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Anisotropic magnetic molecular dynamics of cobalt nanowires
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An investigation of thermally induced spin and lattice dynamics of a cobalt nanowire on a (111)Pt substrate
is presented via magnetic molecular dynamics. This dynamical simulation model treats each atom as a particle
supporting a classical spin. A coordinate dependent on both exchange and anisotropic functions ensures a minimal
coupling between the spin and the lattice degrees of freedom to translate the magnetostrictive behavior of most
magnetic materials. A spin-pair model of anisotropy is proposed to connect to the lattice thermodynamics.
In order to solve linked spin-coordinate equations of motion, the efficiencies of algorithms based on Suzuki-
Trotter decompositions are compared. The temperature dependence of the magnetic behavior of Co nanowires is
investigated through thermal stochastic connections with mechanical and spin Langevin noises. From a magnetic
Hamiltonian parametrized on ab initio calculations, the size dependence of the energy barriers and characteristic
time scales of the magnetization relaxation are computed. In the superparamagnetic limit, it is shown that all
spins in a nanowire evolve in a coherent rotation. When the size of the single nanowire increases, nucleations of
domain walls let the activation energy be independent of the length of the wire.
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I. INTRODUCTION

In many important areas of engineering, there is increasing
interest in novel magnetic nanomaterials.1 With the never-
ending miniaturization quest of the electronics industry,2

there is a crucial need for a detailed atomistic description
of magnetic materials. Understanding the role of magnetic
effects in the structural stability of some metals is still a
challenge. However, it has been shown recently that some
phase transitions of iron, driven by spin fluctuations, have
effects on the stability of dislocation loops.3 Therefore a
true atomistic simulation of a magnetic materials at finite
temperature has to conciliate the dynamics of both the spin
and the lattice degrees of freedom.4–6

From the Bohr-van Leeuwen theorem and without internal
degrees of freedom, the magnetization of a classical system
is always null.7 Because magnetism is a quantum effect,
the magnetic molecular dynamics (MMD) cannot mimic
the magnetization dynamics without introducing the spins
as supplemental dynamical variables. In a classical fluid
theory, the first formulation of the dynamics of classical
particles with spin degrees of freedom was given early by
Turski.8 More recently, another coupling of the molecular
dynamics (MD) and atomic spin dynamics was presented by
Antropov et al.9,10 This approach is based simultaneously on
a quantum mechanical derivation of localized moment and
atomic equations of motion but is a colossal consumption of
computational resources. However, in simplifying the full set
of first-principles equations of motion, Akbar et al.11 have
demonstrated a few-hundred-atom simulation in which com-
plex antiferromagnetic order and helical structures are found
for γ -Fe. Moreover, explicit calculations of spin damping have
been reported on bulk, monolayers, and atomic wires of Fe,
Co, and Ni.12

To circumvent the computer demands used by first-
principles methods, Ackland,13 then Dudarev and Derlet,14 has
proposed to derive magnetic interatomic potentials suitable for
atomistic simulations. They use the second-moment functional

form of the empirical many-body potential and incorporate
an explicit magnetic term in it, which has to be solved
self-consistently to describe the magnetic energy gained by
a low-coordination-number environment. Even if this method
allows a good translation of the mechanical stability of
transition metals, it is restricted to collinear spin configurations
and does not permit us to follow in time the direction of each
magnetic moment.

Thus the whole dynamical behavior of a magnetic solid
can be seen as an exchange among three thermodynamical
reservoirs (electronic, spin and lattice) as shown in Fig. 1.

Although the ultrafast dynamics of a magnetic material is
determined by its spin-dependent electronic structure, the time
resolution of all-optical pump-probe experiments prevents the
need for detailed electronic dynamics.15 In this situation,
the electrons are considered at equilibrium during the probe
time. This allows us to focus on the coupled spin and lattice
dynamics and a way to unify them in agreement with their
similar typical time steps.16

In restricting between spin and lattice excitations, Omelyan
and coworkers have developed high-order integration algo-
rithms for both MD17–19 and spin-lattice dynamics.20 Imple-
mentation on a classical XY-spin fluid in an external magnetic
field was followed.21 Ma et al.22,23 have implemented these al-
gorithms to develop spin-lattice dynamics simulations of γ -Fe.
In these simulation schemes, the spin and the lattice degrees of
freedom are treated at the same level. The dynamics of these
coupled classical variables constitutes what we call MMD.
In MMD because of the virial theorem, exchanges between
spin and lattice reservoirs result from the spatial dependence
of exchange interaction and magnetic anisotropy, which lets
additional magnetic forces vary the kinetic temperature. Such
a spatial dependence of the magnetic anisotropy allows
magnetoelasticity to be included24,25 within the MMD. Even
if the exchange energy considered by Ma et al.26 has a spatial
dependence, because of its isotropic nature, it is unable to
capture any directional magnetostrictive behavior.

174409-11098-0121/2012/86(17)/174409(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.174409


BEAUJOUAN, THIBAUDEAU, AND BARRETEAU PHYSICAL REVIEW B 86, 174409 (2012)

FIG. 1. (Color online) The lattice, electron, and spin thermody-
namic reservoirs with their corresponding temperatures (TL, TE , and
TS). Arrows show the exchange of energy between each reservoir and
their typical relaxation times.

Section II describes the total Hamiltonian of the system,
combining the mechanical and magnetic parts. Its parametriza-
tion is discussed on the basis of ab initio calculations. In
Sec. III, several integration algorithms are derived. These
algorithms are based on geometric integration with Suzuki-
Trotter (ST)-like decompositions of the evolution operator
of the position, impulsion, and spin variables. Because of
the noncommutative character of the time integration, the
order in the ST-like decomposition is discussed in order to
optimize the numerical speed, stability, and accuracy. By
using a Langevin dynamics combined within the fluctuation-
dissipation theorem, the connection between the kinetic and
the magnetic temperature is presented. Finally, Sec. IV
illustrates the superparamagnetic behavior of an atomic chain
of cobalt through MMD simulations.

II. MMD HAMILTONIAN

A model which aspires to reproduce the general behavior
of a 3d magnetic transition metal at finite temperature has to
include not only the mechanical interactions between atoms
but also the magnetic coupling between their neighboring
spins.27 If the first interaction is rather common within the
implementation of an MD using many-body potentials, the
second is much more difficult since one needs a description
not only of the spin-spin interaction but also of its modification
by the local atomic environment. Nevertheless, by introducing
the notion of average magnetization into a given volume,28

interaction between the spins and the lattice can be partially
taken into account with effective approximations.

A. Mechanical and anisotropic exchange Hamiltonian

To perform our MMD, a classical system composed of N
magnetic particles of mass m is considered and described by

the following pair Hamiltonian:

H =
N∑

i=1

‖ �pi‖2

2mi

+
N∑

i<j

V (rij ) −
N∑

i<j

J (rij )�si · �sj

−
N∑

i<j

K(rij )

[
(r̂ij · �si)(r̂ij · �sj ) − 1

3
(�si · �sj )

]

−
N∑

i<j

�D(rij ) · (�si × �sj ) − gμBμ0

N∑
i=1

�Hext · �si . (1)

Here �ri , �pi , and �si are, respectively, the position, impulsion,
and spin direction of the ith particle. rij is the distance between
between particle i and particle j , while r̂ij is the corresponding
unit vector. The first term is the kinetic energy and the
mechanical potential is denoted by V (rij ), which is supposed
to generate only central forces. In the same way, J (rij ),
K(rij ), and D(rij ) are, respectively, the diagonal exchange
interaction and the amplitudes of the magnetic anisotropic
for both a symmetric pseudodipolar and an antisymmetric
(Dzyaloshinskii-Moriya) interaction for a couple of spins
at the considered distance rij . A single family of magnetic
atoms is thus considered �si · �si = 1, which provides a conve-
nient scaling of gμB/h̄ to find the corresponding magnetic
moment, where �Hext is the Zeeman static magnetic field.
Previous models have considered only a symmetric isotropic
exchange.20,26,29 Many types of two-site anisotropy have been
proposed in the literature,27 but the pseudodipolar expression
is selected for its simplicity and quite transparent meaning. Al-
though less practical for numerical calculations than single-ion
anisotropy, this spin-pair model is more realistic for describing
interfaces and low-symmetry environments.30 In Eq. (1), only
the pseudodipole term is considered, but it vanishes in cubic
symmetry and extension with explicit quadrupole expression
would be necessary.25 However, at low temperatures, a single
crystal of cobalt follows an hcp structure.31 According to
Ref. 32, K(rij ) is assumed to be a quickly decreasing effective
function with distance. Note that the dipole-dipole interaction
could also be included in the K(rij ) function.33 The vector
�Dij reflects the local environment of the magnetic moment

and can be obtained from first-principles calculations.34 In the
rest of this paper, because bulk properties are our primarily
interest, �Dij is not considered even though it is usually strong
in low-symmetry systems.32 Within this spin-pair model of
anisotropy, the amplitude of the coupling depends on the
interatomic distance and therefore is influenced by the lattice
vibrations.

B. Determination of parameters

The mechanical potential is computed by the embedded-
atom method35 and parametrized to reproduce bulk Co prop-
erties and some of its alloys.36,37 Based on the Bethe-Slater
curve, the exchange isotropic function J (rij ) is taken as a
continuous function of the atomic distance38 as

J (rij ) = −4ε

(
− r2

σ 2
+ δ

r4

σ 4

)
e
− r2

σ2 �(Rc − rij ), (2)

where �(Rc − rij ) is the Heaviside step function, Rc is a cutoff
distance taken to the second and the third nearest neighbor, ε is

174409-2



ANISOTROPIC MAGNETIC MOLECULAR DYNAMICS OF . . . PHYSICAL REVIEW B 86, 174409 (2012)

FIG. 2. (Color online) Exchange energy as a function of inter-
atomic distance for cobalt. The solid (black) line shows the J (r)
results from a fit on values of exchange integrals [filled (red) circles]
obtained from ab initio calculations on hcp5 and fcc Co40 structures.
The dashed (blue) line shows the J (r) results obtained from a
rescaling of the previous function such that the rescaled function
fits the value of the first-nearest-neighbor exchange interaction
J1NN = 50 meV estimated for Co clusters deposited on various
nonmagnetic substrates.39 Considered parameters are for a bulk
system, with ε = 44.6928 meV, δ = 3.496 × 10−3, and σ = 1.4885
Å, and for nano-objects (in particular, a one-dimensional chain), with
ε = 106 meV and δ and σ unchanged. Inset: The influence of the
smooth cutoff function, showing the region between Rc = 3.75 Å
and 4 Å.

the amplitude, σ is the spreading distance, and δ is a parameter
allowing a change of sign between antiferromagnetism and
ferromagnetism. During the dynamics, discontinuities of the
magnetic forces and magnetic energies are observed due to
the moving of atoms in and out of the rigid cutoff sphere.
Consequently, a fifth-order polynomial tapering function is
added in order for the first and second derivatives to go
smoothly to 0 at the cutoff radius, as shown in Fig. 2. Because
of varying environments, there is no unique set of ab initio
exchange functions in cobalt.39 So J is determined by fitting
various first-principles calculations on the exchange energy
of cobalt in fcc, hcp, and one-dimensional structures.40–42

Figure 2 shows that first-principles exchange functions are
very small from the second neighbors as expected. During the
fit δ ≈ 0, so whatever the distance, the exchange function in
cobalt leads to ferromagnetism. To date no ab initio exchange
energy is available for compressed cobalt structures.

The anisotropy function K is more difficult to parametrize.
Although the anisotropy energy is often presented as a small
quantity, and approximatively several orders of magnitude
smaller than the exchange energy,43 it is well known that it
plays a crucial role in the stabilization of a magnetic state.
To our knowledge, there is no attempt to derive an analytical
form for this function over the distance for bulk materials from
electronic structure calculations. This would require determi-
nation of the evolution of the magnetocrystalline anisotropy
energy (MCAE) with the interatomic distance, which is not
an easy task. Actually the energy difference between an easy

and a hard axis is of the order of 10−5 eV/atom, which is
very difficult to achieve numerically.44 Recently, Autès et al.45

investigated the MCAE of an iron strand and showed that its
evolution with distance can be nonmonotonous and can even
change sign. However, this situation is very different from the
bulk case and this would probably be hazardous to determine K

from such calculations on a one-dimensional chain. A practical
application is given in Sec IV.

III. MOLECULAR AND SPIN DYNAMICS

A. Microcanonical ensemble: NVE algorithm

In an isolated physical system in equilibrium the number
of particles, volume, and total energy are conserved. By using
the dynamical approach, Yang et al.46 were able to generalize
the classical Poisson bracket to include spin. Let us consider
f (t,�ri, �pi,�si) and g(t,�ri, �pi,�si), two general functions of time
as well as the momenta, coordinates, and spins of each of
the particles. The generalized Poisson bracket can be defined
as

{f,g} =
N∑

i=1

[
∂f

∂�ri

· ∂g

∂ �pi

− ∂f

∂ �pi

· ∂g

∂�ri

+ �si

h̄
·
(

∂f

∂�si

× ∂g

∂�si

)]
.

(3)

Such a Poisson bracket is antisymmetric and satisfies Jacobi’s
identity. This makes the space of smooth functions on a
symplectic manifold of an infinite-dimensional Lie algebra,
with the Poisson bracket acting as the Lie bracket. This
expression applies to any classical system of particles having
a Hamiltonian whose variables Xi satisfy Ẋi = G(Xi) ∂H

∂Xi
,

where G is an antisymmetric operator acting on variables.
Equation (1) satisfies these conditions and the equations of
motion can be derived for all the phase-space variables as

d�ri

dt
= {�ri,H} = �pi

mi

, (4)

d �pi

dt
= { �pi,H}

=
∑

j (j �=i)

[
− dV (rij )

dr
+

(
dJ (rij )

dr
− 1

3

dK(rij )

dr

)
(�si · �sj )

+
(

dK(rij )

dr
− 2K(rij )

rij

)
(r̂ij · �si)(r̂ij · �sj )

]
r̂ij

+ K(rij )

rij

((r̂ij · �sj )�si + (r̂ij · �si)�sj ), (5)

d�si

dt
= {�si,H} = �si × �ωi, (6)

where r̂ij stands for the normalized vector �rij

|rij | . Up to a
certain cutoff radius, the first term in Eq. (5) is the sum
of all the spinless mechanical forces followed by additional
magnetic forces coming from the varying distance dependence
of the exchange and anisotropy energy. Equation (6) is
the undamped spin precession equation, where the relation
{sα

i ,s
β

i } = εαβγ s
γ

i δij was used for each spin vector component.

174409-3



BEAUJOUAN, THIBAUDEAU, AND BARRETEAU PHYSICAL REVIEW B 86, 174409 (2012)

�ωi is the effective spin pulsation, which reads as

�ωi = 1

h̄

∑
j

J (rij )�sj + K(rij )

(
(r̂ij · �sj )r̂ij − 1

3
�sj

)

+ gμBμ0

h̄
�Hext. (7)

Without the external magnetic field �Hext = �0, taking into
account the symmetry, V (rij ) = V (rji), J (rij ) = J (rji), and
K(rij ) = K(rji), of interaction potentials, and because of the
structure of the equations of motion, it follows that the total en-
ergy, the total linear momentum �P = ∑

i �pi , and the total an-
gular momentum �J = ∑

i �ri × �pi + h̄�si are conserved quanti-
ties over time. In addition, the exact solutions are also time re-
versible since Eqs. (4)–(6) are invariant with respect to the time
inversion transformation t → −t , { �pi,�si} → {− �pi, − �si}.

To perform an MMD simulation, all the phase-space
variables have to be evolved simultaneously at the same time.
In MD, to use a longer time step without loss of short-term
accuracy or, alternatively, to achieve a higher accuracy for a
given time step, time-reversible or area-preserving symplectic
integrators based on ST decompositions have been written
from the Liouville formulation of classical mechanics.47,48

Later these algorithms were also used in SD simulations of
lattice systems.49 In the context of spin molecular liquids,
Omelyan et al. built algorithms based on the same ST
decompositions.20,29 Because of the first-order-in-time struc-
ture of the system of equations of motion, the superiority of
these algorithms compared to predictor-corrector schemes was
demonstrated. So, let us consider a set of phase-space variables
ρ(�r1 · · · �rN , �p1 · · · �pN,�s1 · · · �sN ) with 3N components, allow-
ing us to write the equations of motion from Eqs. (4)–(6) as

dρ(t)

dt
= {ρ(t),H } ≡ (Lr + Lp + Ls)ρ(t), (8)

with

Lr =
N∑

i=1

d�ri

dt
· ∂

∂�ri

, Lp =
N∑

i=1

d �pi

dt
· ∂

∂ �pi

,

Ls =
N∑

i=1

d�si

dt
· ∂

∂�si

, (9)

where Lr , Lp, and Ls are the Liouville operators for position,
impulsion, and spin variables, respectively. These operators
do not commute with each others because of the radial and
spin dependencies due to the interactions. In spite of the fact
that Eq. (8) has a formal solution as

ρ(τ ) = eτ (Lr+Lp+Ls )ρ(0), (10)

where ρ(0) is a known set of phase-space variables, the
exponential propagator cannot be evaluated straightforwardly
because Lr , Lp, and Ls are noncommuting operators. This
requires the use of an ST decomposition of the formal solution
to obtain an approximate form. Up to third order in τ ,

eτ (A+B+C) = e
τ
2 Ce

τ
2 BeτAe

τ
2 Be

τ
2 C + O(τ 3), (11)

where the choice of ordering A, B, and C is arbitrary and noted
formally as (C,B,A,B,C). The main advantage of that de-
composition is that, in a few simple cases, the formal solution

of a single operator is known exactly. It has been shown48

that position and velocity operators are simple shift operators,
eτLr �ri(t) = �ri(t) + τ

�pi (t)
mi

and eτLp �pi(t) = �pi(t) + τ �̇pi(t), and
that these exponential operators are locally exact. Moreover,
because of the commutative relations between nonoverlap-
ping generalized coordinates, eτLr = ∏N

i=1 eτLri and eτLp =∏N
i=1 eτLpi . In the case of the spin, it has been shown20,29,49,51

that the rotation of an individual spin around an axial vector
can be approximated by a third-order expansion in time as

eτLsi �si = �si + τ ( �ωi × �si) + τ 2

2

[
( �ωi · �si) �ωi − 1

2 ( �ωi · �ωi)�si

]
1 + τ 2

4 �ωi · �ωi

+O(τ 3), (12)

which is a norm-preserving operation for each spin.
Then, because the different partial components of Lsi

do not commute with one another, one has to operate
an ST decomposition for the total spin operator eτLs =
e

τ
2 Ls1 · · · e τ

2 LsN−1 eτLsN e
τ
2 LsN−1 · · · e τ

2 Ls1 + O(τ 3) up to third
order in time to be self-consistent with Eq. (12). In order to
improve consistently the reliability of the proposed integration,
extended third-order and higher order decomposition schemes
can be implemented and appear to be more efficient, despite
the usage of a larger number of exponential propagators.19

As a consequence, the choice of ordering of the operators
in Eq. (11) is dictated by the amplitude of the forces and
effective pulsations. Let R, P, and S be the evolution operators
of position, impulsion, and spin, respectively. Several time
orderings of operators have been proposed in the literature.
References 20 and 29 suggest the (P,R,S,R,P) ordering, Ref. 49
explores (S,P,R,P,S), and Ref. 26 quotes (S,R,P,R,S). Nu-
merically one has to put the most computer-time-consuming
operator for A in Eq. (11), because it has to be evaluated once.
In our case, the shortest time step is given by the amplitude of
the effective pulsation, and for the values given in Fig. 2, one
has to keep τωi � 0.1. This means that because of the typical
amplitude of the exchange interaction, a time step smaller than
the usual MD time step has to be imposed (about 0.2 vs 1 fs) but
has to be carefully compared to the amplitude of mechanical
forces.52

Algorithms have to be classified according to their com-
putational speed and accuracy. As an example, simulations
with 1342 atoms of cobalt in an fcc structure with periodic
boundary conditions at equilibrium volume during 5 ps are
performed. The first simulation is run by considering initial
velocities corresponding to a kinetic temperature of 1 K [see
Fig. 3(a)] in a perfect ferromagnet. The second simulation
is run with a small random rotation done for a single spin
at t = 0 without the initial mechanical speed [see Fig. 3(b)].
Before analyzing the energy conservations between these two
situations, let us compare their execution times (see Table I).
The (P,R,S,P,R) algorithm is the fastest since the spin evolution
operator appears only once. The time evolution of the total
energy is shown in Fig. 3 and the accuracy depends on the
choice of the algorithm but is also linked to the nature of the
excitation. In the first case, the spins do not evolve because
the system remains perfectly ferromagnetic. This situation
is then identical to the comparison of accuracy between
position-Verlet and velocity-Verlet algorithms, which favors
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(a)

(b)

FIG. 3. (Color online) Total energy of a system of 1342 atoms
of cobalt in the fcc configuration. (a) A pure ferromagnet with a
mechanical perturbation is applied at t = 0, corresponding to T =
1 K. (b) Without the initial kinetic velocity, one spin is randomly
moved at t = 0. Inset (a): A zoom-in on the variations of energy. Inset
(b): Density of states between all algorithms, revealing the spreading
of the PRSRP method.

the velocity-Verlet situation.48 It is also known that the
velocity-Verlet algorithm is area preserving, is time reversible,
and provides the absence of long-term energy drift. In the
second situation, the spins rotate around their effective axis
and provide the dominating dynamics of the whole system
because the kinetic temperature is nearly 0. In this situation
(P,R,S,R,P) remains the fastest but less accurate algorithm.
(P,S,R,S,P) is the most accurate algorithm because the effective
pulsation is evaluated twice and the forces only once. This

TABLE I. Relative speeds to (P,R,S,R,P) algorithm of three
versions of the Suzuki-Trotter decomposition scheme.

(P,R,S,R,P) (P,S,R,S,P) (S,R,P,R,S)

(P,R,S,R,P) 1 1.41 1.45

algorithm has the same level of accuracy as (S,P,R,P,S)
considered in Ref. 49, but in that case, the effective pulsation
and the forces are evaluated twice, which is much more
time-consuming. Surprisingly, the (S,R,P,R,S) algorithm can
be excluded since it is less accurate from the mechanical point
of view and time-consuming from the spin point of view. The
spin pseudo-Hamiltonian cannot be rigorously conserved and
its difference from the true spin Hamiltonian remains due to
the spin evolution algorithm. This is why there is a long-term
drift in the energy, which can be systematically controlled
either by reducing the time-step value or by increasing the
order of the spin evolution operators.18,19,53 In that closed
microcanonical system, each component of the total angular
momentum of an isotropic Heisenberg model is conserved.
Thus starting from a zero-total-magnetic-moment situation,
the spin system stays in its paramagnetic-like configuration
over time. When an anisotropy axis is considered in a more
general anisotropic exchange situation, only the component
of the total spin moment along this axis is conserved.20 In
decomposition algorithms, exact conservation of the total
energy and total angular momentum cannot be achieved.
This has been proved to be important for spin liquids near
phase transitions, where the presence of artificial fluctuations
in energy may have a significant influence on the results.54

However, in most applications below the Curie point, the
accuracy achieved by such decomposition algorithms is high
enough to obtain reliable results.

B. Canonical ensemble: NVT algorithm

Temperature is a fundamental quantity in statistical physics
and its microcanonical value is usually evaluated in standard
thermodynamics by differentiating entropy with respect to the
internal energy of the system.55 Since Maxwell in spinless
MD, the temperature is probed by monitoring the average
kinetic energy of atoms assuming equivalence of ensembles
and ergodicity.

The thermal equilibration of a closed system of interacting
atomic spins is fundamentally different from that of a closed
system of interacting atoms.56 In a mechanical system without
internal degrees of freedom, because of the virial theorem and
in the thermodynamical limit, the pressure can be found for a
given microcanonical temperature. This provides a convenient
way for spinless systems to reach equilibrium. There is no
such equivalence for a pure spin system. However, imposing
dissipation on the evolution equations leads to a nonconserving
total energy situation, and hence a canonical ensemble (at least
a subset, because of the periodic boundary conditions) can be
approached with a microcanonical ensemble. An exchange
of energy between a finite system and a thermostat causes
fluctuations in the thermodynamical properties. Coupling this
N -particle system to a heat bath of constant temperature and
infinite energy allows a canonical ensemble to capture these
energy fluctuations.

The rescaling, deterministic, and stochastic approaches are
generally used in MD to generate a canonical ensemble,48

and they have been partially extended to molecular spin
systems. The first method involves direct control of the kinetic
energy. The velocity of each particle is periodically rescaled
such that the kinetic energy instantaneously matches the
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desired temperature.57 Although it is a popular approach, the
rescaling method does not produce trajectories that lead to
a canonical ensemble. The isokinetic MD extension scheme
of Evans and Morris yields correct canonical ensemble
averages only for properties depending on the positions of the
particles.48 However, no derivation for molecular spin systems
has been established so far.

In the deterministic approach, an extended Hamiltonian
with auxiliary degrees of freedom connected to a heat bath
is formed58 to control the temperature using continuous
dynamics. In pure MD, this approach was unified by Nosé59 in
the formulation of Hoover.60 This extended system is ergodic
and generates distributed phase-space trajectories correctly.
This way of thermostating the temperature was also applied to a
spin system but was rarely tested in realistic spin dynamics.61,62

Nevertheless, accelerated simulations of large systems have
recently been investigated and proven to be competitive with
the stochastic method.63

In the stochastic approach, the particles are subject to
some random process which alters their momenta. The
best-known example of this method is the stochastic Langevin
equation for Brownian motion applicable in both MD48 and
atomic spin dynamics.64,65 According to Andersen,58 each
particle is forced to undergo a fictitious collision in which
a new velocity is assigned from the Maxwell-Boltzmann
distribution. Although the trajectories are discontinuous and
irreversible as in the rescaling method, this remains the easiest
method for performing simulations in a canonical ensemble
since it is very simple to implement numerically. However, in
atomic spin dynamics, the stochastic Landau-Lifshitz-Gilbert
equation with multiplicative noncommutative noise has to be
solved. According to the numerical scheme used, this conducts
different Fokker-Planck equations for the average probability
density depending on the stochastic sense chosen, which may
converge inconsistently with the proper thermal-equilibrium
properties.66

The coupling between the lattice and the spins is driven
by the spatial dependence of the exchange and magnetic
anisotropy. Control of the temperature of one of the two
subsystems should allow the other subsystem to thermalize
towards the same equilibrium temperature. According to the
energy balance, the total energy of the whole system is not a
constant in time, and a partial temperature of each subsystem
is a measure of the corresponding entropy production. While
it is common to get the temperature of a mechanical spinless
subsystem from the average kinetic energy, the corresponding
spin temperature has to be defined and followed in time during
the simulations. According to Nurdin et al.,67 for a large
number of atoms N , one has

kBTS ≈
∑N

i=1 | �si × �∇iH|2∑N
i=1[�si × �∇i] · [�si × �∇i]H

, (13)

where H is the Hamiltonian of the system and �∇i = ∂
∂�si

is
the gradient along the spin direction. Using Eq. (1), the spin
temperature can be written as

TS = h̄

2kB

∑N
i=1 | �si × �ωi |2∑N

i=1 �si · �ωi

, (14)

where �ωi = − 1
h̄

∂H
∂�si

is the effective pulsation for atom i.
A stochastic method is developed to generate a canonical
ensemble in our MMD. The temperature is controlled stochas-
tically by using both a dissipation and a fluctuation in the
magnetic subsystem only. The stochastic Landau-Lifshitz-
Gilbert equation is

d�si

dt
= 1

1 + α2
[�si × ( �ωi + �̃ωi(t)) + α�si × (( �ωi + �̃ωi(t)) × �si)],

(15)

where �̃ωi(t) is a random pulsation which satisfies
〈ω̃ia(t)ω̃jb(t)〉 = 2Dδij δabδ(t − t ′) and α a dimensionless
damping constant. D is the amplitude of the correlation
noise and is deduced from the Fokker-Planck equation for
the whole MMD set of equations (4)–(6), where Eq. (6)
is substituted by Eq. (15). Because of our Poisson bracket
definition, the derivation of the Fokker-Planck equation in the
calculus of Stratonovich gives a vanishing divergence of the
mechanical phase-space velocity. This reduces to a calculation
of D identical to the nonlinear Langevin equation of the spin
subsystem alone, which gives D = αkBT /h̄.

An MMD simulation on an hcp Co is performed to fol-
low both the instantaneous average translational temperature

TL = 1
3(N−1)kB

∑N
i=1

�p2
i

mi
and the spin temperature TS . In this

simulation, TL is not controlled by any method and the
velocities are not rescaled to match the target temperature.
All spins are initially aligned along the c axis, while the initial
velocity on atoms is 0. The target temperature T = 600 K,
below the Curie temperature, and the lattice, impulsions,
and spins are free to move according to their corresponding
equations of motion. The temperature of the two subsystems
is followed in Fig. 4(a), while the time evolution of the
average magnetization is presented in Fig. 4(b). As expected,
the coordinate dependence of the exchange interaction and
anisotropy functions allows equilibration between TL and
TS . The lattice is heated up to 0.2 ns, while the average
magnetization direction quickly follows the mean-field state
for a 600 K temperature according to the Curie law. All

FIG. 4. (Color online) MMD simulation of an hcp Co illustrating
the coupling between the lattice and the magnetic subsystems.
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the temperatures converge in a unique canonical temperature
with the desired magnetic state. The same conclusion was
derived recently in Ref. 65 without consideration of the whole
nonlinear set of Langevin equations.

IV. APPLICATIONS

Let us illustrate our MMD algorithm with two examples in-
volving cobalt nanowires. The first example is a free-standing
(i.e., unsupported) monatomic cobalt wire, and the second
example is a finite wire deposited along the step of a Pt surface.
Because both situations consider cobalt-based nanostructures,
one has to pay attention to the strength of the interaction
potential with respect to its bulk parametrization. In particular,
it is known that the magnetic interaction is reinforced in low
dimensions39 and the exchange interaction parameter given in
Fig. 2 has to be slightly rescaled. Moreover, the determination
of the interatomic dependence of the anisotropy strength K(r)
in these systems is presented.

A. An ab initio infinite isolated cobalt nanowire

Autès et al. have shown that the magnetic anisotropy
of an iron nanowire changes rapidly with the interatomic
distance.45 In particular, a switch of the easy axis from
parallel to perpendicular to the wire axis was obtained under
compression. For a single infinite cobalt nanowire, similar
calculations have been performed using the density functional
theory code QUANTUM ESPRESSO,68 which is based on a plane-
wave expansion of the electronic density of full-relativistic
pseudopotentials. The simulation box considered is made of a
single atom with periodic boundary conditions. The periodicity
along two directions has been taken large enough (∼15 Å) to
avoid any interaction between adjacent wires. Along the wire
axis, the period is varied between 2 and 7 Å. The calculations
have been performed within the LDA using the Perdew-Zunger
exchange-correlation parametrization. The plane-wave energy
cutoff was taken as 35 Ryd for the wave function and 250 Ryd
for the charge density. More than 500 k points supplemented
with a Gaussian smearing have been used to integrate over
the whole Brillouin zone, which has ben proved sufficient to
ensure keeping the precision of the MCAE calculation below
0.01 meV.

As already shown for an iron wire,45 a uniaxial expansion
of the MCAE, E(θ ) − E(0) = K1 sin2 θ , is also an excellent
approximation for an unsupported cobalt wire (see inset in
Fig. 5) along the considered distances. K is directly obtained
by the MCAE, if one neglects the second-nearest-neighbor
interactions (which is reasonable for a wire). Thus for a
considered distance d, K(d) = K1(d)/2, where the factor 2
originates from the fact that each atom has two neighbors
in the first shell. Note that, as for Fe, the MCAE of an
infinite cobalt wire (see Fig. 5) presents a change of sign.
At a distance of 2.42 Å, the axis along the wire switches from
the difficult to the easy magnetization axis (and vice versa).
For distances above this value the magnetization tends to align
along the direction of the wire, while for smaller distances
a perpendicular alignment is preferred. Interestingly, around
3.2 Å, the MCAE shows a rather narrow maximum and values
as large as 8 meV. The MCAE curve has been fitted by a

FIG. 5. (Color online) Variation of the MCAE of an infinite cobalt
wire as a function of the interatomic distance (circles) obtained from
ab initio calculations. Positive values of the MCAE correspond to
an easy axis parallel to the wire. An anisotropy function K(r) of
analytical form from Eq. (2) is fitted to the ab initio data and
is represented in by the solid (red) line. The parameters of this
anisotropy function are ε = −0.003 302 82 eV, δ = 0.864 159, and
σ = 2.137 31 Å. Inset: One MCAE angular variation for d = 2.5 Å
and its sin2(θ ) fit.

Bethe-Slater function. Even though the fit is not perfect, it
correctly reproduces the general trend and the slope around
the equilibrium distance of d = 2.5 Å obtained in bulk cobalt.

B. A finite isolated cobalt nanowire

Using these parameters, MMD simulations have been
performed for a free chain of 20 atoms aligned in the z

direction with periodic boundary conditions. An initial lattice
spacing of d = 2.4 Å, which represents the equilibrium lattice
spacing for such a chain, is considered such that the system
will fluctuate around its equilibrium state. The spin directions
are initially random and all the atoms have an initial velocity
taken from a distribution to a temperature equal to 200 K.
The magnetic damping α is equal to 0. The total energy is
decomposed into three components: the potential, the kinetic,
and the magnetic energies. For such an isolated NVE system,
the sum of these three components is conserved in time at the
order of the algorithm, as shown in Fig. 6(b). At less than 5 ps,
one observes a stabilization of each component of the energy.
The system is in both magnetic and mechanical equilibrium.
Before this stabilization, a relaxation process is observed, with
an increase in the mechanical and magnetic energy, which is
associated with the global cooling of the system.

Another situation is now considered by varying the in-
teratomic distances from 2.2 to 2.8 Å, where the average
magnetization vector components are followed in time. During
these calculations, the ionic degrees of freedom is frozen
and only the spins are allowed to move. All the spins are
initially perpendicular to the wire. The target temperature is
kept at 0 but a finite magnetic damping constant of α = 0.1
is considered. The time evolution of the magnetization along
the wire (z axis) and perpendicular to it (x axis) are shown in
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(a)

(b)

FIG. 6. (Color online) Energy decomposition of a 20-atom linear
chain separated by d = 2.40 Å and periodic boundary conditions.
Spin directions are random for t = 0 and α = 0. Initial impulses are
taken from a distribution with a temperature of 200 K. (a) Kinetic
and magnetic energies; (b) total and mechanical energies

Fig. 7. The inversion of sign of the anisotropy which appears at
2.42 Å is clearly visible in the behavior of the magnetization.
For an interatomic distance below this threshold, the easy axis
is perpendicular to the wire and the spins remain quenched in
their initial orientation. For interatomic distances larger than
this threshold, a reorientation is observed. In the particular case
of a distance d = 2.50 Å, the anisotropy is so small (see Fig. 5)
that it takes more than a nanosecond to switch to the easy axis.

C. Finite cobalt wire on a (111)Pt substrate

Recently controlled growth and characterization of mag-
netic chains on nonmagnetic crystal surfaces have been made
possible by new advances in experimental techniques. Such

(a)

(b)

FIG. 7. (Color online) Magnetization behavior of a 20-atom
cobalt chain: (a) x component and (b) z component of the average
magnetization for four lattice spacings. Simulations were performed
with exchange and anisotropy interactions with the same parameters
as presented in Figs. 2 and 5, including α = 0.1 and T = 0.

FIG. 8. (Color online) Snapshot of a monatomic chain of eight
atoms of Co deposited on a (111)Pt substrate.

chains, a few nanometers long, are quite stable due to their
growth at terrace step edges.69 The control of magnetocrys-
talline anisotropy at this scale makes it possible for information
storage to overcome the critical superparamagnetic limit. A
finite-length chain of classical magnetic moment has been
widely studied both analytically using the Stoner-Wohlfarth
model64,70 and numerically using atomistic spin dynamics
calculations.39,71

MMD simulations have been performed to study the time
evolution of the average magnetization of varying length of
monatomic cobalt chains deposited on a (111)Pt substrate.
The chains decorate a terrace step edge along the y axis
according to Fig. 8. The substrate is composed of 980 atoms
of platinum which are considered to be nonmagnetic. The
mechanical potential between all pairs is given in Ref. 37. The
size of the studied nanowires ranges from 4 to 74 atoms of Co.
Although the substrate is periodically repeated in the x and z

directions, the cobalt chains remain isolated from each other.
The parametrization of the mechanical potential was presented
in Sec. II B. The exchange energy interaction J (r) has been
rescaled such that its numerical value is J1 = 50 meV for a
lattice spacing d = 2.77 Å, corresponding to the first-nearest-
neighbor distance of Pt. The magnetic anisotropy function
has to be parametrized carefully since it is well known that
Pt plays a crucial role in the overall anisotropy of the wire.
Experimentally, for a single Co chain on the step -edge of a
Pt(111) surface, the easy axis was found to be perpendicular
to the wire direction, forming an angle of 43◦ with the terrace
normal pointing in the direction of the upper terrace,69 and the
MCAE was as large as 2 meV. This result was also found by ab
initio calculations.72 Without considering an extra single axis
pointing in this direction, the simple analytical form of Eq. (1)
is unable to reproduce such complex anisotropic behavior if
nonmagnetic platinum atoms are considered. Since our MCAE
found for the unsupported chain at d = 2.77 Å is also of the
order of 2 meV with an easy axis along the chain, the sign of ε

in the Bethe-Slater function of anisotropy is reversed to get the
easy axis off the wire. Since the interatomic distance between
atoms in the chain fluctuates a bit, the exact form of K(r) is
not very relevant. As the Pt-Co interaction is characterized by
a strong spin-orbit coupling, a magnetic damping parameter
of α = 0.1 was chosen.

The MMD simulation data obtained for a chain of L = 8
atoms are shown in Fig. 9 and analyzed using random telegraph
noise analysis in the time domain.73 All magnetic moments are
initially along the easy axis. For T = 75 K, after an average
waiting time of 5 ps, a rapid reversal event occurs, followed by
frequent switches between Mz = ±0.85. The total simulation
length is selected to obtain a minimal number of 40 switching
events. For the lowest considered temperature, the simulation
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(a)

(b) (c)

FIG. 9. (Color online) (a) Time fluctuations of both z components
(with respect to the norm) of the average magnetization for a chain
of L = 8 atoms at 75 K [orange, with respect to green]; the dashed
(black) line is from the so-called two-state random telegraph noise
analysis.73 (b) Logarithm of the frequency of reversal versus the
temperature, plotted for varying lengths. Solid lines correspond to
the linear fit. (c) Probability of nonswitching versus waiting time,
plotted for five temperatures and for a chain of eight Co atoms. Lines
correspond to the exponential decay fit.

time runs up to 4 ns. Analysis of these fluctuations by the
threshold two-state telegraph model allows the determination
of the frequency of reversal for each temperature and for
various chain lengths. An approximate thermal activation law
is given by ν = ν0 exp(Ea/kBT ), where ν0 is not a simple
constant but a complicated function which depends on the
system size, temperature, and anisotropies. However, this law
has already been proven reasonable for extraction of the
activation energy Ea .74,75 The logarithm of the frequency

FIG. 10. (Color online) Activation energy versus number of
atoms from MMD calculations (circles) and from the Stoner-
Wolhfrath model, where the chain magnetization is approximated
by a single macrospin of rigid magnitude [dashed (black) line]. The
horizontal (orange) line is the minimal energy for the formation of a
domain wall given by Ref. 7 (E = 2

√
2JK).

FIG. 11. (Color online) Transversal and longitudinal components
of the magnetization for a chain of 54 Co atoms after a nucleation time
corresponding to the zero component of the average magnetization
along the easy axis.

versus the inverse of the temperature can be plotted to extract
the activation energy from the slope of the linear fit. The
activation energy curve in Fig. 10 is evidence of the domain
wall nucleation mechanism in the chain. Up to a characteristic
length LD ≈ 15, extracted beyond where the creation of a
magnetic domain wall is favorable, the MMD simulations are
in agreement with the Stoner-Wohlfarth model, which predicts
an increase in the activation energy proportional to the total
anisotropic energy. The energy of the creation of a Bloch wall
can be obtained analytically in the limit of infinite length and
takes the simple form E = 2

√
2JK . Comparing this energy

to the value of the coherent reversal gives LD = 2
√

2J/K .
With the numerical values of J = 50 meV and K = 2 meV,
one immediately gets LD ≈ 14 (in units of lattice spacing) and
E ≈ 28.3 meV. These values are in very good agreement with
the results found in our MMD simulations. Beyond LD , the
activation energy goes to the formation energy of a domain

FIG. 12. (Color online) Histograms of the switching time of a
54-atom chain during a simulation of 3.2 ns at two temperatures.
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wall. Our results agree with the scenario described in Ref. 71:
up to LD , all magnetic moments are in coherent rotation;
above this length the activation energy has an interesting
1/L dependency during the single-nucleus phase. For a longer
chain with multiple nucleations, the prefactor of the thermal
activation law no longer depends on L.

Figure 11 shows a snapshot of the magnetization profile of a
chain of L = 54 atoms during a reversal process obtained after
a time when Mz = 0.0. Although not depicted, the same type of
profile shows a coherent rotation of all magnetic moments for
L < 15, whereas a single domain wall starts to appear for 20 �
L � 35. Aanalysis of the transition period between a single
reversal reveals a complex situation with fast domain wall
motion. For the range of temperature considered and for chains
54 atoms long, the average time of the first magnetization
switch falls between 2 and 7 ps (see Fig. 12).

V. CONCLUSION

To summarize, an MMD model including an explicit spin-
pair magnetic anisotropy coupling between localized magnetic
moments and mechanical displacements at finite temperatures
is derived. A parametrization from ab initio calculations of
this pair anisotropy is given to obtain the magnetic behavior of
monatomic chains of cobalt deposited on a (111)Pt substrate.
On a moving lattice, this magnetic pair model reproduces
previous magnetic switching mechanisms without considering
a fixed ad hoc single magnetic anisotropic axis. The interplay
between MD and spin dynamics is small because of the
low temperature regime explored, which prevents strong
magnetoelastic coupling. Our MMD simulations open new
possibilities for probing the complex dynamics of highly
magnetostrictive materials at different temperatures.
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