Fig. 1(b)], the S = 3/2 magnetic
moments reside on two crystallographically inequivalent Co2+

sites: crystallographic (8e) spine (s) sites (blue) run in chains
along the a axis, and these chains are linked by (4a) cross-tie
(c) sites (red).

The low temperature magnetic phase diagrams of all known
members of the kagome staircase family are complex and
show considerable diversity in their rich behavior, despite their
isostructural nature.3–5 For example, Ni3V2O8 displays 4 dif-
ferent magnetically ordered states below 10 K and has attracted
much interest due to the discovery of multiferroic behavior
in one of its incommensurate phases at low temperature.3,7,8

The low temperature phase diagram of Co3V2O8 (CVO) has
been studied by neutron diffraction in both zero9–12 and finite
applied magnetic fields.13,14 It has also been studied by optical
spectroscopy,15,16 by heat capacity and magnetization,3,17 as
well as by μSR18 and by NMR techniques.19,20 This extensive
set of measurements has revealed a series of 5 different
magnetic phase transitions below 11.2 K in zero applied
magnetic field. These ultimately culminate in a ferromagnetic
ground state below T ∼ 6.2 K. All five of the magnetic states
display a preferred direction of the spins parallel to the a
axis, the easy axis of this system. From previous inelastic
neutron scattering measurements, the exchange parameters
of the microscopic Hamiltonian in the ground state of CVO
have been extracted to some approximation, using linear
spin wave theory.11 These calculations approximate the CVO
system as two-dimensional and reveal that the exchange
between magnetic moments on the cross-tie and spine sites
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FIG. 1. (Color online) The crystal structure of Co3V2O8.
(a) View of the kagome staircase considering only the Co2+ ions
(red and blue) which are stacked along the b axis. (b) View of the
kagome plane projected on the a-c plane with the crystallographically
inequivalent cross-tie (red) and spine sites (blue). The magnetic
exchange interactions discussed in the text are indicated.

is ferromagnetic and Jcs ∼ 1.25 meV, while the exchange
between adjacent spine sites [Jss in Fig. 1(b)] is negligible.
Significant uniaxial anisotropy terms in the Hamiltonian have
also been found (∼1–2 meV), consistent with the easy a
direction.

Previous work has examined stacked kagome stair-
case magnets in the presence of disorder, specifically
(Co1−xNix)3V2O8, where random mixtures of Ni2+ and Co2+
reside on the M2+ site.21,22 The phase behavior of such systems
is expected to be complex, as both Ni2+ and Co2+ are magnetic,
and a minimum of three exchange interactions would be
necessary to describe the system, even if only a single M2+
site was crystallographically relevant.

Here we report on (Co1−xMgx)3V2O8 which can be thought
of in terms of Co3V2O8 in the presence of quenched magnetic
vacancies, as Mg2+ does not carry a magnetic moment. As the
ultimate ground state in Co3V2O8 is a uniaxial ferromagnet,
one would expect this to represent an excellent model for
a quasi-two-dimensional Ising system in the presence of
quenched disorder. As such, one would expect to be able to
understand its phase diagram and ground state properties in
some detail.

Dilution studies of other Ising magnets have been carried
out over a long period of time.23 In most cases, these can be
understood in the context of percolation theory. However, there
are interesting examples where this is not the case. One such
example is the case of the stacked triangular lattice Ising-like
antiferromagnet in the presence of quenched nonmagnetic
impurities, CsCo1−xMgxBr3, wherein the combination of
antiferromagnetic exchange and triangular coordination leads
the quenched magnetic vacancies to couple to the relevant
order parameter as a random field.24

In this paper, we present magnetization measurements
on both polycrystalline and single-crystalline samples of
(Co1−xMgx)3V2O8 as well as elastic and inelastic neutron
scattering measurements on single-crystal (Co1−xMgx)3V2O8

with x = 0.029 and x = 0.194. We study the phase diagram
as a function of Mg2+ doping, x, and show how a simple two-
dimensional percolation model can provide an explanation for
the drastic suppression of the magnetic ordering at low temper-
atures in this material. In addition, we study the spin correla-
tions and dynamics at low temperature as a function of doping,

and show the existence of a Griffiths-like phase25 in the pres-
ence of quenched disorder, when TC(x) < T < TC(x = 0).

II. EXPERIMENTAL DETAILS

Two large high-quality single crystals of
(Co1−xMgx)3V2O8 with concentrations of x = 0.029(3)
and 0.194(4) were grown at McMaster University using
an optical floating-zone image furnace.26 Details of these
growths and a subsequent x-ray structural refinement for
these crystals are reported in Ref. 27. This work allows us
to both quantify x, and to determine that the site dilution
of the magnetic Co2+ ions by nonmagnetic Mg2+ is almost
random. The single crystals resulting from these growths
had a mass of ∼8 g and had approximately cylindrical
shapes, with dimensions of 50 mm in length and 7 mm
in diameter. Magnetization measurements were performed
using a conventional SQUID magnetometer at McMaster
University on several polycrystalline samples with a range
of Mg concentrations (x = 0−0.23) as well as on three
single crystals (x = 0, x = 0.029, and x = 0.194). These
single-crystal samples were cut from the main crystal growths
to a rectangular shape (∼2.5 mm × 2 mm × 2 mm),
and were aligned such that magnetization measurements
could be performed with the magnetic field aligned along
particular directions. All three single-crystal samples
used in these magnetization measurements had a mass of
∼10 mg. Neutron scattering measurements, using both
triple-axis and time-of-flight techniques, were performed
at the NIST Center for Neutron Research (NCNR). The
experiments were performed on two ∼25 mm long cylindrical
(Co1−xMgx)3V2O8 samples with x = 0.029 and x = 0.194,
which were aligned such that the [H,0,L] plane in reciprocal
space was coincident with the horizontal scattering plane.

Detailed elastic neutron scattering measurements were
carried out using the cold triple-axis spectrometer SPINS at
the NCNR, NIST. These measurements employed a vertically
focusing PG-002 monochromator and flat PG-002 analyzer
crystal with fixed final energy of Ef = 5 meV. The collimation
used was [open, 80′, 80′, 80′] with an in-pile, cooled Be filter
placed in the incident neutron beam in order to eliminate higher
order wavelength contamination. Inelastic neutron scattering
measurements were carried out on the time-of-flight disk
chopper spectrometer (DCS) at the NCNR, NIST, employing a
fixed incident wavelength of λi = 2.5 Å, which allowed for the
measurement of magnetic excitations up to energy transfers of
�E ∼ 10 meV. In this configuration of DCS, a resolution of
∼0.9 meV was obtained at the elastic position. The samples
were placed in a conventional ILL orange cryostat with a base
temperature of 1.5 K for both the SPINS and DCS experiments.

III. MAGNETIZATION MEASUREMENTS

We performed magnetization measurements using a
SQUID magnetometer on a series of (Co1−xMgx)3V2O8

samples with different doping concentrations in the range x =
0−0.23. Measurements were carried out on polycrystalline
samples as well as on single-crystal samples (x = 0, x =
0.029, and x = 0.194).
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FIG. 2. (Color online) The phase diagram of (Co1−xMgx)3V2O8

as a function of x obtained from magnetization measurements
described in the text. The error bars result from the determination of
the transition temperatures using data in Fig. 3. The phase boundaries
(dashed lines) are guides to the eye and are extrapolated to T = 0 K.
The theoretically expected site percolation limit for the perfect 2D
kagome lattice (xc ∼ 0.35)28 is shown as red star. The critical doping
concentration xc above which any magnetic ordering gets suppressed
at T = 0 corresponds to the determined percolation limit discussed
later in the text and is shown as blue diamond. The inset shows
representative scans of the field-cooled molar susceptibility χ (T )
for an applied field of μ0H = 0.005 T, and the phase transition
temperatures TC and TN for data points in the phase diagram.

The temperature-dependent molar susceptibility χ (T ) was
measured in a field-cooled (FC) mode in an applied field of
μ0H = 0.005 T and this is shown in the inset of Fig. 2 for
selected values of x. For the measurements on single crystals
(open symbols), the crystals were aligned with their easy a axis
parallel to the applied magnetic field. We note here that the
χ (T ) curves for the doped single-crystal samples (x = 0.029
and x = 0.194) display highly anisotropic behavior29 for
the magnetic field applied along the different crystal axes,
similar to what has been observed in the pure compound.30

Measurements on pure Co3V2O8 show two well-defined
magnetic transitions at TN ∼ 11.2 K and at TC ∼ 6.2 K as
indicated by arrows in the inset. We associate the higher
temperature transition with a transition from the paramagnetic
to an incommensurate antiferromagnetic phase, and the lower
temperature transition at ∼6.2 K with the transition to the
ferromagnetic ground state, as has been reported previously.10

These two transition temperatures were extracted from χ (T ) ·
T curves, shown for a subset of the data in Fig. 3, resulting in
the phase diagram shown in Fig. 2.

These measurements reveal a suppression of both transition
temperatures with increasing x, and the complete suppression
of any magnetic ordering at T = 0 can be extrapolated to
a critical doping concentration of xc ∼ 0.26. This result is
somewhat unexpected since this doping level is lower than
the theoretical percolation threshold for the destruction of
long-range order for the ideal 2D kagome lattice, for which
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FIG. 3. (Color online) Representative scans of the susceptibility
χ (T ) · T in a field of μ0H = 0.005 T reveal anomalies at the phase
transition temperatures TC and TN (indicated by arrows). These
transition temperatures are used to construct the phase diagram shown
in Fig. 2. Closed symbols refer to data obtained from polycrystalline
samples, while open symbols represent measurements on single
crystals with μ0H aligned parallel to the a axis of the system.
Note that the maximum in the χ (T ) · T curve in the x = 0.194 doped
sample is indicated as a phase transition with TN ∼ 5 K in Fig. 2;
however, elastic neutron scattering data show no clear evidence for
long-range magnetic correlations at any temperature above 1.5 K in
this sample.

xc ∼ 0.35 (indicated as red star in the phase diagram).28,31 It is
also much lower than the percolation threshold for any three-
dimensionally ordered system where xc ∼ 0.68−0.80.32–34

Note that the percolation threshold pc reported in the literature
is related to xc discussed here by xc = 1 − pc. While pc

describes the critical concentration of magnetic ions below
which magnetic long-range order ceases to exist, xc is used for
the complementary description of the critical concentration of
nonmagnetic ions above which long-range order is impossible.
We choose to speak of the percolation threshold xc in this paper
instead of pc as it is directly related to the concentration of
nonmagnetic Mg2+ ions in our doped CVO.

From the phase diagram in Fig. 2, it can be seen that the
ferromagnetic transition temperature TC is very sensitive to
magnetic dilution and changes almost linearly with x. It is
lowered by ∼20% from TC ∼ 6.2 K in the pure material to
TC ∼ 5.2 K for a doping level of x = 0.029, and for x = 0.194
it is suppressed below the lowest accessible temperature for
our SQUID measurements. In contrast, the higher temperature
Néel transition changes more gradually with dilution, exhibit-
ing downwards curvature as a function of x. The reason for
this difference is not clear, although we do note that while the
transition at TN appears to be continuous, that at TC is clearly
discontinuous even in the presence of quenched disorder, as
we will discuss below.

IV. ELASTIC NEUTRON SCATTERING RESULTS

Elastic neutron scattering measurements were performed on
two doped single-crystal samples (x = 0.029 and x = 0.194)
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FIG. 4. (Color online) Contour plots showing the temperature
evolution of the elastic magnetic scattering S(Q, E = 0) around the
Q = (0,0,2) Bragg peak position for (a) x = 0.029 and (c) x =
0.194. A background data set within the paramagnetic state at T =
20 K has been subtracted from the individual (0,0,L) scans so as to
eliminate the weak nuclear component to the (0,0,2) Bragg scattering.
Representative scans making up the contour plots are shown in panels
(b) and (d). The instrumental resolution of SPINS is indicated in
panels (b) and (d) as the black horizontal bar. The error bars represent
one standard deviation in this and the following figures.

using the cold triple-axis spectrometer SPINS at the NCNR,
NIST. The temperature dependence of the elastic magnetic
scattering was followed around the (0,0,2) Bragg peak, which
exhibits a weak nuclear component, and a strong ferromagnetic
component to the Bragg peak below TC ∼ 6.2 K in the pure,
x = 0, material. The strength of this magnetic Bragg peak
follows as the form of the magnetic neutron scattering cross
section is sensitive to the component of moment perpendicular
to Q. Its strength indicates that the ordered moment points
along a. A color contour plot constructed from elastic
longitudinal (0,0,L) scans through (0,0,2) as a function of
temperature for both samples is presented in Figs. 4(a) and
4(c). Representative scans are shown in Figs. 4(b) and 4(d).
Note that the intensity appropriate to the color contour plots
in Figs. 4(a) and 4(c) is on a logarithmic scale.

In the data sets for both x = 0.029 and x = 0.194, a
high-temperature data set at T = 20 K (in the paramagnetic
phase) has been subtracted, so as to eliminate the temperature-
independent, nuclear scattering from the lower temperature
data sets, and hence to isolate the magnetic scattering. It can
easily be seen that the scattering profiles for the two samples
are in striking contrast to each other. As the temperature
is lowered below T ∼ TC(x = 0) ∼ 6.2 K in the x = 0.029
Mg-doped sample [Figs. 4(a) and 4(b)], diffuse scattering
intensity characteristic of the development of short-range
correlations builds up, increasing in strength down to a
temperature of TC(x = 0.029) ∼ 5.2 K. Below ∼5.2 K it
gives way to a dramatic increase in elastic scattering intensity
which is now sharper in Q and characteristic of long-range
order. It is therefore associated with a phase transition to the
ferromagnetic ground state. This can be seen more clearly
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FIG. 5. (Color online) The order parameter and diffuse scattering
as a function of temperature measured near the (0,0,2) magnetic
Bragg peak in the x = 0.029 sample. Note the different intensity
scales and counting times.

in Fig. 5, which displays the temperature dependence of the
net scattered intensity upon warming and cooling measured
at the Bragg peak position (0,0,2) associated with the order
parameter, and at a Q position slightly away from the Bragg
peak, at (0,0,1.8), allowing for the parametrization of the
diffuse scattering characteristic of the short-range order. Based
on the sharpness of the transition and the observed hysteresis
in the order parameter, this transition is clearly of first-order
nature.

The diffuse critical scattering in the wings of the elastic
Bragg peak is observed to be drastically enhanced in a
Griffiths-phase-like fashion25,35 in the temperature region
between TC(x = 0.029) ∼ 5.2 K and T < TC(x = 0) ∼ 6.2 K.
Such a Griffiths phase shows enhanced spin correlations due
to relatively rare, large correlated spin droplets36 that arise
as a consequence of the random quenched disorder.25 The
effect of thermal fluctuations is such that the system would
be long-range ordered in the absence of quenched disorder,
and large percolating networks of spins display enhanced
correlations somewhat akin to long-range order.

The (0,0,L) scans of the magnetic scattering from this
x = 0.029 sample are best described by a two-component line
shape consisting of a Lorentzian line shape characterizing the
short-range correlations and a resolution-limited Gaussian line
shape which describes the onset of long-range magnetic order.

The results of this line shape analysis are given in
Fig. 6, wherein the integrated intensities of the Gaussian
and Lorentzian components of the magnetic scattering at
(0,0,2) for the x = 0.029 sample are shown in panel (a). A
representative elastic scan with corresponding fits at T =
5.8 K, in the Griffiths-like phase, between TC(x = 0) and
TC(x = 0.029) is displayed in the inset of panel (a).

For the higher doping level of the x = 0.194 sample, the
scattering profile is in sharp contrast to that at x = 0.029,
as shown in the color contour maps in Fig. 4 and with
the data we now discuss in Fig. 6. In agreement with
the magnetization data, no magnetic long-range order is
evident down to the lowest temperature measured, ∼1.5 K.
Instead, the scattering profile is entirely dominated by a
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is shown in the inset. (b) The integrated intensity of the Lorentzian
line shape used to describe the magnetic scattering in the x = 0.194
doped sample is shown, while the inset displays representative scans
in L along the (0,0,2) direction for different temperatures with fits to
the Lorentzian line shape as described in the text. For both panels (a)
and (b) a T = 20 K high-temperature nonmagnetic background has
been subtracted to isolate the magnetic scattering. Note that the peaks
for the x = 0.194 doped sample in the inset of panel (b) are much
wider than the instrumental resolution at SPINS, which is shown as
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broad diffuse scattering component around the (0,0,2) Bragg
position, indicative of very short ranged correlations. After
subtraction of the high-temperature nuclear Bragg intensity, it
was found that a Lorentzian line shape alone was appropriate
to describe the magnetic scattering profile at all temperatures.
Figure 6(b) shows the integrated intensity of the magnetic
diffuse scattering around (0,0,2) and the inset shows several
representative scans and the corresponding Lorentzian fits to
this scattering for x = 0.194. One can clearly see that the
diffuse scattering is very weak at 10 K and that it develops
noticeably below TC(x = 0) ∼ 6.2 K, again consistent with a
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Griffiths-like phase between TC(x = 0) and zero temperature,
increasing monotonically on cooling down to 1.5 K.

The full widths at half maximum (FWHMs) of the
Lorentzian components characterizing the short-range correla-
tions in both the (Co1−xMgx)3V2O8 samples with x = 0.029
and x = 0.194 are compared in Fig. 7. It is clear that the
FWHM of the x = 0.029 sample drops approximately to 0
at TC(x = 0.029) ∼ 5.2 K, consistent with resolution-limited
scattering and long-range magnetic order. In contrast, the
magnetic scattering from the x = 0.194 sample maintains a
finite width to the lowest temperatures measured, T = 1.5 K.
At this temperature, the (0,0,2) peak displays a FWHM of
∼0.25, corresponding to a real-space spin-correlated-droplet
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and for two different temperatures, T = 1.5 K (top row) and T =
5.5 K (bottom row).
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FIG. 9. (Color online) Cuts through the color contour maps maps
shown in Fig. 8 along 0,0,L. The observed (0,0,1) peak at T =
1.5 K in the x = 0.194 sample is a clear signature of incommensurate
fluctuations of the form (0,δ,L) that are observed in the x = 0.029
sample at T = 5.5 K and T = 7 K. This is consistent with the phase
diagram presented in Fig. 2.

within the kagome plane of about 24 Å in diameter, approx-
imately the size of two to three unit cells. While no phase
transition to long-range order is observed for x = 0.194,
the trend for the evolution of the FWHM of this magnetic
scattering approximately extrapolates to 0 at T = 0, indicating
that x = 0.194 is close to a quantum critical point. We also
note that the FWHMs for both samples approach each other
at the highest temperature measured ∼10 K, as we anticipate
should occur. At these high temperatures, thermal fluctuations
are expected to dominate the effects of the quenched disorder.

We further investigated the nature of the elastic scattering
using TOF neutron data taken on DCS at NCNR, NIST. The
obtained maps of elastic scattering S(Q,E = 0) are shown in
Figs. 8(a) and 8(c) for x = 0.029 and in Figs. 8(b) and 8(d)
for x = 0.194, each for two different temperatures, T = 1.5 K
and T = 5.5 K. One notes that the net elastic scattering at
T = 1.5 K, following subtraction of a T = 20 K data set, for
the x = 0.194 sample is different from that for either the pure
x = 0 (not shown here) or the lightly doped x = 0.029 sample.
Figure 9 shows that Bragg-like scattering is observed for the
x = 0.194 sample around all of the (0,0,L) Bragg positions for
integer L, likely originating from short-range incommensurate
elastic magnetic scattering of the form (0,δ,L). This scattering,
which does not lie in our horizontal scattering plane, is picked
up in our DCS experiment due to the finite acceptance of the
scattered neutrons out of the horizontal plane, and is consistent
with the placement of the x = 0.194 single-crystal sample on
the phase diagram for (Co1−xMgx)3V2O8 as shown in Fig. 2.

V. INELASTIC NEUTRON SCATTERING RESULTS

We investigated the evolution of the dynamic spin cor-
relations in (Co1−xMgx)3V2O8, the excitations out of the
ground state, using inelastic neutron scattering measurements
carried out on DCS at NCNR, NIST. Figure 10 shows S(Q,E)
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FIG. 10. (Color online) S(Q,E) in x = 0 (top), x = 0.029 (mid-
dle), and x = 0.194 (bottom row) samples along two perpendicular
directions in reciprocal space. All data shown have had their respec-
tive high-temperature T = 20 K background data sets subtracted.
Note that the data have been taken at the base temperatures appropriate
to each experiment, which was 200 mK for x = 0 and T = 1.5 K for
both x = 0.029 and x = 0.194.

observed in the three x = 0, x = 0.029, and x = 0.194
single-crystal samples along two perpendicular directions in
reciprocal space.

Panels (a) and (b) in the top row of Fig. 10 show S(Q,E)
for the pure, x = 0, sample at T = 200 mK, panels (c) and
(d) correspond to the x = 0.029 sample at T = 1.5 K, and
(e) and (f) correspond to x = 0.194. The respective 20 K,
high-temperature data sets for each x have been subtracted
for all data sets shown. The spin wave spectrum in all three
samples consists of two bands of spin excitations, a relatively
narrow band near ∼2 meV and a broader band between ∼3 and
6.5 meV. These are consistent with earlier spin wave results
on the pure x = 0 sample.11

As expected from the elastic neutron scattering results
discussed above, the inelastic spectrum for the pure and
the x = 0.029 samples look similar within their ordered
states, although broadening of the spin wave excitations in
energy is clear on doping, corresponding to shorter spin
wave lifetimes in the presence of quenched impurities for
the x = 0.029 sample. The inelastic scattering from the most
heavily doped x = 0.194 sample shows poorly defined bands
of spin excitations which are most easily observable in the
vicinity of Q = 0. These are typical of the magnetic inelastic
spectrum within the incommensurate phases or paramagnetic
state at elevated temperatures.

The inelastic magnetic spectrum can be further com-
pared between the three x = 0, x = 0.029, and x = 0.194
samples, by taking cuts through the color contour maps of
S(Q,E) shown in Fig. 10, and normalizing to the incoherent
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FIG. 11. (Color online) Cuts through scattering intensity around
[1.5,0,0] and integrating over a narrow range in H = [1.4,1.6] and
L = [−0.2,0.2] on a logarithmic intensity scale. To facilitate the
comparison between these two sets of measurements, the scattered
intensity has been normalized to the incoherent elastic scattering of
the pure sample.

elastic scattering. This normalization should account for the
somewhat different volumes of sample within the neutron
beam. This is shown in Fig. 11, where we have shown an
approximate constant Q = (1.5,0,0) scan, which has been
constructed by integrating in H between 1.4 and 1.6 and in L
between ±0.2. The spectral weight of the sharp spin excitations
falls off dramatically with increased concentration of quenched
nonmagnetic disorder.

Further, we investigated the temperature evolution of the
inelastic scattering in the two doped samples, x = 0.029 and
0.194, as shown in Fig. 12, which shows S(Q,E) along the
[0,0,L] direction in reciprocal space. This is consistent with
our elastic scattering studies, which placed the x = 0.194
doped sample at 1.5 K in a region of the phase diagram that
is characterized by incommensurate elastic magnetic order
and rather diffuse spin wave excitations. This corresponds
to the same region of the phase diagram in which one finds
the x = 0.029 sample at elevated (T = 5.5 K and T = 7 K)
temperatures. Note also the resemblance of (b) and (c) with (e),
which are all placed in the incommensurate antiferromagnetic
phase in the phase diagram of diluted CVO.

VI. PERCOLATION CALCULATIONS AND DISCUSSION

In light of the phase diagram obtained for
(Co1−xMgx)3V2O8, shown in Fig. 2, and both the elastic
and inelastic neutron scattering in the presence of quenched
disorder, one can raise the question as to why dilution
with quenched magnetic vacancies is so effective in
destroying the magnetic order in this system. Figure 2
shows the ferromagnetic transition to be suppressed to zero
temperature at x ∼ 0.19, while all vestiges of incommensurate
magnetic order have been suppressed to zero temperature
by x ∼ 0.26. This is far below the percolation threshold for
any three-dimensional cooperative system, where critical
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FIG. 12. (Color online) The temperature evolution of the inelastic
scattering S(Q,E) along [0,0,L], contrasting the x = 0.029 and x =
0.194 samples. Panels (a), (b), and (c) correspond to the x = 0.029
sample at the temperatures indicated in phase diagram in the top right
panel. Panels (e) and (f) correspond to the x = 0.194 sample with
temperatures as shown in the phase diagram.

concentrations of xc ∼ 0.7 (pc ∼ 0.3) are typical.34,37 In
and of itself, this shows that the weak three-dimensional
interactions along the third, stacking dimension, b, do not
determine this criticality. These interactions are certainly
weak compared to the strong interactions within the
kagome-staircase plane, but they may also be frustrated as
a consequence of the triangular coordination of spins on
cross-tie sites which neighbor the spine-site spins along the b
axis.

To further examine this question, we carried out a simple
two-dimensional, zero-temperature percolation calculation
relevant to (Co1−xMgx)3V2O8. Our starting point for a
calculation of the percolation limit in this system was a
two-dimensional projection of the magnetic moments within
a single buckled kagome layer. For the calculations, a lattice
of 100×100 unit cells was used, from which we randomly
removed magnetic sites (either cross-tie or spine positions)
with probability x. As Ramazanoglu et al.’s11 linear spin
wave theory on the pure CVO material showed the magnetic
interactions between magnetic moments on the spine sites
to be negligible, we then excluded magnetic interaction
pathways between spine sites for the remaining steps in the
calculation. We calculated the number of sites contained in
the largest cluster, that is the number of sites contained in
the largest near-neighbor connected region of the lattice, and
checked whether any continuously connected path through the
lattice (chosen arbitrarily from the left to the right edge of
the lattice) could be found. If several such connected paths
were found, the length of the shortest path through the lattice
between sites making up the largest lattice-spanning cluster
was calculated. We ran this simulation up to 30 times for each
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FIG. 13. (Color online) Percolation calculations showing the
evolution of the largest cluster size in a lattice containing 100 ×
100 unit cells as a function of site dilution x. The inset shows the
length of the shortest path through the system connecting the edges
of the lattice, if it exists. Above the percolation threshold, the lattice
edges cannot be connected, and there is no shortest path. Note that
the evolution of the largest cluster size is normalized to its value at
zero site dilution (x = 0). Error bars in the normalized largest cluster
sizes are determined from the standard error. The determination of
the shortest path through the system was based on only those data sets
that showed connectivity of the lattice, and the error bars are given
by the standard error of these data sets.

dilution probability x to get a good estimate of the percolation
threshold, which we find to be at xc ∼ 0.26. A calculation for
the full connectivity of the site-diluted lattice was performed
as well, by including the interaction pathways between spine
sites. This calculation recovers the well-known percolation
threshold for the two-dimensional kagome lattice of xc ∼ 0.35
(pc = 0.65). Although the finite size of the system smears
out the actual percolation threshold xc, the threshold for the
original kagome lattice is well reproduced.28 Increasing the
lattice size does not change the result for xc significantly, and
we therefore conclude that our estimate of xc ∼ 0.26 for the
case of (Co1−xMgx)3V2O8, where the magnetic interactions
between spine sites is negligible, is accurate.

A summary of both simulations is shown in Fig. 13. In
the top panel, the number of sites within the largest cluster,
normalized to the total number of sites occupied by magnetic
moments (which depend on x), is shown. The black squares

denote the data for the case of full kagome connectivity, while
data in blue circles represent the case in which spine-spine
connectivity (ss-ss correlations) is excluded, corresponding
to the physical picture relevant to (Co1−xMgx)3V2O8. In the
inset, the length of the shortest path, if it exists, is shown
for both cases. The point xc for which the lattice cannot
be connected and thus no shortest path can be found is
indicated by a dashed line and is determined as xc ∼ 0.35
for the full kagome connectivity and as xc ∼ 0.26 for the
case appropriate to (Co1−xMgx)3V2O8. It is interesting to
note that the length of the shortest path increases relatively
gradually for the full kagome connectivity, while excluding
spine-spine connections leads to a flat dependence on the
length of the shortest path through the system, until a dilution
level of about x ∼ 0.20 is reached, beyond which the length of
the shortest path rises rapidly towards xc ∼ 0.26. This seems
reasonable as the random removal of cross-tie and spine sites
is equivalent in the fully connected kagome case, while the
removal of cross-tie sites, which make up 1/3 of all sites, is
more effective than the removal of the majority spine sites,
for the case where magnetic interactions between spine sites is
negligible. This is because removal of a cross-tie site “disables”
a possible path to 4 spine sites, while removal on a spine
site only “disables” the interaction path between 2 cross-tie
sites.

Representative lattice configurations at dilution levels of
x = 0.15, x = 0.30, and x = 0.45 are shown in the bottom
panel of Fig. 13, for both cases. The largest cluster in the lattice
is colored in blue and the shortest lattice spanning path(s) are
shown in orange. As one can clearly see, at a dilution level
of x = 0.30, there exists a largest, lattice spanning cluster in
the case of full kagome connectivity (bottom middle panel),
while for the case of excluding spine-spine connectivity as
is relevant for (Co1−xMgx)3V2O8, only a finite-sized cluster
exists, which does not span the full lattice and thus does not
allow for long-range magnetic order.

VII. CONCLUSIONS

We have presented the low temperature phase diagram of
the kagome staircase system CVO in the presence of quenched
disorder, showing the transition temperatures TN and TC as
function of nonmagnetic Mg2+ doping in (Co1−xMgx)3V2O8.
We have found that the magnetic properties of this material
at low temperatures are very susceptible to quenched disorder
and that a doping level of x ≈ 0.26 is large enough to suppress
any long-range order to below 1.5 K.

Based on the geometric arrangement of the magnetic Co2+
moments within the kagome plane, a simple two-dimensional
percolation model has been used to understand the effect of
magnetic dilution on the possible exchange paths. For that
purpose, we considered a flat, two-dimensional kagome lattice
with site dilution x, and calculated the percolation threshold.
Based on previous inelastic neutron scattering on CVO, which
found the spine-spine magnetic interactions to be negligible
compared with the cross-tie–spine interactions,11 we calcu-
lated the percolation threshold of xc ∼ 0.26 for the case of
cross-tie–spine connectivity (excluding spine-spine bonds). As
a reference, we confirmed the percolation threshold for the
kagome lattice as xc ∼ 0.35 (pc ∼0.65). The calculation of
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the percolation threshold excluding spine-spine connectivity
is found to be in good agreement with the observed phase
diagram that puts the percolation threshold at ∼26% percent
doping level.

For two samples with doping levels of x = 0.029 and x =
0.194, respectively, we have performed elastic and inelastic
neutron scattering measurements. The elastic neutron scatter-
ing measurements could be understood in terms of Griffiths-
like phase fluctuations appearing between TC(x = 0) and
TC(x), wherein enhanced short-range order is observed. For the
case of the lightly doped x = 0.029 sample, such short-range
correlations collapse into a long-range ordered ferromagnetic
state via a first-order phase transition at TC ∼ 5.2 K. The more
heavily doped x = 0.194 sample displays only ferromagnetic
short-range order to the lowest temperatures measured, and
shows the coexistence of incommensurate fluctuations at
base temperature, consistent with the phase diagram for
(Co1−xMgx)3V2O8 described above.

Our inelastic neutron scattering measurements on the
lightly doped x = 0.029 sample show spin waves comparable
to those observed in pure, x = 0, CVO, albeit with finite
energy widths, and hence spin wave lifetimes within its
low temperature state. The equivalent magnetic excitation
spectrum observed in the x = 0.194 sample shows magnetic
spectral weight in the same energy regime, but no well-defined
spin wave excitations at any wave vector.
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