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Unified theory of spin dynamics in a two-dimensional electron gas with arbitrary spin-orbit
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We study the spin dynamics in the presence of impurity and electron-electron (e-e) scattering in a
III-V semiconductor quantum well with arbitrary spin-orbit coupling (SOC) strength and symmetry at finite
temperature. We derive the coupled spin-charge dynamic equations in the presence of inelastic scattering and
provide a new formalism that describes the spin relaxation and dynamics in both the weak and the strong
SOC regimes in a unified way. In the weak SOC regime, as expected, our theory reproduces all previous
zero-temperature results, most of which have focused on impurity-scattering induced spin-charge dynamics.
In the regime where the strength of the Rashba and linear Dresselhaus SOC match, known as the SU(2)
symmetry point, experiments have observed the spin-helix mode with a large spin-lifetime whose unexplained
nonmonotonic temperature dependence peaks at around 75 K. As a key test of our theory, we are able to
naturally explain quantitatively this nonmonotonic dependence and show that it arises as a competition between
the Dyakonov-Perel mechanism, suppressed at the SU(2) point, and the Elliott-Yafet mechanism. In the strong
SOC regime, we show that our theory directly reproduces the only previous known analytical result at the
SU(2) symmetry point in the ballistic regime. It also explains, as we have shown previously, the rise of damped
oscillating dynamics when the electron scattering time is larger than half of the spin precession time due to the
SOC. Hence we provide a unified theory of the spin dynamics in two-dimensional electron gases in the full phase
diagram experimentally accessible.
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I. INTRODUCTION

The spin degree of freedom of electrons and the control
of its dynamics by electric means has played an increasingly
important role in condensed matter research and spintronics
device applications over the past decades. This electric
manipulation is achieved via the SOC, which has been a key
factor in new spintronic devices as well as the emergence of
new fields such as spin Hall effect,1–3 spin Coulomb drag,4–6

and topological insulators.7,8

These fast developing SOC-based fields highlight the need
to fully understand the basic spin-charge transport dynamics in
the full phase diagram experimentally accessible, both at zero
and finite temperature. The spin relaxation and dynamics in
the presence of weak SOC is a mature topic of research, and a
theoretical perturbative treatment on the SOC gives an accurate
description of the spin dynamics at zero temperature.9–12 In
the opposite limit of strong SOC, defined as �soτ > 1, where
�so is the spin precession frequency due to the SOCs and
τ is the momentum scattering time, only a few theoretical
works13–15 were able to derive analytically the spin dynamics
at one specific point in the phase diagram; specifically when the
Rashba SOC strength is equal to the linear Dresselhaus SOC
strength, where a novel spin dynamic mode, the spin-helix
mode (SHM), with large spin lifetimes has been observed
experimentally.6 A general spin-orbit gauge field, which
also respects the similar SU(2) symmetry, is discussed, and
the spin dynamics in arbitrary SOC strength of this pure
gauge field is able to be explored.16,17 One theory work was
able to analytically derive the spin-dynamics modes in the
arbitrary SOC at zero temperature and successfully explain
the different damped oscillatory modes observed in this strong

SOC regime.18 However, until now, analytical theories of the
spin dynamics in two-dimensional electron gases (2DEGs)
have primarily focused on zero temperature.10,11,15,19 The
rich physics observed in the experiments as a function of
temperature, which depict the transition from the strong to
weak SOC and shows a peak of the spin lifetime of the SHE
mode at ∼75 K, has remained unclear up to now.20

Here, we develop a microscopic approach valid at finite
temperature and for any strength of SOC within the same
derived expression. To show the validity of our method, we
focus on the spin dynamics in the n-type III-V quantum well
that has been recently well studied experimentally.6,20–23 The
Fermi temperatures of these 2DEG are normally in the range
from 100 to 400 K, which satisfies the conditions εf � h̄�so

and εf � h̄/τ . The width of the quantum well is normally
around 11 nm. Besides reproducing all known limits and
previously derived results at zero temperature,9,10,12,15,18 it
succeeds dramatically in describing quantitatively the non-
monotonic behavior of the spin lifetime of the SHE mode as
shown in Fig. 1 in a wide temperature range. Previously, it was
speculated that this nonmonotonic behavior could be attributed
to the increase in importance of the cubic Dresselhaus SOC,
which decreases the SHM lifetime. However, a simple analysis
(see Sec. III A) shows that in the range from zero to 100 K this
term does not change significantly and, therefore, it fails to
account for this behavior. Our theory shows directly that this
nonmonotonic behavior arises from the competition between
the Dyakonov-Perel (DP) mechanism, suppressed at the SU(2)
point, and the Elliott-Yafet (EY) mechanism.

Our microscopic approach is based on the nonequilibrium
Green’s function formalism10,24 that, allows us to fully un-
derstand the temperature dependence of the spin relaxation in
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FIG. 1. (Color online) Spin lifetime of the dominant spin-helix
mode vs temperature, extracted from Ref. 20 (green stars). The blue
dash line is our theoretical result (see Sec. III C).

the presence of both disorder and electron-electron inelastic
scattering. The electron-electron interaction is shown to
dominate the momentum scattering time above a certain finite
temperature (35 K in the relevant experiments) and controls
the transition between strong and weak SOC regime.23 The
electron-electron scattering time in the 2DEG system has
been theoretically discussed previously25 and, even though
it does not affect the charge transport due to net momentum
conservation of the system (see Appendix B), the spin current
and spin decay can be affected strongly by it, e.g., spin
Coulomb drag.4–6 By incorporating both spin independent
scattering and SOC scattering potential, both DP and EY
mechanisms are considered in the frame of the quantum kinetic
equation.

Our paper is organized as follows. In Sec. II, we introduce
the quantum kinetic equation (QKE) based on the nonequilib-
rium Green’s function formalism in the presence of the three
types of SOC present in III-V based 2DEG. Within Sec. II A,
because we want to consider finite temperature, we evaluate the
contribution of the electron-electron interaction in the collision
integral of the QKE and show that it dominates the momentum
scattering time for temperatures above 35 K. In Sec. II B,
we generalize the spin-charge kinetic equation from the zero
temperature limit10 to the finite temperature in the presence of
inelastic scattering. Within Sec. II C, we present our procedure
which allows us to have a theory valid in both the weak and the
strong SOC regime, with Eqs. (36) and (37) being the pivotal
results that allows us to evaluate the full phase diagram of the
spin-charge dynamics.

In Sec. III, we focus on the temperature dependence of
lifetime of the dominant SHM near the SU(2) symmetry
point, where we show that the thermal average of the
SOCs strength is almost unchanged from 0 to 100 K. This
discards the increase of the cubic Dresselhaus strength as
source of the nonmonotonic behavior of the spin lifetime
as mentioned above.20 In this section, we evaluate the EY
mechanism and show quantitatively that the nonmonotonic
temperature dependence of the enhanced-lifetime of the SHM
is the result of the competition of the EY and DP spin
relaxation mechanism. Finally, in Sec. IV, we reproduce the
spin relaxation eigenmodes in the presence of the different
SOCs, which confirm that our method is also valid in the
strong SOC regime.

II. THE QUANTUM KINETIC EQUATION FOR THE 2DEG
WITH THE GENERAL SOC

The nonequilibrium spin polarization can be described by
the nonequilibrium Green’s function formalism, also known as
Keldysh formalism.24 This formalism was used in the nonin-
teracting system with short range disorder and in the presence
of weak Rashba SOC10 or the equal magnitude of Rashba and
linear Dresselhaus SOCs with zero cubic Dresselhaus SOC.15

However, when considering the temperature dependence of
the spin lifetime, we have to generalize this method to the
interacting system with a general SOCs. Here, we focus on the
2DEG in a quantum well such as GaAs/AlGaAs.6,20,21,26

In the n-doped GaAs/AlGaAs semiconductor heterostruc-
tures, the Hamiltonian takes the form

H = k2

2m∗ + b(k) · σ , (1)

where b(k) is the effective magnetic field and contains three
types of SOCs, namely, the linear Rashba27,28 SOC and the
linear and cubic Dresselhaus29 SOCs, which take the form

bR(k) = α(−ky,kx), (2)

bD1 (k) = β1(ky,kx), (3)

bD3 (k) = −2β3 cos 2θ (−ky,kx), (4)

where kF is the Fermi wave vector. Here, we take θ as the
angle between the wave vector k and the [110] direction which
we take to be the local x axis in our coordinates. The above
SOCs split the spin-degenerate bands and dominate the spin
dynamics in the 2DEG. The corresponding SOC Hamiltonian
takes the form

Ĥso = λ1kxσy + λ2kyσx = byσy + bxσx, (5)

where λ1 = α + β1 − 2β3 cos 2θ , λ2 = β1 − α + 2β3 cos 2θ .
The retarded (advanced) Green’s function of the Hamiltonian
in Eq. (1) takes the form

GR(A)(E,k) = (E − k2/2m∗)σ0 + b(k) · σ

(E − k2/2m∗ ± iδ)2 − b2
so

. (6)

The nonequilibrium state of the system can be described
by introducing the contour-ordering Green’s function in the
Keldysh space as

Ĝ(1,2) =
(

GR(1,2) GK (1,2)
0 GA(1,2)

)
, (7)

where 1 and 2 stand for the condensed notation 1 = (x1,sz1,t1).
In the presence of these general SOCs, the kinetic part of

the quantum Boltzmann equation has the form10,30

∂tG
K + 1

2 {V̂ , · ∇RGK} + i[b(k) · σ ,GK ]

= −i[(�RGK − GK�A) − (GR�K − �KGA)], (8)

where t = (t1 + t2)/2, R = (x1 + x2) /2, V̂ = ∂Ĥ/∂k,
[· · · , · · · ], and {· · · , · · · } stand for commutation relation and
anticommutation relation, respectively, and �R , �A, and �K

are the retarded, advanced and Keldysh self-energy and the
corresponding Feynman diagrams are shown in Fig. 2. The
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FIG. 2. The two self-energies we consider in this work. The
double wiggle in the first diagram is the effective electron-electron
interaction in the random phase approximation (RPA). The dashed
line in the second diagram represents the impurity scattering.

self-energy of the electron-electron interaction have the more
complicated forms31

�R(A)
ee = GK ◦ DR(A) + GR(A) ◦ DK,

(9)
�K

ee = (GR − GA) ◦ (DR − DA) + GK ◦ DK,

where the symbol ◦ denotes integration over all internal
energies and momenta, DR(A,K) are the full dressed propagator
of Coulomb interaction31 and GR(A,K) is the electron Green’s
function in the self-energy diagram Fig. 2 and its energy
and momentum are denoted as E′ and k′, respectively. The
underline is to emphasize its difference to GR(A,K), which is
the electron Green’s function out of the self-energy, i.e., the
bare self-energy. In the limit t1 = t2 and x1 = x2, GK (t1 = t2,

x1 = x2) = 1 − 2n̂(R,t), where n̂(R,t) = ψ†(R,t)ψ(R,t) is
the electron density operator.

A. Collision integral of electron-electron interaction

For the DP mechanism, the spin relaxation rate is roughly
proportional to �2

soτ for the uniform spin polarization, where τ

is the momentum scattering time calculated from the collision
integral. Normally, in the zero temperature, the electron
momentum scattering is fully due to impurity scattering.
The treatment of the collision integral contribution from the
impurity scattering has been well established.10,15 However,
for the spin dynamics at finite temperature, electron-phonon
and electron-electron interactions have to be considered in the
collision integral. In this section, by comparing the theoretical
calculation of the electron-electron scattering time to the total
momentum scattering time extracted from experimental data,20

we will show that the momentum scattering in the n-doped
GaAs/AlGaAs quantum well with 400-K Fermi temperature
is dominated by the electron-electron interaction in the
temperature range from 30 to 150 K. In the lower temperature,
the impurity potential will contribute the most momentum
scattering. Therefore the electron-phonon interaction can be
neglected when temperature is below 150 K. Here, we also
want to emphasize that a big difference between the charge
and spin dynamics is that the electron-electron scattering time
τee will affect the spin diffusion constant Ds but not affect
the charge diffusion constant Dc. This conclusion has been
experimentally confirmed as the evidence of spin Coulomb
drag in the GaAs/AlGaAs quantum well.6

Now, let us focus on the electron-electron interaction in the
collision integral that may not be as familiar to the readers
and which, as shown below, can dominate the electron’s
momentum relaxation time at finite temperatures, even if it
has no direct effect on the total momentum of the system. The

first electron-electron scattering term has the form

�R
eeG

K − GK�A
ee

= (GK ◦ (DR − DA) + (GR − GA) ◦ DK )GK. (10)

The Keldysh Green’s function can be written as GK = GK
0 +

δGK , where GK
0 (δGK ) is the Keldysh Green’s function of the

equilibrium (nonequilibrium) part. The terms containing the
first order of δGK and δGK in Eq. (10) have the form[

GK
0 ◦ (DR − DA) + (GR − GA) ◦ DK

]
δGK

+ δGK
0 ◦ (DR − DA)GK

0

= i

τee
δGK + δGK ◦ (DR − DA)GK

0 , (11)

where31

1

τee
= [

GK
0 ◦ (DR − DA) + (GR − GA) ◦ DK

]
=
∫

dE′

2π

d2k′

(2π )2
(DR − DA)(GR − GA)

×
[

tanh

(
E′

2kbT

)
+ coth

(
ω

2kbT

)]
, (12)

with ω = E − E′. Similarly, the nonequilibrium collision
integral in the second parentheses on the right-hand side of
Eq. (8) can be written up to the first order of δGK as

GRδ�K − δ�KGA = δGK ◦ DK (GR − GA) . (13)

Substituting Eq. (11)–(13) into the right-hand side of Eq. (8),
the nonequilibrium electron-electron collision integral has the
form

Iee(δGK,δGK ) = Iee(δGK ) + I ee(δGK ), (14)

where

Iee(δGK ) = [
GK

0 ◦ (DR − DA) + (GR − GA) ◦ DK
]
δGK

= i
1

τee
δGK , (15)

and

I ee(δGK ) = δGK ◦ [(DR − DA)GK
0 + DK (GR − GA)

]
= δGK ◦ (DR − DA)(GR − GA)

×
[

tanh

(
E

2kbT

)
+ coth

(
ω

2kbT

)]
. (16)

We note that I ee has a similar integrand as the one used in
calculating the momentum scattering time of electron-electron
interaction shown in Eq. (12).

Unlike the case of only considering impurity scattering,10,15

at finite temperature, the collision integral contains inelastic
electron-electron scatterings that scatter the electron to differ-
ent energy states and make the collision integral of the right-
hand side of QKE Eq. (8) more complicated. Therefore we
first give a brief discussion of the electron-electron interaction
in the 2DEG. The Fermi energy is assume to be 400 K at
which the persistent spin helix mode is measured.20 In the
experiments, the spin splitting energy �so is much smaller
than the Fermi energy εF = 400 K, say �so/εF � 1,20 and
therefore the screening of the Coulomb interaction in this SOC
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system is treated to be the same as in the non-SOC system.
The inverse screening length in the 2DEG has the form25

κd = 2πe2N0

ε0
, (17)

where N0 is the density of states at the Fermi surface, e

is the electron charge, and ε0 is the dielectric constant in
the vacuum. For the GaAs/AlGaAs, N0 = m∗

πh̄2 , where m∗ =
0.065 m0 is the effective mass of the electron in the quantum
well and m0 is the mass of electron in the vacuum.32 In this
case, κd ≈ 3.08 × 108 cm−1, which is much larger than the
Fermi wavelength kF = √

2πn0 = 2.24 × 106 cm−1, where
n0 = 8 × 1011cm−2 is the density of electrons.20 Therefore
the Coulomb interaction is strongly screened in the 2DEG
considered in the experiments and we can treat the electron-
electron interaction as angle independent scattering. On the
other hand, the peak of the enhanced lifetime of the SHM
happens around 75 K, which is much smaller than the Fermi
temperature 400 K.20 The nonequilibrium electrons distribute
around the Fermi surface within the energy range of kBT ,
where kB is the Boltzmann constant and T here is the system
temperature without confusing it with the time variant T in
Eq. (8). Therefore the nonequilibrium electrons around the
turning point 75 K is in the regime εF � kBT � |εk − εF |,
where εF is the Fermi energy and εk is the electron energy
with momentum k. The electron-electron scattering time in
this regime is estimated theoretically as25

1

τee
= πεF

8h̄

(
kBT

εF

)2

ln
εF

kBT
. (18)

It is noted that the electron-electron scattering time in Eq. (18)
is independent on the energy of the electrons and there is
only one parameter, εF , that we need to obtain from the
experimental data to estimate the electron-electron scattering
time. In Fig. 3, we compare the momentum scattering
time extracted from the experimental data in Supplementary
Material in Ref. 20 with the theoretically estimate based on
Eq. (18). They match very well when the temperature is above
30 K. The mismatch below 30 K is because the nonequilibrium
electrons excited by the optical field are beyond the energy
range of kBT around the Fermi surface in the case of T < 30 K,
and Eq. (18) fails in this temperature regime. However, in a
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FIG. 3. (Color online) τ vs T. The blue stars are the momentum
scattering times extracted from of Ds vs T in Supplementary Material
in Ref. 20 by using the relation τ = 2Ds/v

2
F , where vF = h̄kF

m∗ is the
Fermi velocity and is estimated to be 4.32 × 105 m/s. The red line is
the theoretical estimate of τee based on the theory of the Ref. 25.

wide temperature regime, from 30 to 150 K, Fig. 3 indicates
that the momentum scattering time felt by the spin relaxation
is dominated by the electron-electron scattering time, which
is consistent with the spin Coulomb drag4,5 observed in
the Ref. 6. Therefore, in the following discussion at finite
T > 30 K, we can safely neglect the impurity scattering in
our theory even though it can be trivially incorporated when
extending the results to lower temperatures.

B. Thermal average quantum kinetic equation

In the equilibrium state, the Keldysh Green’s function
satisfies30

ĜK
0 (E,k) = (ĜR − ĜA) tanh

(
E − εF

2kBT

)
. (19)

When the quasiparticle approximation is valid, the Keldysh
Green’s function in the E − k space is still a peak even in the
nonequilibrium state and has the form

ĜK (E,k; T ,R) = −2πiδ(E − εk)ĥ, (20)

where ĥ(k,R,T ) is the distribution function, defined as

ĥ(k,R,T ) = −
∫ ∞

−∞

dE

2πi
ĜK (E,k; T ,R)

= hcσ0 + hxσx + hyσy + hzσz. (21)

In the linear response limit, the nonequilibrium distribution
function takes the form

ĥ(k,R,T ) = −f ′(εk)

N0
ĝ(θ,R,T ), (22)

where f is the Fermi distribution function, N0 is the density
of state, θ is the angle between k and the x axis, and

ĝ(θ,R,T ) =
∫

N0dεkĥ(k,R,T ) (23)

is the thermal average distribution function. We also introduce
the density operator

ρ̂(R,T ) = i

∫
dE

2π

d2k

(2π )2
GK (E,k; T ,R)

=
∫

d2k

(2π )2
ĥ(k,R,T )

=
∫

dθ

2π

∫
N0ĥ(k,R,T )dεk

=
∫

dθ

2π
ĝ(θ,R,T ). (24)

Multiplying by −N0
2π

and integrating over εk and E on both
sides of Eq. (8), the left-hand side takes the form

∂t ĝ + ∇R ·
{

1

2
V̂ ,ĝ

}
+ i[b · σ̂ ,ĝ] + ĝ

τee
, (25)

where

V̂ =
∫

−f ′(εk)V̂ (k)dεk = V̂ (k,θ ),
(26)

b =
∫

−f ′(εk)b(k)dεk = b(k,k3,θ ),
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and the right-hand side takes the form

−
∫

N0dεk

dE

2πi
I ee

= −
∫

N0dεk

dE

2πi

dE′

2π

d2k′

(2π )2
δGK (DR − DA)(GR − GA)

×
[

tanh

(
E

2kBT

)
+ coth

(
ω

2kBT

)]

= −
∫

dE′

2π

d2k′

(2π )2
δGK ×

∫
dE

2π
N0dεk(DR − DA)

×(GR − GA)

[(
E

2kBT

)
+ coth

(
ω

2kBT

)]

≈ ρ̂(R,T ) × 1

τee
. (27)

Therefore the kinetic equation in Eq. (8) is converted to the
equation of the thermal average distribution ĝ(θ,R,T ) and the
density function ρ̂(R,T), which takes the form

∂t ĝ + ∇R ·
{

1

2
V̂ ,ĝ

}
+ i[b · σ̂ ,ĝ] + ĝ

τee
= ρ̂(R,T )

τee
. (28)

Equation (28) gives the coupled kinetic equation of the thermal
average distribution function ĝ and the density matrix ρ̂(R,T).
However, the spin-charge dynamic equation normally is the
equation of the density ρ̂. Therefore it is necessary to convert
Eq. (28) to an equation only containing ρ̂. This is not easily
done in the presence of SOCs. Mishchenko et al.10 treated
the gradient term ∇ĜK , as a perturbation and developed a
self-consistent method to derive the diffusion equation to any
order of ∇ĝ in principle. However, this method is restricted
to the Rashba SOC and becomes harder when calculating the
higher order gradient terms or considering the linear and cubic
Dresselhaus SOC.

Bernevig et al.15 pointed out that in the ballistic regime
ql > 1, where q is the spin-charge wavelength and l is the
mean-free path, we have to consider the higher-order gradient
terms ∇ĜK . This means that in the ballistic regime, the
spin-charge dynamic equation is not dominated by the second
order of the spacial differential operators ∇2 but one needs to
consider the infinite summation over the gradient expansion.
However, this can only be done for the very special case when
α = β1 and β3 = 0.15 For a generic SOC, it is a daunting task
to evaluate the infinite summation. Therefore in this work,
we abandon the idea of the gradient expansion of ∇ĜK and
provide a different way to obtain the spin-charge dynamic
equation for the general SOCs.

C. Spin-charge density dynamic equation valid in both
weak and strong SOC regimes

The thermal average distribution function and density
matrix can be generally written as

ĝ = gcσ0 + gxσx + gyσy + gzσz ,
(29)

ρ̂ = ρcσ0 + ρxσx + ρyσy + ρzσz.

The third term on the left-hand side of Eq. (28) has the form

[bxσx + byσy,ĝ] = 2i((bxgy − bygx)σz − bxgzσy + bygzσx).

(30)

This couples the different spin components and generates spin
precession. The second term on the left-hand side of Eq. (28)
contains the SOC velocity operators v̂so = ∂Hso/∂k that gives

{λ1σy∂x + λ2σx∂y,ĝ}
= (λ1∂xgy + λ2∂ygx)σ0 + λ1∂xgcσy + λ2∂ygcσx. (31)

This couples the charge and spin through the finite ∇ĝ that
indicates the nonuniform charge or spin distribution in real
space. The other terms of Eq. (30) do not couple spin or charge
components. If we multiply σi where i = 0,x,y,z and calculate
the trace, using the fact that Tr(σiσj)/2 = δij, Eq. (28) can be
rewritten as[(

∂t + 1

τ
+ k

m
· ∇

)
gc + λ1∂xgy + λ2∂ygx

]
σ0 = ρc

τ
σ0,[(

∂t + 1

τ
+ k

m
· ∇

)
gx + λ2∂ygc + 2ibygz

]
σx = ρx

τ
σx,[(

∂t + 1

τ
+ k

m
· ∇

)
gy + λ1∂xgc − 2ibxgz

]
σy = ρy

τ
σy,[(

∂t + 1

τ
+ k

m
· ∇

)
gz + 2i(bxgy − bygx)

]
σz = ρz

τ
σz,

(32)

where k is the thermal average momentum and is defined as

k =
∫

−f ′(εk)kdεk. (33)

In Eq. (32), we have multiplied again by the corresponding
matrix to remind ourselves of which component belongs to
which. Hence we can obtain the 4 × 4 kinetic equation of the
coefficients gc(x,y,z) and ρc(x,y,z), which takes the form

K̂

⎛
⎜⎝

gc

gx

gy

gz

⎞
⎟⎠ =

⎛
⎜⎝

ρc

ρx

ρy

ρz

⎞
⎟⎠ , (34)

where

K̂ =

⎛
⎜⎜⎜⎝

�̃ −iλ2qyτ iλ1qxτ 0

−iλ2qyτ �̃ 0 −2byτ

iλ1qxτ 0 �̃ 2bxτ

0 2byτ −2bxτ �̃

⎞
⎟⎟⎟⎠ , (35)

�̃ = 1 − iωτ + q · vτ , and θ is angle between k and the x

axis. Here, we have Fourier transformed ∂t and ∂x(y) to −iω

and iqx(y), which are the frequency and wave vector of the
spin-polarization wave in the experiments. To further obtain
the spin dynamic equation, we simply multiply K̂−1 on both
sides of Eq. (28) and integrate out the angle θ . The inverse of
K̂ is easily obtained for the generic SOCs because it is just the
inverse of a 4 × 4 matrix. This provides a way to derive the
spin dynamic equation in the presence of the general SOCs.

Before discussing the spin dynamic equation, we would like
to emphasize two advantages of our method. First, the inverse
of the matrix K̂ is equivalent to the infinite summation of the
gradient expansion but much easier to be calculated exactly.
In Sec. IV, it is shown that in the case of α = β1 and β3 = 0,
we obtain the same spin dynamics modes to those obtained by
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the infinite summation of the gradient expansion of ∇ĜK .15

Second, we need not to guess the form of the nonequilibrium
distribution function ĝ before we obtain the spin dynamics
equation. The nonequilibrium distribution function is often
expanded on spherical harmonics [see Eq. (7.79) in Ref. 30]
before we solve the kinetic equation. Normally in the system
without SOCs, it is enough to stop the expansion on the first
order of the spherical harmonics. However, in the presence of
the SOCs, especially considering the cubic Dresselhaus SOC,
the distribution function may contain the spherical harmonics
up to third order. Therefore it is very difficult and complicated
to guess the correct form of the nonequilibrium distribution
function by expanding it to the right order in spherical
harmonics. Our method does not have this difficulty and is
approximate to considering all possible spherical harmonics
in the nonequilibrium distribution function.

To simplify our discussion of the spin dynamic equation, we
consider the spin wave vector only along the x direction and
take qy = 0. Because q � kF , the spin-charge coupling terms
iλ1(2)qx(y)τ are much smaller than the spin-spin coupling terms
iλ1(2)kτ in Eq. (35) and we neglect the spin-charge coupling
and only focus on the spin space of Eq. (35). In this case, using
the definition Eq. (24) the spin-charge dynamic equation of the
density coefficient ρc(x,y,z) can be obtained as

∫
dθ

2π

⎛
⎝gx

gy

gz

⎞
⎠ =

⎛
⎝ρx

ρy

ρz

⎞
⎠ = D̂

⎛
⎝ρx

ρy

ρz

⎞
⎠ , (36)

where D̂ = ∫
dθ
2π

K̂−1
s and K̂−1

s takes the form

K̂−1
s =

(
�̃2 + 4b

2
xτ

2 4bxbyτ
2 2byτ�̃

4bxbyτ
2 �̃2 + 4b

2
yτ

2 −2bxτ�̃

−2byτ�̃ 2bxτ�̃ �̃2

)

�̃3 + 4b
2
τ 2�̃

. (37)

Equation (36) describes the spin dynamics in the frequency-
momentum space at finite temperature and any strength of the
SOC. This is the key result of our theory.

III. SPIN DYNAMICS IN THE WEAK SOC
REGIME AT FINITE T

In this section, we focus on the spin dynamics in the weak
SOC regime, which is found in the case where temperatures
above 35 K in the experiments considered.20

A. Only DP spin relaxation mechanism

In the regime where λ1(2)kτ � 1, ql � 1, defined as the
weak SOC regime, the spin-charge dynamic equation can be
written as

[
−iω̃ + 1

2

(
q̃2

x + q̃2
y

)]⎛⎝ρx

ρy

ρz

⎞
⎠ + D̂so

⎛
⎝ρx

ρy

ρz

⎞
⎠ = 0 , (38)

where

D̂so =

⎛
⎜⎝

�̃2
so

(
1
2 + α̃β̃

)
0 i(α̃ + β̃)�̃soq̃x

0 �̃2
so

(
1
2 − α̃β̃

)
i(α̃ − β̃)�̃soq̃y

−i(α̃ + β̃)�̃soq̃x − i(α̃ − β̃)�̃soq̃y �̃2
so

⎞
⎟⎠,

α̃ = α√
α2+(β1−β3)2 +β2

3

, β̃ = β1−β3√
α2+(β1 − β3)2 + β2

3

,

(39)

ω̃ = ωτ , q̃x(y) = qx(y)vτ , �̃so = �soτ , and �so =
2
√

α2 + (β1 − β3)2 + β2
3kF is the spin precession frequency

due to the SOC. The first term on the left-hand side of Eq. (38)
is the normal diffusion equation without SOCs. The second
term corresponds to the average torque exerted by the SOC in
the momentum space that gives the correction of the diffusion
equation due to the generic SOCs. The detailed calculation of
the elements of the matrix D̂ is shown in Appendix C.

Our spin diffusion equation, Eq. (38), is equivalent to
the spin diffusion equation in Ref. 12 at zero temperature
where k = kF . When accounting the cubic Dresselhaus SOC,
the lifetime of the SOC enhanced SHM becomes finite but
is still two orders longer20 than the spin lifetime in the
presence of the general spin-orbit interactions. This SHM
is verified experimentally and the maximal lifetime of this
SHM is detected at 75 K.20 Further decreasing the momentum
scattering time by increasing the temperature will decrease the
lifetime that seems to violate the spin relaxation dominated
by the D’yakonov-Perel mechanism and is lack of a clear
theoretical explanation. The existence of a spin lifetime
peak was suggested to be due to the interplay between the
cubic Dresselhaus SOC and electron-electron interactions.33

However, because the density of states is a constant for the
2DEG, the chemical potential shift at finite temperature is
of the order of ( kBT

EF
)4 = 0.0039 when T = 100 K according

to the Sommerfeld expansion. Our numerical calculation
gives Ef = 398.15 K at T = 100 K, which is consistent to
the analytical prediction. Assuming that χ (E) = −f ′(E), at
T = 100 K, we have

k =
∫

−f ′(E)kdE = 0.98kF ,

(40)

k3 =
∫

−f ′(E)k3dE = 1.1k3
F ,

which proves that the thermal average k and k3 are not changed
too much from 0 to 100 K. Therefore the increase of the thermal
average cubic Dresselhaus SOC seems not to be sufficiently
strong to account for the nonmonotonic T dependence of
the enhanced lifetime of the SHM. Another evidence for this
statement is from Fig. 3(c) in Ref. 20. The mobility is reduced
to avoid the ballistic crossover and the spin lifetime is measured
in five different temperatures as a function of spin polarized
wave vector q. It is found that at q = 1.26 × 104 cm−1, which
is close to the SU(2) points, the spin lifetime is the maximum
at the lowest temperature 5 K and minimum at the highest
temperature 250 K. When q is away from the SU(2) point
such as q = 0 or q = 2.5 × 104 cm−1, the spin lifetime is
the minimum at the lowest temperature 5 K and maximum
at the highest temperature 250 K. As a result, when q is far
away from the SU(2) point, the enhanced lifetime of spin helix
mode matches the description of D-P mechanism that the spin
lifetime is inversely proportional to the momentum scattering
time. When q is close to the SU(2) point, the turning point at
which the spin lifetime changes from increasing to decreasing
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with increasing temperature, is lower than 5 K. The turning
point at such low temperature can not be the consequence of
the thermal average of the cubic Dresselhaus SOC.20 Another
possible mechanism to explain the peak of the spin lifetime is
the random Rashba SOC due to the remotely doped dopants.34

However, this mechanism limit the spin lifetime less than 10 ps
but the experiment observed the maximum spin lifetime could
be as large as 800 ps. Therefore the random Rashba SOC is
also not the reason for the enhanced spin lifetime peak.

B. EY mechanism in the 2DEG with
the electron-electron interaction

Because DP mechanism is not sufficient to account for the
T dependence of the SHM lifetime, we have to consider the EY
mechanism, which is proportional to the momentum scattering
time, opposite to the case of DP mechanism. There are two
processes involved: that of Elliott35 and that of Yafet.36 In the
Elliott process, the scattering potential is spin independent.
The spin flip is due to the SOC on the Bloch state, say the
admixture of the Pauli up and down spins through the coupling
between the conduction and valence bands.

In the Yafet process, spin flips come directly from the
scattering potential with the well known form h̄

4m0c2 (∇V ×
P) · σ so that the potential alone couples opposite spins.
In the GaAs/AlGaAs 2DEG, as shown in Appendix A, the
Elliott mechanism is much larger than the Yafet mechanism.
As a result, in the following discussion, we only consider
the Elliott processes. The Elliott mechanism can be derived
from the unitary transformation matrix based on the Löwdin
partitioning.32 The coordinate r after unitary transformation
takes the form37

reff = r − P 2

3

[
1

E2
0

− 1

(E0 + �0)2

]
k × σ = r − γ k × σ ,

γ = P 2

3

[
1

E2
0

− 1

(E0 + �0)2

]
, (41)

where P = ih̄2

m0
〈S|∇|R〉, |S〉 is the s-wave-like local orbital

state, R = X,Y,Z are the p-wave-like local orbital states, E0

is the band gap between �−
6 conduction band and �+

8 valence
band, and �0 is the SOC gap between the bands of �+

7 and
�+

8 .32 Any coordinates dependent potential will be modified
by the second term in Eq. (41). For example, the impurity
scattering potential has the form

Vimp(reff) = Vimp(r) − γ [∇rVimp(r) × k] · σ , (42)

and the Coulomb interaction now has the form

Vee(r1eff,r2eff) = Vee(r1,r2) − γ (∇r1Vee × k1) · σ

−γ (∇r2Vee × k2) · σ , (43)

where the subscripts 1 and 2 of the space coordinates represent
the two interacting electrons, respectively. Therefore the spin-
orbit coupled scattering potential has the form

V̂so(r) = −γ (∇rV (r) × k) · σ , (44)

where V (r) = Vimp + Vee is the spin independent momentum
scattering potential. The spin relaxation rate due to the EY
mechanism in the 3D bulk material has the form38

1

τEY(εk)
= A

(
�0

E0 + �0

)2 (
εk

E0

)2 1

τ (εk)
, (45)

where τEY(εk) is the EY spin relaxation time, the numerical
factor A is of the order of 1 and dependent on the scattering
mechanism38 such as electron-electron interaction,39 and τ (εk)
is the spin independent momentum scattering time at energy
εk . Because the nonequilibrium electrons distribute around
the Fermi surface within the energy range kBT , the electron-
electron scattering time is independent on the energy εk

according to Eq. (18) and is labeled as τ . In the 2DEG, the
momentum kz is quantized. In this case, although the average of
〈kz〉 = 0, 〈k2

z 〉 ≈ (π
d

)2 that gives the linear Dresselhaus SOC.20

For the same reason, when considering EY mechanism, we
also assume 〈k2

z 〉 ≈ (π
d

)2, where d is the width of the quantum
well. Therefore the EY mechanism in the 2DEG can be written
as

1

τEY,x

= 1

τEY,y

= A

(
1 + 2

〈
k2
z

〉
k2
F

)(
�0

E0 + �0

)2 (
εk

E0

)2 1

τ
,

1

τEY,z

= A
4
〈
k2
z

〉
k2
F

(
�0

E0 + �0

)2 (
εk

E0

)2 1

τ
, (46)

where τEY,x(y,z) are the spin relaxation time for the spin
polarization along x, y, z directions, respectively, due to the
EY mechanism. Appendix A gives the detailed derivation of
the EY mechanism in the systems considered here.

C. Temperature dependence of the spin relaxation modes

In this section, we show that the temperature dependence
of the spin relaxation modes, especially, the enhanced lifetime
of the SHM, is the consequence of the competition between
the DP and EY mechanisms. By adding the EY mechanism
on the Eq. (38), the spin-charge dynamics containing both DP
and EY mechanisms takes the form

[
− iω̃ + 1

2

(
q̃2

x + q̃2
y

)]⎛⎝nx

ny

nz

⎞
⎠ +

⎛
⎜⎝

�̃2
so

(
1
2 + α̃β̃

) + κ
‖
1 0 i(α̃ + β̃)�̃soq̃x

0 �̃2
so

(
1
2 − α̃β̃

) + κ
‖
1 i(α̃ − β̃)�̃soq̃y

−i(α̃ + β̃)�̃soq̃x −i(α̃ − β̃)�̃soq̃y �̃2
so + κ⊥

1

⎞
⎟⎠
⎛
⎝nx

ny

nz

⎞
⎠ = 0, (47)

where

κ
‖
1 = A

(
1 + 2

〈
k2
z

〉
k2
F

)(
�0

E0 + �0

)2 (
εk

E0

)2

, κ⊥
1 = A

4
〈
k2
z

〉
k2
F

(
�0

E0 + �0

)2 (
εk

E0

)2

. (48)
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Here, according to Eq. (40), we take the thermal average
of the momentum k = kF . To simplify our discussion, we
assume that the spin polarization is uniform in y direction
and nonuniform in x direction with finite q̃x . In this case, the
spin polarization along y direction is not coupled to other two
components of spin polarization. Based on the Eq. (47), the
eigenmode of the spin polarization along y direction has the
form

iω̃y = 1
2 q̃2

x + �̃2
so

(
1
2 − α̃β̃

) + κ
‖
1 , (49)

where ω̃y is the normalized eigenfrequency of spin polarization
along y direction. At the SU (2) symmetric point,11 where
α = β1 and β3 = 0, (1/2 − α̃β̃) = 0 and the effect of the DP
mechanism on the spin polarization along y direction is zero.
This is consistent to the fact that the effective magnetic field
due to SOC in this case is always along the y direction.

Next we focus on the other two spin dynamic modes that
have the form

iω̃± = κs
1 + 1

2
q̃2

x + �̃2
so

(
3

4
+ α̃β̃

2

)

±
√[

�̃2
so

(
α̃β̃

2
− 1

4

)
+ κa

1

]2

+ (α̃ + β̃)2�̃2
soq̃

2
x ,

κs
1 = κ

‖
1 + κ⊥

1

2
, and κa

1 = κ
‖
1 − κ⊥

1

2
, (50)

where ω̃± are the normalized eigenfrequencies of the reduced
and enhanced lifetimes of the two SHMs,20 respectively.
The maximum enhanced lifetime of the SHM happens when
α = β1, β3 = 0, and q = 4m∗α = Q. In this case, we have α̃ =
β̃ = α/

√
α2 + β2

1 = √
2/2 and q̃ = 4m∗αvf τ = √

2�soτ =√
2�̃so. However, in the material such as GaAs, the cubic

Dresselhaus SOC is the consequence of bulk inversion asym-
metry (BIA) and is inevitable. When considering the cubic
Dresselhaus SOC, the maximus spin lifetime is observed at
β1 − β3 = α,20 which is consistent to the theoretical prediction
at zero temperature.12 When β3 � α, the maximum enhanced
lifetime of the SHM is still at Q = 4m∗α shown in Fig. 4.

0 0.5 1 1.5 2
0

50

100

150

200

q/Q

τ s
/T

s

Reduced−life
time SHM

Enhanced−life
time SHM

FIG. 4. (Color online) The reduced and enhanced lifetimes of
the SHMs. The x axis is the spin wave vector normalized by Q =
4m∗α and the y axis is the spin lifetime normalized by the spin
precession period Ts = 2π

�so
. �soτ = 0.1 is taken to satisfy the weak

SOC condition and β3/β1 = 0.16 from the experimental data.20 The
maximal enhanced lifetime is still very close to Q although the cubic
Dresselhaus SOC is nonzero.

As a result, the Rashba SOC strength can be detected by the
relation α = Q/4m∗ that gives

�so = 2
√

α2 + (β1 − β3)2 + β2
3kF ≈ 2

√
2αkF = QkF√

2m∗ .

(51)

Taking qx = 4m∗α and substituting the above relation to
Eq. (49), we obtain the reduced and enhanced lifetimes of the
SHMs as

iω± = κs
1

τ
+ κ±

2 τ, (52)

κ±
2 = �2

so

{
7

4
+ α̃2

2
±
√[(

α̃2

2
− 1

4

)
+ κa

1

�̃2
so

]2

+ 8α̃2

}
,

(53)

where ± is corresponding to the reduced and enhanced
lifetimes of the SHMs, respectively.

We plot the enhanced lifetime of the spin helix mode
in Fig. 1 and compare our theoretical calculation with
Fig. 3(a) in the Ref. 20. The system we are considering
is the GaAs/AlGaAs quantum well in Ref. 20. Its width is
11 nm, which gives β3/β1 = 〈k2

F 〉/4〈k2
z 〉 = 0.16.20 Therefore,

in this system, β1 − β3 = α � β3 and �so is estimated to
be 0.356 THz based on the Eq. (51). The band gap E0 =
1.519 eV, �0 = 0.341 eV. To fit the experimental data, Fig. 1,
the only fitting parameter we choose is A = 4.0, which is the
order of 1 and consistent to the estimate in the Ref. 38.

Based on the Eq. (52), both the reduced and the enhanced
lifetimes of the SHMs have a maximal spin lifetime as a result
of the competition between the DP and EY mechanisms. The
critical momentum scattering times τ±

c when the spin lifetime
reaches its maximum take the value

τ+
c =

√
κs

1

κ+
= 0.029 ps, τ−

c =
√

κs
1

κ−
= 0.51 ps. (54)

This is the result of the competition of EY and DP mechanisms.
It is noted that τ+ � τ−, which indicates the reduced lifetime,
needs much higher temperature than the enhanced-lifetime to
reach its maximum. Actually, τ+

c = 0.029 ps is smaller than
the minimum momentum scattering time 0.04 ps estimated
from the spin lifetime of the enhanced SHM is 100 ps at
T = 300 K based on the Eq. (53). This is why the reduced
lifetime of the SHM increase monotonically with increasing T .

IV. SPIN RELAXATION IN THE STRONG SOC REGIME

In this section, we show that our theory can reproduce the
theoretical results of the spin relaxation in the case of α = β1

and β3 = 0 and in the case of only Rashba or linear Dresselhaus
SOC in the strong SOC regime at zero temperature.15,18

A. α = β1

The persistent SHM occurs in the case of α = β1, β3 = 0,
and q is along x direction. In this case, the elements of the
matrix D̂, corresponding to the reduced and enhanced lifetimes
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of the SHMs, in the spin-charge dynamic Eq. (36) take the form

D11 = D33 = 1

2
√

(1 − iω̃)2 + (q̃x + �̃so)2

+ 1

2
√

(1 − iω̃)2 + (q̃x − �̃so)2
,

(55)

D13 = −D31 = i

2
√

(1 − iω̃)2 + (q̃x + �̃so)2

− i

2
√

(1 − iω̃)2 + (q̃x − �̃so)2
,

where �̃so = 2λ1kF τ . The eigenmodes satisfy the equation

(1 − D11)2 + D2
13 = [−1 +

√
(1 − iω̃)2 + (q̃x − �̃so)2]√

(1 − iω̃)2 + (q̃x − �̃so)2

× [−1 +
√

(1 − iω̃)2 + (q̃x + �̃so)2]√
(1 − iω̃)2 + (q̃x + �̃so)2

= 0, (56)

which gives the spin relaxation eigenmodes as

iω̃ = 1 ±
√

1 − (q̃x ± �̃so)2, (57)

and is consistent with the result in Ref. 15.

B. Only Rashba or linear Dresselhaus SOC

In the presence of Rashba or linear Dresselhaus SOC, we
only discuss spin relaxation of the uniform spin polarization
because, as far as we are aware of, there is no analytical
form of the spin relaxation eigenmodes for the nonuniform
spin polarization in the presence of only Rashba or linear
Dresselhaus SOC. For the uniform spin polarization, the off
diagonal elements of the dynamic matrix D̂ in Eq. (36) are
zero because the angle average of the effective magnetic field
b is zero. Therefore we only need to focus on the diagonal
terms that have the form

D11 = D22 = �̃2 + �̃2
so

/
2

�̃
(
�̃2 + �̃2

so

) , D33 = �̃

�̃2 + �̃2
so

. (58)

The spin relaxation mode of the spin polarization along the z

direction satisfies the equation 1 − D33 = 0 and is solved to
have the form

iω̃z = 1
2

(
1 −

√
1 − 4�̃2

so

)
, (59)

which is identical to our previous theoretical result18 in the
zero-temperature limit, which has been shown to be consistent
with the experimental observation.22

V. CONCLUSION

We have developed a consistent microscopic approach to
explore the spin dynamics in the presence of SOC of arbitrary
strength, impurity scattering, and electron-electron interaction
at finite temperature. The electron-electron interactions are
introduced by using the nonequilibrium Green’s function
formalism. To create a full understanding of the spin dynamics,
we incorporate both the DP and EY mechanisms. We have

shown that near the SU(2) symmetry point, because the DP
mechanism is suppressed for the SOC enhanced SHM, the EY
mechanism dominates in the high temperature for this mode.
By choosing the reasonable parameter of the EY mechanism,
we show that our theory of enhanced lifetime of the SHM
matches the experimental data quantitatively. Our theory is
also shown to be able to recover the several previous theoretical
results, which are only valid in the noninteracting system and
most focus on the zero-temperature limit.
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APPENDIX A: ELLIOTT-YAFET MECHANISM

In this appendix, we discuss more extensively the spin
relaxation due to the Elliott-Yafet35,36 mechanism in the
III-V semiconductor quantum well. There are two processes
involved: the Elliott and35 and the Yafet process.36 In the Yafet
process, the spin flip is due to the intrinsic spin-orbit coupling
of the scattering potential that has the well-known form

H intri
so = − h̄2

4m2
0c

2
σ · (k × ∇V0), (A1)

where m0 is the electron mass in the free space and V0 is the
scattering potential, which can be impurity, electron-phonon,
and electron-electron scatterings. Here, to estimate the strength
of the Yafet process, we assume V0(r) is a spherical potential
that is independent of the direction. In this case, the SOC
Hamiltonian is Eq. (A1) is simplified to be

H intri
so = h̄2

4m2
0c

2
σ (k × er∂rV0(r))

= − h̄2

4m2
0c

2

∂rV0(r)

r
(r × k) · σ

= − h̄2

4m2
0c

2

∂rV0(r)

r
(L · σ )

= − h̄2

4m2
0c

2

∂rV0(r)

r

j (j + 1) − l(l + 1) − s(s + 1)

2
,

(A2)

where L is the orbital angular momentum and j (l,s) is the
quantum number of the total angular momentum (orbital an-
gular momentum, spin). In the �−

7 of the III-V semiconductors,
j = 3/2, l = 1, and s = 1/2. Therefore the expectation value
of H intri

so in �−
7 can be written as

H
�v

8
so =

〈
j = 3

2
,l = 1

∣∣∣∣Hso

∣∣∣∣j = 3

2
,l = 1

〉

= − h̄2

4m2
0c

2

〈
∂rV0(r)

r

〉
1

2
= h̄2

4m2
0c

2

〈
V0(r)

r2

〉
1

2

≈ h̄2

4m2
0c

2(a0/2)2

V 0

2
, (A3)
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where a0 is the lattice constant. Here, we assume that 〈1/r2〉 =
4/a2

0 . Similar, in the �v
7 band, H

�v
7

so = − h̄2

m2
0c

2a2
0
V0 and in the �c

6,

H
�c

6
so = 0.
In the Elliott process, the spin flip is due to the SOC on the

Bloch state, say the eigenstate of the electron in the conduction
band is not the spin eigenstate. However, the momentum
scattering potential is V 0, which is spin independent. From
this viewpoint, the Elliott process has the same origin as the
Rashba SOC in the III-V semiconductor quantum well.

The difference lies the fact that in the Rashba SOC, the
electric field along z-direction break the inversion symmetry
and the first nonzero term of Rashba SOC is linear dependent
on the wave vector k of the conduction electrons that make
the spin-up and spin-down states with the same momentum k

nondegenerate. In the Elliott processes, the scattering potential
does not break the inversion symmetry, its nonzero terms are
proportional to k2 and spin-up and spin-down electrons with
the same momentum are still degenerate.

Based on the 8 × 8 Kane model, the effective Hamiltonian
of the electrons in the conduction band of III-V semiconductors
such as GaAs has the form

Ĥc = P 2

3

[
2

E0
+ 1

E0 + �0

]
k2

− P 2

3

[
1

E2
0

− 1

(E0 + �0)2

]
σ · ∇V0 × k

+ P 2

3

[
1

E2
0

+ 1

(E0 + �0)2

]
h̄2

2m2
0c

2a2
0

σ · ∇V0 × k,

(A4)

where V0 is the spin independent scattering potential, P =
ih̄2

m0
〈S|∇|R〉, |S〉 is the s-wave-like local orbital state, R =

X,Y,Z are the p-wave-like local orbital states, E0 is the energy
gap between �−

6 and �+
8 bands, and �0 is the energy gap

between �+
8 and �+

7 bands.32 The second term in Eq. (A4)
is corresponding to the Elliott spin relaxation mechanism and
vanish when the SOC gap �0 = 0. The third term in Eq. (A4) is
corresponding to the Yafet spin relaxation mechanism, which
will not vanish when the SOC gap �0 = 0. These are consistent
to the characters of Elliott and Yafet mechanisms. For the
Elliott spin relaxation mechanism, the scattering potential is
spin independent, therefore only the SOC gap �0 can provide
the necessary SOC to relax spin. In the Yafet mechanism, the
scattering potential itself-contains SOC, which can relax the
spin. Therefore the SOC gap �0 is not necessary in this case.

Now, let us compare the strength of the Elliott and Yafet
mechanism in the GaAs 2DQW, where P = 10.493 eVÅ, and
the band gaps E0 = 1.519 eV, �0 = 0.341 eV.32 Therefore,
in the III-V semiconductors, the ration between the Elliot and
Yafet mechanism is of the order of

1/E2
0 − 1/(E0 + �0)2

(1/E2
0 + 1/(E0 + �0)2)

(
h̄2/2m2

0c
2a2

0

) = 4.84 × 105, (A5)

which indicates that the Elliot spin relaxation is much larger
than the Yafet spin relaxation in a III-V semiconductor.
Therefore, in the following derivation, we only focus on the
Elliot mechanism. The first term in the Eq. (A4) is the normal
kinetic energy and the second term is the SOC terms. In

2D quantum well, by applying an electric potential along z

direction Vz = −eEz, the inversion symmetry is broken and
〈∇Vz〉 is nonzero that gives the Rashba SOC. However, in
the Elliott process, the potential V nso is from the nonSOC
impurity scattering, electron-phonon,35 and electron-electron
interaction,40 the average, 〈∇V0〉, is zero. Therefore the first
nonzero term of the Elliott process is proportional to (〈∇V0〉)2.
The SOC potential can be written in the momentum space as41

V̂kk′ = iγ V0(k × k′) · σ = iγ V0[(kxk
′
y − kyk

′
x)σz

+ (kyk
′
z − kzk

′
y)σx + (kzk

′
x − kxk

′
z)σy]

= i
(
V z

k,k′σz + V x
k,k′σx + V

y

k,k′σy

)
, (A6)

where

γ = P 2

3

[
1

E2
0

− 1

(E0 + �0)2

]
, (A7)

k′ and k are the momentums of the electrons before and after
scattering respectively and V is the momentum scattering
potential.

Before we calculate the Elliott mechanism, let us connect
the quantum kinetic equation to the continuity equation by
integrating the momentum k. To simplify our argument,
we consider the case where the SOC due to the inversion
asymmetry is zero. Equation (8) after the integral has the form

∂t ρ̂(E,R,T ) + ∇ · Ĵ(E,R,T )

=
∫

d2k

(2π )2
[(�RGK + �KGA) − (GR�K + GK�A)].

(A8)

Equation (A8) is the continuous equation in the spin-1/2 basis.
Multiplying by σm/2 on both sides of Eq. (A8) and taking the
trace over the spin space, we have the traditional continuous
equation

∂tρm + ∇ · Jm =
∫

d2k

(2π )2
Tr

σm

2
[(�RGK + �KGA)

−(GR�K + GK�A)], (A9)

where m = 0,x,y,z are corresponding to charge, spin x, spin
y, and spin z, respectively. If the charge or spin is conserved,
the scattering term on the right-hand side of Eq. (A9) is zero.
Now let us substitute the SOC potential into the scattering
term. There are four terms in the collision integral and we
first focus on the two terms containing the retarded Green’s
function or self-energy, which has the form∫

d2k

(2π )2
Tr

1

2
{σm(�̂RĜK − ĜR�̂K )}

= Tr

{∫
d2k′

(2π )2

σm

2
[V̂kk′GR(k′)V̂k′kG

K (k)

−GR(k)V̂kk′GK (k′)V̂k′k]

}

= Tr

[ ∫
d2k

(2π )2

d2k′

(2π )2

(
σm

2
V̂kk′

− V̂kk′
σm

2

)
GR(k′)(V̂k′k)GK (k)

]
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+ Tr

{∫
d2k

(2π )2

d2k′

(2π )2

σm

2
[GR(k′)V̂k′kĜ

K (k)V̂kk′

−GR(k)V̂kk′ĜK (k′)V̂k′k]

}
. (A10)

The last term on the right-hand side of Eq. (A10) is zero
because the symmetry of k and k′ in this term. The first term
on the right-hand side of Eq. (A10) can be written further as

Tr

[∫
d2k′

(2π )2

(σm

2
V̂kk′ − V̂kk′

σm

2

)
GR(k′)(V̂k′k)GK (k)

]

= Tr

{∫
d2k′

(2π )2

[
σm

2
,V jσ j

]
GR(k′)(V̂k′k)GK (k)

}

= Tr

[∫
d2k′

(2π )2
2iεmjkV

j

kk′
σk

2
GR(k′)(V̂k′k)GK (k)

]

= Tr

[∫
d2k′

(2π )2
(−4)εmjkεkjmV

j

kk′V
j

k′k
σm

2
GR(k′)GK (k)

]

= Tr

⎡
⎣∫ d2k′

(2π )2
4

⎛
⎝∑

j �=m

V
j

kk′V
j

k′k

⎞
⎠ σm

2
GR(k′)GK (k)

⎤
⎦ .

(A11)

For the charge dynamics, we need to take m = 0. Because σ0

commutes with any scattering potential operator, Eq. (A11) is
always zero that indicates that the charge is always conserved.
For the spin dynamics, m = x,y,z. Generally speaking, σx(y,z)

does not commutes with a spin dependent scattering potential
and the Eq. (A11) is nonzero that indicates that the spin will
decay. Note that in the 2DEG, kz is quantized. Therefore,
taking m = x,y,z, we have

Tr

⎡
⎣∫ d2k′

(2π )2
4

⎛
⎝∑

j �=x

V
j

kk′V
j

k′k

⎞
⎠ σx

2
GR(k′)GK (k)

⎤
⎦

= −i
γ 2k4

F

τ

(
1 + 2k2

z

k2
F

)
GK

x

= −iA

(
1 + 2

〈
k2
z

〉
k2
F

)(
�0

E0 + �0

)2(
εk

E0

)2
GK

x

2τ
,

Tr

⎡
⎣∫ d2k′

(2π )2
4

⎛
⎝∑

j �=y

V
j

kk′V
j

k′k

⎞
⎠ σy

2
GR(k′)GK (k)

⎤
⎦

= −i
γ 2k4

F

τ

(
1 + 2k2

z

k2
F

)
GK

y

= −iA

(
1 + 2

〈
k2
z

〉
k2
F

)(
�0

E0 + �0

)2(
εk

E0

)2
GK

x

2τ
,

Tr

⎡
⎣∫ d2k′

(2π )2
4

⎛
⎝∑

j �=z

V
j

kk′V
j

k′k

⎞
⎠ σz

2
GR(k′)GK (k)

⎤
⎦

= −i
γ 2k4

F

τ

4k2
z

k2
F

GK
z

= −iA
4k2

z

k2
F

(
�0

E0 + �0

)2 (
εk

E0

)2 GK
z

2τ
, (A12)

where τ is the momentum scattering time due to the non-SOC
potential V0, kz = π/d, and d is the width of the quantum well
and A is the order of unity. The other two terms, containing the
advance Green’s function in Eq. (A9), gives the same result
to the Eq. (A12). The average, 〈k2

z 〉, is nonzero, which is also
the reason why there is a linear Dresselhaus term in the III-
V semiconductor quantum well. Therefore, although average
〈kz〉 is zero, the components of Elliott mechanism that are
proportional to 〈k2

z 〉 are still finite. As a result, the Elliott spin
relaxation rates have the form

1

τEY,x

= 1

τEY,y

= A

(
1 + 2

〈
k2
z

〉
k2
F

)(
�0

E0 + �0

)2(
εk

E0

)2 1

τ
= κ

‖
1

τ
,

1

τEY,z

= A
4
〈
k2
z

〉
k2
F

(
�0

E0 + �0

)2(
εk

E0

)2 1

τ
= κ⊥

1

τ
. (A13)

The same result can be obtained from the traditional definition
of the spin decay rate due to the admixture of the Pauli spin up
and spin down in the eigenstates of the conduction electron.
From the 8 × 8 Kane mode, we can obtain these eigenstates
as

�ck,↑ = |S,↑〉 + −1√
2

P

E0
k+

∣∣∣∣32 ,
3

2

〉
+
√

2

3

P

E0
kz

∣∣∣∣32 ,
1

2

〉

+ 1√
6

P

E0
k−

∣∣∣∣32 , − 1

2

〉
+ −1√

3

P

E0 + �0
kz

∣∣∣∣12 ,
1

2

〉

+ −1√
3

P

E0 + �0
k−

∣∣∣∣12 , − 1

2

〉
,

�ck,↓ = |S,↓〉 + −1√
6

P

E0
k+

∣∣∣∣32 ,
1

2

〉
+
√

2

3

P

E0
kz

∣∣∣∣32 , − 1

2

〉

+ 1√
2

P

E0
k−

∣∣∣∣32 , − 3

2

〉
+ −1√

3

P

E0 + �0
k+

∣∣∣∣12 ,
1

2

〉

+ 1√
3

P

E0 + �0
kz

∣∣∣∣12 , − 1

2

〉
. (A14)

The transition amplitude between these two states with
different wave vector k are proportional to

〈�ck′,↓|V (r)|�ck,↑〉

= V0

[
−1

3

P 2

E2
0

(kzk
′
−− k−k′

z) + 1

3

P 2

(E0 + �0)2
(kzk

′
−− k−k′

z)

]

= V0

[
−1

3
(kzk

′
− − k−k′

z)

(
P 2

E2
0

− P 2

(E0 + �0)2

)]
= −V0γ (kzk

′
− − k−k′

z). (A15)

Therefore the spin decay rate is proportional to

1

τs

∝ V 2
0 γ 2〈(kzk

′
−− k−k′

z)(kzk
′
+− k+k′

z)〉k ∝ γ 2k4
f

1

τ
, (A16)

where 1/τ is proportional to the V 2
0 and 〈· · · 〉k in Eq. (A16)

means the average of momentum k. Equation (A16) is
equivalent to the Elliott spin relaxation time and we obtain
from the projected Hamiltonian into the conduction band.
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APPENDIX B: HOW THE ELECTRON-ELECTRON
INTERACTION VANISHES IN CALCULATING

THE CHARGE CONDUCTIVITY

When deriving the quantum kinetic equation, the collision
integral contains many kinds of momentum scattering chan-
nels; one dominant at finite temperature is the electron-electron
interaction. However, as we know that when calculating the
conductivity, the electron-electron interaction should vanish
in this case. In this Appendix, we show that how the
electron-electron interaction naturally vanish in calculating
the conductivity and, therefore, they only affect the spin
relaxation channles. To simplify our discussion, we start from
the classical Boltzmann equation without SOC:

∂tfk1 + 1

2

{
V̂ k1 , · ∇Rfk1

} − eE · ∇kfk1

=
∫

Uk1,k′
1

(
fk1−fk′

1

)+ ∫
dnk1d

nk′
1,d

nk′
2W (k1,k′

1,k
′
1,k

′
2)

× [
fk1fk2

(
1 − fk′

1

)(
1 − fk′

2

)− fk′
1
fk′

2

(
1−fk1

)(
1−fk2

)]
,

(B1)

where n is the dimension of the system, fk is the Fermi
distribution function, Uk1,k′

1
is the impurity scattering rate

and W (k1,k′
1; k2,k′

2) is the electron-electron scattering rate.
If we exchange fk1 , fk2 and fk′

1
, fk′

2
, the right-hand side of

Eq. (B1) is unchanged. This means electron 2 satisfies the
same Boltzmann equation as electron 1:

∂tfk2 + 1

2

{
V̂ k2 , · ∇Rfk2

} − eE · ∇kfk2

=
∫

Uk1,k′
1

(
fk2−fk′

2

)+ ∫
dnk′

1d
nk2d

nk′
2W (k1,k2,k′

1,k
′
2)

× [
fk1fk2

(
1 −fk′

1

)(
1 −fk′

2

)−fk′
1
fk′

2

(
1 −fk1

)(
1 −fk2

)]
.

(B2)

The charge current operator is defined as

j =
∫

dnk1

(
−e

k1

m∗

)
fk1 =

∫
dnk2

(
−e

k2

m∗

)
fk2 , (B3)

where m∗ is the effective electron mass. Since we are interested
in the dc conductivity, the system is uniform and independent
on time. Therefore the first two terms on the left side of
Boltzmann equation are zero. To get the charge current
equation from the Boltzmann equation, we multiply the charge
current operator on the both sides of Eqs. (B1) and (B2), which
gives∫

dk1
e2k1

m∗ E · ∂kfk1

=
∫

dk1dk′
1
−ek1

m∗ U (k1,k′
1)
(
fk1 − fk′

1

)
+

∫
dk1dk2dk′

1dk′
2
ek1

m∗ W (k1,k2,k′
1,k

′
2)

× [
fk1fk2

(
1 −fk′

1

)(
1 − fk′

2

)− fk′
1
fk′

2

(
1 −fk1

)(
1 −fk2

)]
,

(B4)

∫
dk2

e2k2

m∗ E · ∂kfk2

=
∫

dk2dk′
2
−ek2

m∗ U (k2,k′
2)
(
fk2 − fk′

2

)
+

∫
dk1dk2dk′

1dk′
2
ek2

m∗ W (k1,k2,k′
1,k

′
2)

× [
fk1fk2

(
1 −fk′

1

)(
1 −fk′

2

)−fk′
1
fk′

2

(
1 −fk1

)(
1 −fk2

)]
.

(B5)

The left-hand side of Eqs. (B4) and (B5) have the form∫
dnk12

e2k1(2)

m∗ E · ∂kfk1(2) =
∫

dnk1(2)∂k ·
(
e2k1(2)

m∗ Efk1(2)

)

−
∫

dnk1(2)

(
∂k

e2k1(2)

m∗

)
Efk1(2)

= n0e
2

m∗ E, (B6)

where n0 is the density of the electron. The first term on
the right-hand side of Eqs. (B4) and (B5) corresponds to
the impurity scattering and equal to j/τimp, where τimp is the
momentum scattering time due to the impurity. The second
term on the right-hand side is not easy to calculate because the
momentums k1, k2, k′

1, and k′
2 are not independent but corre-

lated by the fact that the electron-electron interaction conserve
the net momentum, i.e., k1 + k2 = k′

1 + k′
2. However, if we

calculate 1
2 [Eqs. (B4) + (B5)], the electron-electron scattering

can be written as∫
dk1dk2dk′

1dk′
2
e(k1 + k2)

2m∗ W [(k1,k2,k1)′,k′
2]

× [
fk1fk2

(
1 − fk′

1

)(
1 − fk′

2

) − fk′
1
fk′

2

(
1 − fk1

)(
1 − fk2

)]
=
∫

dk1dk2dk′
1W (k1,k2; k′

1,k
′
2)

×
[
e(k1 + k2)

2m∗ fk1fk2

(
1 − fk′

1

)(
1 − fk′

2

)

− e(k′
1 + k′

2)

2m∗ fk′
1
fk′

2

(
1 − fk1

)(
1 − fk2

)] = 0. (B7)

Therefore the charge current equation, 1
2 [Eqs. (B4) + (B5)],

has the form

n0e
2

m∗ E = j
τimp

, (B8)

where the electron-electron scattering term exactly disappears
in this current equation as long as the electron-electron
interaction conserves the net momentum, which is not sen-
sitive to the form of the electron-electron scattering rate
W (k1,k′

1; k2,k′
2). However, when deriving the density matrix

equation, we do not multiply by the current operator and
therefore electron-electron scattering can not be canceled as
we did in the current equation. This is reasonable because the
density does not care about the net momentum, which is the
key to get the current equation. Therefore, although the original
Boltzmann equation of the distribution function contains the
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electron-electron interaction, the electron-electron scattering
will disappear when we calculate the charge conductivity.
Hence the electron-electron interaction will not affect the
conductivity but can contribute to the spin dynamics.

APPENDIX C: THE DERIVATION OF THE MATRIX
ELEMENT OF THE SPIN DYNAMIC EQUATION

In the weak SOC regime, �soτ � 1, the denominator of
Eq. (37) can be expanded to

1

�̃2 + 4k2τ 2 cos2 θλ2
1 + 4k2τ 2 sin2 θλ2

2

≈ 1 + 2iω̃ − 2i(q̃x cos θ + q̃y sin θ ) − 3q̃2
x cos2 θ

− 3q̃2
y cos2 θ − 4k2τ 2 cos2 θλ2

1 − 4k2τ 2 sin2 θλ2
2, (C1)

where ω̃ = ωτ and q̃x(y) = qx(y)vτ . Substituting Eq. (C1) into
Eq. (28), we have

D13 = −D31 =
∫

dθ

2π

2λ1kτ cos θ

�̃2 + 4k2τ 2 cos2 θλ2
1 + 4k2τ 2 sin2 θλ2

2

≈ −
∫

dθ

2π
4ikτ q̃x(α + β1 − 2β3 cos 2θ ) cos2 θ

= −2i(α + β1 − β3)kτ q̃x, (C2)

D23 = −D32 =
∫

dθ

2π

−2λ2kτ sin θ

�̃2 + 4k2τ 2 cos2 θλ2
1 + 4k2τ 2 sin2 θλ2

2

≈
∫

dθ

2π
4ikτ q̃y(β1 − α1 + β3 cos 2θ ) sin2 θ

= 2i(β1 − β3 − α)kτ q̃y, (C3)

D33 =
∫

dθ

2π

�̃

�̃2 + 4k2τ 2 cos2 θλ2
1 + 4k2τ 2 sin2 θλ2

2

≈
∫

dθ

2π

(
1 + iω̃ − q̃2

x cos2 θ − q̃2
y sin2 θ

− 4k2τ 2 cos2 θλ2
1 − 4k2τ 2 sin2 θλ2

2

)

= 1 + iω̃ − 1

2

(
q̃2

x + q̃2
y

) − 4
(
α2 + (β1 − β3)2 + β2

3

)
k2τ 2

= 1 + iω̃ − 1

2

(
q̃2

x + q̃2
y

) − �̃2
soτ

2, (C4)

D11 =
∫

dθ

2π

�̃2 + 4λ2
2k

2τ 2 sin2 θ

�̃
(
�̃2 + 4k2τ 2 cos2 θλ2

1 + 4k2τ 2 sin2 θλ2
2

)
≈ D33 +

∫
dθ

2π
4λ2

2k
2τ 2 sin2 θ

= D33 +
(

1

2
(α − β1) 2 + (α − β1) β3 + β2

3

)
4k2

F τ 2

= 1 + iω̃ − 1

2

(
q̃2

x + q̃2
y

) − 2
(
α2 + (β1 − β3)2 + β2

3

)
k2τ 2

−α(β1 − β3)

= 1 + iω̃ − 1

2

(
q̃2

x + q̃2
y

) − 1

2
�2

soτ
24k2

F τ 2α(β1 − β3),

(C5)

D22 =
∫

dθ

2π

�̃2 + 4λ2
2k

2τ 2 sin2 θ

�̃2 + 4k2τ 2 cos2 θλ2
1 + 4k2τ 2 sin2 θλ2

2

≈
∫

dθ

2π

(
1 + iω̃ − q̃2

x cos2 θ − q̃2
y sin2 θ − 4k2τ 2 cos2 θλ2

1

)

= 1 + iω̃ − 1

2

(
q̃2

x + q̃2
y

) − 2
(
α2 + (β1 − β3)2 + β2

3

)
k2τ 2

+α(β1 − β3)

= 1 + iω̃ − 1

2

(
q̃2

x + q̃2
y

) − 1

2
�2

soτ
2 + 4k2τ 2α(β1 − β3),

(C6)

where �so = 2
√

α2 + (β1 − β3)2 + β2
3k.
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9A. A. Burkov, A. S. Núñez, and A. H. MacDonald, Phys. Rev. B
70, 155308 (2004).

10E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev.
Lett. 93, 226602 (2004).

11B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys. Rev. Lett. 97,
236601 (2006).

12T. D. Stanescu and V. Galitski, Phys. Rev. B 75, 125307 (2007).

13V. Gridnev, JETP Lett. 74, 380 (2001).
14M. Glazov, Solid State Commun. 142, 531 (2007).
15B. A. Bernevig and J. Hu, Phys. Rev. B 78, 245123 (2008).
16I. V. Tokatly and E. Y. Sherman, Phys. Rev. B 82, 161305 (2010).
17I. Tokatly and E. Sherman, Ann. Phys. 325, 1104 (2010).
18X. Liu, X.-J. Liu, and J. Sinova, Phys. Rev. B 84, 035318 (2011).
19C. Grimaldi, Phys. Rev. B 72, 075307 (2005).
20J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S.-C.

Zhang, S. Mack, and D. D. Awschalom, Nature (London) 458, 610
(2009).

21M. A. Brand, A. Malinowski, O. Z. Karimov, P. A. Marsden,
R. T. Harley, A. J. Shields, D. Sanvitto, D. A. Ritchie, and M. Y.
Simmons, Phys. Rev. Lett. 89, 236601 (2002).

22W. J. H. Leyland, R. T. Harley, M. Henini, A. J. Shields, I. Farrer,
and D. A. Ritchie, Phys. Rev. B 76, 195305 (2007).

23W. J. H. Leyland, G. H. John, R. T. Harley, M. M. Glazov, E. L.
Ivchenko, D. A. Ritchie, I. Farrer, A. J. Shields, and M. Henini,
Phys. Rev. B 75, 165309 (2007).

174301-13

http://dx.doi.org/10.1103/PhysRevLett.83.1834
http://dx.doi.org/10.1126/science.1087128
http://dx.doi.org/10.1126/science.1087128
http://dx.doi.org/10.1103/PhysRevLett.92.126603
http://dx.doi.org/10.1103/PhysRevB.62.4853
http://dx.doi.org/10.1103/PhysRevB.68.045307
http://dx.doi.org/10.1038/nature04206
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevB.70.155308
http://dx.doi.org/10.1103/PhysRevB.70.155308
http://dx.doi.org/10.1103/PhysRevLett.93.226602
http://dx.doi.org/10.1103/PhysRevLett.93.226602
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevB.75.125307
http://dx.doi.org/10.1134/1.1427126
http://dx.doi.org/10.1016/j.ssc.2007.03.045
http://dx.doi.org/10.1103/PhysRevB.78.245123
http://dx.doi.org/10.1103/PhysRevB.82.161305
http://dx.doi.org/10.1016/j.aop.2010.01.007
http://dx.doi.org/10.1103/PhysRevB.84.035318
http://dx.doi.org/10.1103/PhysRevB.72.075307
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1103/PhysRevLett.89.236601
http://dx.doi.org/10.1103/PhysRevB.76.195305
http://dx.doi.org/10.1103/PhysRevB.75.165309


XIN LIU AND JAIRO SINOVA PHYSICAL REVIEW B 86, 174301 (2012)

24J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
25L. Zheng and S. Das Sarma, Phys. Rev. B 53, 9964 (1996).
26C. P. Weber, J. Orenstein, B. A. Bernevig, S.-C. Zhang,

J. Stephens, and D. D. Awschalom, Phys. Rev. Lett. 98, 076604
(2007).

27E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).
28Y. A. Bychkov and E. I. Rashba, J. Phys. C: Solid State Physics 17,

6039 (1984).
29G. Dresselhaus, Phys. Rev. 100, 580 (1955).
30J. Rammer, Quantum Field Theory of Nonequilibrium States

(Cambridge University Press, Cambridge, 2007).
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