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Frequencies and polarization vectors of phonons: Results from force constants
which are fitted to experimental data or calculated ab initio
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The properties of phonons may be calculated from the dynamical matrix which is determined by force constants.
Often the force constants are obtained by fitting them to experimental phonon frequencies, e.g., for wave vectors q
on high-symmetry directions of the Brillouin zone. It is well known that these force constants do not necessarily
lead to correct frequencies for wave vectors for nonsymmetrical q and to correct polarization vectors. In the
present paper this is demonstrated by comparing for fcc Ni, fcc Al, and bcc Fe the frequencies and polarization
vectors calculated from fitted force constants with the results from ab initio calculated force constants. However,
for most regions of the Brillouin zone the differences between the results obtained from the two sets of force
constants are not large.
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I. INTRODUCTION

In the theory of lattice dynamics the force-constant matrix
plays an important role. For a solid with an elementary unit cell
containing just one atom of mass M the elements of the force-
constant matrix φ(T,T′) between the atoms in the elementary

unit cells at the translation vectors T and T′ are

φnm(T,T′) = − ∂Fm(T′)
∂un(T)

∣∣∣∣
un=0

= − lim
un→0

Fm(T′)
un(T)

. (1)

Here n and m denote the three Cartesian directions x, y, and
z, un(T) is the n component of a small displacement u(T) of the
atom in the unit cell at T and Fm(T′) is the m component of the
force on the atom at T′ resulting from this displacement. For a
general situation with small displacements u(T′) of the atoms
in the cells with translation vector T′, Newton’s equations of
motion for the displacements read

M
∂2u(T)

∂t2
= −

∑

T′
φ(T,T′)u(T′). (2)

The solutions of Eq. (2) are plane waves with displacements

u(T,t) = u0√
M

e(q) exp{i[q · T − ω(q)t]}, (3)

where e(q) and u0 denote the direction and the amplitude of
the displacement for the phonon mode with wave vector q.
Inserting Eq. (3) into Eq. (2) yields

D(q)e(q) = ω2(q)e(q). (4)

Here D(q) is the dynamical matrix

D(q) = 1

M

∑

T′
φ(0,T′) exp(iqT′). (5)

D(q) is a symmetric 3 × 3 matrix, and thus the eigenvalue
equation (4) yields for each q three eigenvectors ej (q) and
three eigenvalues ω2

j (q), j = 1,2,3, which depend on φ(0,T′),

ω2
j (q) = ω2

j (q; {φ(0,T′)}). (6)

If these vibronic eigenmodes are quantized, then they are
called phonons.

The ω2
j (q) can be directly determined by neutron spec-

troscopy. The force constants then are usually determined
by fitting the theoretical ω2

j (q; {φ(0,T′)}) to the measured

frequencies for wave vectors q on high-symmetry directions
of the phonon Brillouin zone (see Refs. 1 and 2 for Ni) or
to the phonon density of states (see Ref. 3 for Ni). However,
Foreman and Lomer4 as well as Leigh et al.5 have shown
that the force constants cannot be deduced from the lattice
frequencies alone. The fact that a set of force constants gives
nearly exact frequencies does not mean that the force constants
are correct. Leigh et al.5 showed that application of a unitary
transformation to any set of φ(0,T′) may alter individual force

constants while leaving the frequencies unchanged. Thereby
the unitary transformation is not arbitrary but it must fulfill
several requirements, e.g., the transformed φ(0,T′) must also

exhibit the correct symmetry of the lattice. Altogether, an
infinite number of sets of force constants give the same
frequencies but distinct eigenvectors e(q). These findings have
been illustrated by numerical examples in Refs. 5 and 6. This
ambiguity can be resolved only4–6 when the eigenvectors are
also known. The eigenvectors enter differential cross sections
for the neutron scattering, but the measurement of just the
cross sections does not generally suffice to determine the
eigenvectors unambiguously. Kohl has shown7 that orienting
the crystal near a Bragg position in coherent inelastic neutron
scattering yields additional information on the eigenvectors
which can be used to get unambiguous values for the force
constants. This formalism has been applied to Si (Ref. 8) and
to Si as well as GaAs in Ref. 9.

Suppose that a set of force constants has been obtained by
a fit to the experimental phonon frequencies for wave vectors
q on high-symmetry directions of the Brillouin zone, which
yields a very good agreement of the theoretically calculated
frequencies and the experimental frequencies. Because of
the above-discussed ambiguity it is not guaranteed that this
set yields accurate frequencies also for nonsymmetrical q.
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Furthermore, it is not guaranteed that the set yields good
eigenvectors, even for wave vectors along the high-symmetry
directions for which the force constants have been fitted to
the experimental frequencies. In the literature there are indeed
only a few papers which consider the eigenvectors, i.e., the
polarization vectors ej (q). However, the knowledge of these
eigenvectors is important in several contexts. For instance, a
matrix element for the scattering of an electron at a phonon
with wave vector q and eigenvector ej (q) contains10 this
ej (q). Furthermore, the ej (q) are important for a discussion of
phonon states which carry an angular momentum. A phonon
eigenstate with polarization vector ej (q) does not carry a
sharp angular momentum, and the corresponding expectation
value of angular momentum is zero. Only for special wave
vectors are the phonon eigenstates ej (q) degenerate, i.e., they
have the same ω2

j (q) for different j , and these degenerate
states can be combined to stationary states with circular
or elliptical polarizations possessing angular momentum. Of
course it is possible to also form arbitrarily many coherent
superpositions of other phonon eigenstates, superpositions
which do not represent stationary states but which have
nonzero expectation values of angular momentum. These
considerations are important for the discussion of the damping
of the magnetization dynamics, because thereby angular
momentum is transferred from the spin system to the crystal via
electron-phonon scattering.10,11 Recently, angular-momentum
transfer in electron-phonon scattering has been observed
experimentally12 by resonant inelastic x-ray scattering.

Instead of trying to determine the force constants from ex-
perimental data, they can be calculated by phenomenological
models or by ab initio calculations. It thereby turned out13 that
the eigenvectors calculated from the force constants by use of
the various models may differ markedly among each other and
from the ab initio calculated eigenvectors, although all of them
reproduce the experimental phonon frequencies very closely.
Clearly, well-converged ab initio calculations are more reliable
than calculations based on phenomenological models.

In the present paper the force constants of fcc Ni, fcc Al,
and bcc Fe are calculated by use of the ab initio spin-density-
functional electron theory. The scope of our paper is not to
demonstrate that phonon dynamics can be very successfully
investigated by present-day applications of robust ab initio
methods. This has been already demonstrated in many papers
(for a review, see Ref. 14), not just for elementary materials
(see Ref. 15 for Fe and Ni) or metallic compounds16 but also
for complicated systems like high-Tc superconductors (see,
e.g., Ref. 17) or negative-thermal-expansion materials (see,
e.g., Ref. 18). The main scope is to investigate how strongly
the polarization vectors obtained from force constants fitted to
experimental phonon data differ from the polarization vectors
calculated from force constants determined ab initio.

II. CALCULATIONAL PROCEDURE

In our ab initio calculations of the force constants, the
direct approach19 is used (which is an alternative to the
linear response approach20). There are two versions of
the direct approach, a frozen-phonon calculation and the direct
force-constant approach. In this latter approach, which is used
in the present paper, single atoms in the crystal are displaced,

the resulting forces are calculated ab initio, and the force
constants are determined via Eq. (1). Thereby, instead of
displacing a single atom in an infinitely extended system, a
supercell containing many elementary unit cells is constructed
and a single atom within the supercell is displaced. Because the
supercells then are repeated periodically with the translation
vectors Tsc, there is a periodic array of displaced atoms, and
the force on a considered atom is given by a superposition
of the forces exerted by all the displaced atoms on the
considered atom. Therefore the supercell calculations do not
yield the true force constants, but effective force constants.
Nevertheless, when calculating from these effective force
constants the dynamical matrix D(q) according to Eq. (5), the
exact dynamical matrix and hence the exact frequencies and
eigenvectors are obtained for wave vectors q which correspond
to vectors of the reciprocal lattice of the supercell lattice, i.e.,
if q · Tsc = 2πn, n ∈ Z; see Ref. 16. It is expected that for
general wave vectors the results represent a good interpolation
between these exact data, and this has been confirmed for
B2-FeAl in Ref. 16.

The calculations were performed with the PWSCF code,21

using Vanderbilt ultrasoft pseudopotentials22 and the general-
ized gradient approximation.23 For Fe the 3s and 3p states are
treated as true core states, and for Ni as semicore states. We
used the experimental lattice constants a0 at zero temperature,
4.032 Å for Al, 2.860 Å for Fe, and 3.5155 Å for Ni. Having
performed the respective convergence tests, the plane-wave
cutoff was set to 25 Ry for Al and 30 Ry for Fe and Ni.
The cutoff for the representation of the electron density was
120 Ry for Al and 200 Ry for Fe and Ni. For the k-point-
sampling k-point nets equivalent to a certain Monkhorst-Pack
mesh24 in the Brillouin zone of the respective conventional
unit cell were used, the mesh being (24 × 24 × 24) for Al,
(20 × 20 × 20) for Fe, and (12 × 12 × 12) for Ni, and a
Gaussian smearing with width 0.136 eV was used for all three
materials. Supercells of different sizes were considered; we
give the results for the largest supercell for each material,
(4 × 4 × 4) for Al, (4 × 4 × 4) for Ni, (5 × 5 × 5) for Fe,
all as multiples of the conventional unit cells (with orthogonal
translation vectors). Due to the symmetry it suffices to displace
the central atom along one positive Cartesian direction n by
the amplitudes un(0) to get all force constants from the forces
Fm(T′) according to Eq. (1). The calculations were performed
for un(0) = (0.1 Å) × p with p = 1,2, . . . ,6. A third-order
polynomial was fitted to the data points for Fm(T′)/un(0), and
the force constants were calculated from the derivative of this
polynomial at un(0) = 0.

III. RESULTS

In Tables I–III we compare for fcc Ni, fcc Al, and bcc Fe
the force constants obtained by our ab initio calculations (for
T = 0 K) with the force constants fitted by Kresch et al.3,25

and by Kresch26 to the phonon density of states measured at
T = 10 K for fcc Ni and fcc Al, and T = 21 K for bcc Fe.
The numerical uncertainty of the ab initio force constants is
about ±0.03 N/m for Ni and Fe and ±0.02 N/m for Al. Note
that the ab initio force constants beyond the interaction ranges
considered in the fits to experimental data are not vanishingly
small.
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TABLE I. Force constants (FCs) for fcc Ni in N/m from our ab initio calculations up to the 28th nearest neighbor (numerical uncertainty
about ±0.03 N/m) and force constants fitted to the experimentally determined phonon density of states at T = 10 K of Kresch et al. (Ref. 3)
up to the 5th nearest neighbor. The neighbor position (NP) is given in units of a0/2. The force constants φi,nm of the force-constant matrix
φ(0,T′), entering Eq. (5), are labeled with the index of the ith nearest neighbor and with the Cartesian directions n and m. Note that the 15th,

16th, 19th, and 21st up to the 27th neighbors are outside the (4 × 4 × 4) supercell.

NP FC Ab initio Fit (Ref. 3) NP FC Ab initio NP FC Ab initio NP FC Ab initio

(1,1,0) φ1,xx 17.02 17.584 (2,2,2) φ6,xx 0.02 (4,2,0) φ11,xx −0.02 (4,4,0) φ17,xx 0.15
φ1,zz −0.23 −0.391 φ6,xy 0.07 φ11,yy 0.08 φ17,zz 0.04
φ1,xy 19.05 18.976 (3,2,1) φ7,xx −0.16 φ11,zz 0.00 φ17,xy 0.00

(2,0,0) φ2,xx 2.05 0.975 φ7,yy 0.04 φ11,xy 0.00 (4,3,3) φ18,xx −0.02
φ2,yy −0.87 −0.610 φ7,zz −0.01 (2,3,3) φ12,xx 0.03 φ18,yy −0.01

(2,1,1) φ3,xx 1.22 0.593 φ7,xy −0.01 φ12,yy −0.02 φ18,xy 0.00
φ3,yy 0.44 0.302 φ7,xz −0.14 φ12,xy 0.02 φ18,yz 0.01
φ3,xy 0.75 0.378 φ7,yz −0.12 φ12,yz 0.03 (2,4,4) φ20,xx 0.00
φ3,yz 0.04 −0.120 (4,0,0) φ8,xx −0.09 (4,2,2) φ13,xx 0.05 φ20,yy 0.00

(2,2,0) φ4,xx 0.13 0.386 φ8,yy −0.05 φ13,yy −0.02 φ20,xy 0.00
φ4,zz −0.15 −0.218 (3,3,0) φ9,xx 0.42 φ13,xy 0.00 φ20,yz 0.00
φ4,xy 0.15 0.517 φ9,zz −0.02 φ13,yz 0.04 (4,4,4) φ28,xx 0.00

(3,1,0) φ5,xx −0.03 −0.085 φ9,xy 0.40 (4,3,1) φ14,xx −0.07 φ28,xy 0.00
φ5,yy −0.03 0.006 (4,1,1) φ10,xx −0.01 φ14,yy −0.04
φ5,zz −0.12 0.014 φ10,yy 0.04 φ14,zz 0.00
φ5,xy −0.07 −0.039 φ10,xy 0.00 φ14,xy 0.00

φ10,yz −0.04 φ14,xz 0.00
φ14,yz −0.04

It becomes obvious that the force constants which were
obtained from a fit to the experimental phonon density of
states deviate from the ab initio force constants. The deviations
are slightly larger for Al and Fe than for Ni. Thereby the
deviations are clearly visible but they are not “arbitrarily”
large. This probably results from the fact that the unitary
transformations which may be applied to a force-constant
matrix without changing the frequencies are not arbitrary but

must fulfill several requirements (see the Introduction). It is
the most important finding of our investigations that the fitted
coupling constants are rather close to the “true” force constants
obtained from ab initio calculations.

In the next step of our investigations we want to figure out
the quantitative effect of the differences between these two sets
of force constants on the frequencies and on the polarization
vectors of the phonons. In Figs. 1(a), 2(a), and 3(a) we compare

TABLE II. Force constants for fcc Al in N/m from our ab initio calculations up to the 28th nearest neighbor (numerical uncertainty about
±0.02 N/m) and force constants fitted to the experimentally determined phonon density of states at T = 10 K of Kresch et al. (Ref. 25) up to
the eighth nearest neighbor. The notation is the same as in Table I.

NP FC Ab initio Fit (Ref. 25) NP FC Ab initio Fit (Ref. 25) NP FC Ab initio NP FC Ab initio

(1,1,0) φ1,xx 10.62 10.112 (2,2,2) φ6,xx −0.11 0.144 (4,2,0) φ11,xx −0.06 (4,4,0) φ17,xx 0.02
φ1,zz −1.81 −1.356 φ6,xy −0.18 −0.110 φ11,yy 0.03 φ17,zz −0.02
φ1,xy 11.26 11.148 (3,2,1) φ7,xx 0.07 −0.061 φ11,zz 0.01 φ17,xy 0.00

(2,0,0) φ2,xx 1.94 2.454 φ7,yy 0.03 −0.088 φ11,xy 0.00 (4,3,3) φ18,xx 0.02
φ2,yy −0.03 −0.532 φ7,zz −0.02 −0.105 (2,3,3) φ12,xx 0.07 φ18,yy −0.02

(2,1,1) φ3,xx −0.40 −0.634 φ7,xy 0.05 0.032 φ12,yy 0.03 φ18,xy 0.00
φ3,yy −0.09 −0.298 φ7,xz 0.06 0.016 φ12,xy 0.03 φ18,yz 0.02
φ3,xy −0.30 −0.185 φ7,yz 0.01 0.011 φ12,yz 0.05 (2,4,4) φ20,xx −0.03
φ3,yz −0.08 −0.149 (4,0,0) φ8,xx 0.14 −0.536 (4,2,2) φ13,xx 0.04 φ20,yy −0.03

(2,2,0) φ4,xx 0.19 0.273 φ8,yy −0.03 −0.117 φ13,yy 0.01 φ20,xy 0.00
φ4,zz −0.01 0.324 (3,3,0) φ9,xx −0.06 φ13,xy 0.00 φ20,yz 0.00
φ4,xy 0.31 −0.051 φ9,zz −0.01 φ13,yz 0.01 (4,4,4) φ28,xx −0.02

(3,1,0) φ5,xx 0.21 0.469 φ9,xy −0.05 (4,3,1) φ14,xx −0.04 φ28,xy 0.00
φ5,yy 0.02 0.229 (4,1,1) φ10,xx −0.14 φ14,yy −0.03
φ5,zz 0.01 0.199 φ10,yy −0.01 φ14,zz 0.01
φ5,xy −0.03 0.090 φ10,xy 0.00 φ14,xy 0.00

φ10,yz 0.01 φ14,xz 0.00
φ14,yz −0.02
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TABLE III. Force constants for bcc Fe in N/m from our ab initio calculations up to the 32nd nearest neighbor (numerical uncertainty about
±0.03 N/m) and force constants fitted to the experimentally determined phonon density of states at T= 21 K by Kresch (Ref. 26) up to the
fifth nearest neighbor. Note that the 15th, 16th, 18th, 21st, 22nd, 23rd, and 25th up to the 31st neighbors are outside the (5 × 5 × 5) supercell.
The notation is the same as in Table I.

NP FC Ab initio Fit (Ref. 26) NP FC Ab initio NP FC Ab initio NP FC Ab initio

(1,1,1) φ1,xx 15.79 17.263 (1,3,3) φ7,xx 0.04 (5,1,1) φ11,xx −0.12 (5,3,3) φ17,xx 0.19
φ1,xy 12.32 14.910 φ7,yy −0.21 φ11,yy 0.09 φ17,yy −0.07

(2,0,0) φ2,xx 15.29 15.314 φ7,xy −0.01 φ11,xy 0.00 φ17,xy 0.00
φ2,yy −0.10 0.115 φ7,yz −0.09 φ11,yz 0.06 φ17,yz −0.05

(2,2,0) φ3,xx 1.24 1.020 (4,2,0) φ8,xx −0.21 (4,4,0) φ12,xx 0.17 (4,4,4) φ19,xx −0.17
φ3,zz −0.84 −0.393 φ8,yy −0.17 φ12,zz 0.13 φ19,xy 0.03
φ3,xy 0.60 0.273 φ8,zz 0.00 φ12,xy 0.06 (1,5,5) φ20,xx −0.07

(3,1,1) φ4,xx 0.57 −0.286 φ8,xy −0.23 (5,3,1) φ13,xx 0.00 φ20,yy −0.03
φ4,yy 0.39 0.048 (4,2,2) φ9,xx −0.41 φ13,yy −0.01 φ20,xy 0.00
φ4,xy 0.54 −0.067 φ9,yy −0.23 φ13,zz 0.02 φ20,yz 0.00
φ4,yz 0.47 0.566 φ9,xy −0.19 φ13,xy 0.00 (3,5,5) φ24,xx 0.01

(2,2,2) φ5,xx −0.82 −0.382 φ9,yz −0.12 φ13,xz 0.00 φ24,yy 0.00
φ5,xy −0.25 0.090 (3,3,3) φ10,xx −0.03 φ13,yz −0.01 φ24,xy 0.00

(4,0,0) φ6,xx 0.44 φ10,xy −0.20 (2,4,4) φ14,xx −0.01 φ24,yz 0.00
φ6,yy 0.09 φ14,yy 0.09 (5,5,5) φ32,xx 0.10

φ14,xy 0.04 φ32,xy 0.00
φ14,yz 0.08

for fcc Ni, fcc Al, and bcc Fe the frequencies for general wave
vectors on a (100 × 100 × 100) grid in the first octant of the
first phonon Brillouin zone obtained from fitted force constants
(ωfit) and from ab initio force constants (ωab initio). Shown
are the relative differences |ωfit − ωab initio|/ωmax, where ωmax

is the maximum frequency in the Brillouin zone (which is
nearly the same for the two data sets). For most regions of the
Brillouin zone the deviations between the two results are rather

small, smaller than 2.5% for Ni, smaller than 4.5% for Al, and
smaller than 7% for Fe. There are small regions with deviations
up to 2.9% for Ni, up to 5.2% for Al, and up to 9% for Fe.

To compare the results for the polarization vectors, we
calculated for each q the modulus of the scalar product between
the polarization vectors obtained from the two sets of force
constants. If this quantity is close to 1 then the corresponding
polarization vectors are nearly parallel. Thereby we have

FIG. 1. (Color) Differences between the calculation with ab initio force constants and the calculation with fitted force constants (Ref. 3)
for fcc Ni. In order to improve the readability only data for qx,qy,qz � 0 (in units of 2π/a0) in the first phonon Brillouin zone are shown.
(a) Relative phonon frequency deviation as a percentage (only greater than 2.5%); (b) modulus of the scalar product between the polarization
vectors (only less than 0.95).
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FIG. 2. (Color) Differences between the calculation with ab initio force constants and the calculation with fitted force constants (Ref. 25)
for fcc Al. In order to improve the readability only data for qx,qy,qz � 0 (in units of 2π/a0) in the first phonon Brillouin zone are shown.
(a) Relative phonon frequency deviation as a percentage (only greater than 4.5%); (b) modulus of the scalar product between the polarization
vectors (only less than 0.95).

omitted q points where the frequencies of two approaching
phonon branches are very close to each other, because at a real
degeneracy point any arbitrary linear combination of phonon
eigenvectors is again a phonon eigenvector. From Figs. 1(b),
2(b), and 3(b) it becomes obvious that there are only small

regions of the Brillouin zone for which the scalar products
are smaller than 0.95 (down to about 0.6) for Ni and Al, and
smaller than 0.995 (down to 0.98) for Fe. Obviously for Fe the
differences between polarization vectors obtained from the two
sets of force constants are smaller than for Ni and Al, although

FIG. 3. (Color) Differences between the calculation with ab initio force constants and the calculation with fitted force constants (Ref. 26)
for bcc Fe. In order to improve the readability only data for qx,qy,qz � 0 (in units of 2π/a0) in the first phonon Brillouin zone are shown.
(a) Relative phonon frequency deviation as a percentage (only greater than 7%); (b) modulus of the scalar product between the polarization
vectors (only less than 0.995).
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the differences between the two sets of force constants are
larger.

IV. CONCLUSIONS

The meaning of force constants determined by fits to
experimental phonon frequencies (or phonon density of states)
is not really clear. The reason is that the application of a
unitary transformation to any set of force constants alters
individual force constants while leaving the frequencies (but
of course not the polarization vectors) unchanged. The unitary
transformation thereby must fulfill requirements, e.g., the
transformed force-constant matrix must also exhibit the correct
symmetry of the lattice. So far it was not clear how strongly
these requirements reduce the differences between possible
sets of force constants for which the experimental phonon
data are fitted well. Therefore it was not clear how strongly
the polarization vectors obtained from various of these sets of
force constants differ from each other. In the present paper

we have investigated these questions by comparing fitted
force constants with the “true” force constants from ab initio
calculations. The investigations have been performed for fcc
Ni, fcc Al, and bcc Fe, and we hope that the results are
representative for other fcc and bcc metals and possibly for all
three-dimensional metals. In our calculations the differences
between the two sets of force constants are not large, and
therefore the differences between the corresponding results
for the frequencies and for the polarization vectors also are
not large; they are rather small for most regions of the phonon
Brillouin zone.

These findings have an important consequence for practical
applications. If information on phonon polarization vectors is
required, it is possible to obtain them from force constants fit-
ted to experimental phonon frequencies. For three-dimensional
metals it is very likely that these fitted force constants yield
reliable polarization vectors, so that it is not necessary to
calculate in each case the force constants and hence the
polarization vectors ab initio.
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and A. Föhlisch, Phys. Rev. Lett. 103, 237401 (2009).
13K. Kunc and R. M. Martin, Phys. Rev. B 24, 2311 (1981).
14S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.

Mod. Phys. 73, 515 (2001).
15A. Dal Corso and S. de Gironcoli, Phys. Rev. B 62, 273 (2000).

16B. Meyer, V. Schott, and M. Fähnle, Phys. Rev. B 58, R14673
(1998).

17K.-P. Bohnen, R. Heid, and M. Krauss, Europhys. Lett. 64, 104
(2003).

18J. W. Zwanziger, Phys. Rev. B 76, 052102 (2007).
19K. Kunc, in Electronic Structure, Dynamics and Quantum

Structural Properties of Condensed Matter, edited by J. T. Devreese
and P. E. Van Camp (Plenum Press, New York, 1984), p. 227.

20S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861
(1987).

21P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini,
A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero,
A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch,
J. Phys.: Condens. Matter 21, 395502 (2009).

22D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
23J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).
24H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
25M. Kresch, M. Lucas, O. Delaire, J. Y. Y. Lin, and B. Fultz, Phys.

Rev. B 77, 024301 (2008).
26M. Kresch, Ph.D. thesis, California Institute of Technology,

Pasadena, 2009.

174309-6

http://dx.doi.org/10.1103/PhysRev.136.A1359
http://dx.doi.org/10.1103/PhysRev.136.A1359
http://dx.doi.org/10.1063/1.2163474
http://dx.doi.org/10.1103/PhysRevB.75.104301
http://dx.doi.org/10.1103/PhysRevB.75.104301
http://dx.doi.org/10.1088/0370-1301/70/12/305
http://dx.doi.org/10.1088/0370-1301/70/12/305
http://dx.doi.org/10.1098/rspa.1971.0006
http://dx.doi.org/10.1098/rspa.1971.0006
http://dx.doi.org/10.1107/S0567739471001244
http://dx.doi.org/10.1107/S0567739471001244
http://dx.doi.org/10.1002/pssb.2221300112
http://dx.doi.org/10.1103/PhysRevLett.60.1868
http://dx.doi.org/10.1103/PhysRevLett.60.1868
http://dx.doi.org/10.1007/BF01309163
http://dx.doi.org/10.1088/0953-8984/23/49/493201
http://dx.doi.org/10.1088/0953-8984/23/49/493201
http://dx.doi.org/10.1103/PhysRevLett.103.237401
http://dx.doi.org/10.1103/PhysRevB.24.2311
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/PhysRevB.62.273
http://dx.doi.org/10.1103/PhysRevB.58.R14673
http://dx.doi.org/10.1103/PhysRevB.58.R14673
http://dx.doi.org/10.1209/epl/i2003-00143-x
http://dx.doi.org/10.1209/epl/i2003-00143-x
http://dx.doi.org/10.1103/PhysRevB.76.052102
http://dx.doi.org/10.1103/PhysRevLett.58.1861
http://dx.doi.org/10.1103/PhysRevLett.58.1861
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevB.41.7892
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.77.024301
http://dx.doi.org/10.1103/PhysRevB.77.024301



