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Stress-driven island growth on top of nanowires

Frank Glas*

CNRS - Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis, France

Bruno Daudin
CEA-CNRS-UJF Group Nanophysique et Semiconducteurs, CEA, INAC, 17 rue des Martyrs, 38054 Grenoble, France

(Received 24 August 2012; published 16 November 2012)

We model the coherent deposition of a mismatched material on the top facet of a nanowire and investigate
the possible formation of a cylindrical island that is narrower than the nanowire stem. We calculate the elastic
relaxation and the total energy of the system and determine the optimal shape of the deposit as a function of
misfit, nanowire radius, and deposit thickness. If the values of any two of these parameters are set, then there is
a critical value of the third one above which the formation of a genuine island that is narrower than the stem is
favored compared to that of a disk of equal volume covering entirely the top facet. These critical values are easily
accessible in current nanowire systems, and we predict that islanding can lead to a large reduction of the total
energy. We discuss the similarities and differences between the present effect and the standard Volmer-Weber and
Stranski-Krastanow growth modes. For semiconductor nanowires, islanding is likely to occur primarily in the
case of catalyst-free growth. We argue that it might already have been observed in heterostructures of nanowires
of group-III nitrides.
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I. INTRODUCTION

It is commonly observed that a mismatched material
deposited epitaxially on a bulk planar substrate tends to grow
as islands rather than as a uniformly thick layer [hereafter
termed two-dimensional (2D) layer]. There are two variants
of this growth mode, known as Volmer-Weber (VW) and
Stranski-Krastanow (SK), which differ by the absence (VW)
or presence (SK) of a thin wetting layer on the substrate.
In both cases, the driving force for the nucleation of the
coherent islands is the reduction of elastic energy afforded
by strain relaxation at the free lateral surfaces of the islands
and strain partition between islands and substrate. Observed
for more than 25 years,1 the SK growth of semiconductors
has spurred the spectacular development of quantum dot (QD)
nanostructures.

Inserting QDs in semiconductor nanowires (NWs) offers
an attractive alternative to growing them on planar substrates,
with applications ranging from tunneling devices2 to light-
emitting diodes3 and sources of single or entangled photons.4–8

NWs then constitute very narrow effective substrates that
present several advantages. In the planar case, the QDs tend
to nucleate randomly on the surface (or even, for group-III
nitrides, in the vicinity of threading dislocations)9 and the
dispersions of their shapes and dimensions may constitute a
major drawback. In the NW case, the location of the QD is
predetermined by that of the NW. Ordered arrays of NWs can
be grown by using lithography methods in the vapor-liquid-
solid (VLS) mode (by patterning the catalyst droplets)10 as
well as in the catalyst-free mode.11 Moreover, the dimensions
of the QD are controlled by the NW diameter and the growth
time. Indeed, when one forms an axial heterostructure in a NW,
the deposit usually adopts the diameter of the NW stem. There
may be two reasons for this. The first is specific to VLS growth,
where each new monolayer (ML) tends to nucleate at the triple
phase line12,13 or in its vicinity14,15 before rapidly spreading

over the whole top facet of the NW.16,17 The second reason
is related to misfit. At variance with deposition on a laterally
infinite substrate, elastic relaxation at the NW sidewalls is very
effective18–21 so that there seems to be little driving force for
forming an island rather than a layer covering entirely the top
facet of the NW (later termed disk). In these conditions, the
insertion of a QD in a NW starts with the deposition of a
layer which adopts the same diameter as the NW, with lateral
confinement being provided by the subsequent growth of a
shell around the whole structure.22,23

There are indeed many reports of QDs grown in a non-VLS,
catalyst-free fashion that adopt the diameter of the underlying
NW.24–26 However, several groups have also observed that a
nominally homogeneous alloy deposited on a misfitting NW
stem may spontaneously adopt a core-shell structure.27–29 We
may imagine two scenarios leading to such a structure (Fig. 1):
either the deposit grows layer by layer on the whole top facet,
but each ML is radially inhomogeneous [Fig. 1(a)], or else the
process starts with the formation of an island narrower than the
NW stem, which is capped laterally by another material during
the subsequent stages of growth [Fig. 1(b)]. Although these
scenarios might be distinguished by observing the early stages
of deposition, this does not seem to have been done so far.
For the reasons mentioned earlier, we expect such processes
to occur primarily, if at all, for catalyst-free growth, and the
observations listed above27–29 actually pertain to the catalyst-
free growth of NWs of group-III nitrides.

Niu et al.30 recently addressed the first scenario [Fig. 1(a)]
and showed that it can indeed happen in certain growth
conditions, but of course only for alloys. Here, we explore
the first stage of the second possible mode of spontaneous QD
formation [Fig. 1(b)], which is the only one conceivable for
elemental or binary compound semiconductors. Namely, we
study if the growth of a homogeneous mismatched material
on top of a NW might lead to the spontaneous formation of
islands narrower than the NW, a mechanism that would be
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FIG. 1. (Color online) Two scenarios for the spontaneous for-
mation of a quantum dot on top of a NW. (a) Continuous growth of
radially inhomogeneous alloy monolayers. (b) Island growth followed
by conformal shell embedding.

akin to VW or SK growth, despite the easy stress relaxation
at the NW free surfaces. In the present work, we only treat
the energetics of the problem, not its kinetics. Note that we
consider the formation of misfitting islands on the top facet
of the NW. This differs totally from the formation of islands
or corrugations on the sidewalls of the NW, a problem that
several groups have already investigated experimentally31–33

and theoretically.34

II. MODEL AND CALCULATIONS

A. Model

As a first approximation, and in order to keep to a minimum
the parameters defining the system while still capturing the
basic physical ingredients of the problem, we consider an
axisymmetric structure consisting of a long cylindrical NW
stem of radius RNW topped by a misfitting axial cylindrical
island of radius R � RNW and height H [Fig. 2(a)]. We assume
that the island is homogeneous (even in the case of an alloy)
and that lattice accommodation at the NW/island interface is
coherent (no extended defect is present).

We calculate the increase Wt of the total energy of the
system upon forming the island as the sum of the elastic energy
We generated by the coherent relaxation of the whole system
and of an energy Ws associated to surfaces, and possibly
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FIG. 2. (Color online) Schematics of islands of equal volumes
covering the top facet of the nanowire either (a) partly or (b) fully
(disk); (c) equivalent volume as part of a 2D layer grown on a bulk
substrate.

interfaces, created or destroyed upon island formation. To
calculate the elastic energy, we assume that the NW and
the island are isotropically elastic materials, with identical
Young moduli E and Poisson ratios ν. The relative mismatch
is specified by a single quantity ε0 (the stress-free strain).
As regards the surface energy (the components of which are
indicated in Fig. 2), we consider two cases. Either we limit
ourselves to that of the island sidewalls, WSW = 2πRHγSW ,
with γSW the areal energy of the sidewalls [Eq. (1a)], or, in
addition [Eq. (1b)], we also consider the energies associated
with the formation of the top surface of the island (areal
energy γ2) and of the NW/island interface (γi) and with the
disappearance of this part of the top surface of the NW stem
that becomes occupied by the island (γ1). Hence,

Wt = We + 2πRHγSW (case 1) (1a)

or Wt = We + 2πRHγSW + πR2�γ (case 2) (1b)

where �γ = γ2 + γi − γ1.
Our aim is to develop a generic model not tied to any specific

material system, to determine general trends as a function
of system geometry and misfit, and to find possible critical
values of these parameters for islanding. Hence, we allow
the system dimensions, in particular the island thickness H , to
vary continuously and to take small values. It should, however,
be borne in mind that in any particular semiconductor, a disk
or an island is made of an integer number of MLs, with the
minimum thickness being one ML.

B. Elastic energy

In the framework of linear isotropic elasticity, for given
elastic constants, the strain field depends only on the relative
dimensions of the system and scales with ε0. As regards the
elastic constants, the elastic energy scales with E but depends
on ν in a nontrivial fashion, albeit rather weakly. Hence, for
a given Poisson ratio, in order to get the full variations of We

with system geometry and mismatch, it suffices to perform
calculations for a single mismatch and a single NW radius and
to vary independently the radius and height of the island:

We(RNW ,R,H ; ε0,E,ν)

= Eε2
0

(
RNW

R0

)3

we

(
R0

RNW
R,

R0

RNW
H ; ν

)
, (2)

where we (r,h; ν) is the reduced elastic energy calculated for
an island of radius r and height h sitting on top of a NW of
arbitrary unit radius R0, with ε0 = 1 and E = 1.

In practice, for want of an analytical solution to the elastic
problem, we calculate numerically the strain state and the
reduced elastic energy we for a given value of the NW radius R0

and for a wide range of discrete values of island radius r � R0

and height h, by using the COMSOL software.35 We then fit we to
a continuous function of r and h. As in the case of axial (disk)
heterostructures (r = R0),19 the fitting function must satisfy
some constraints due to the following asymptotic limits:

(i) For any given r , when h → 0, the lateral extension
of the deposit becomes effectively infinite so that we tends
to the energy of the same volume of deposit cut in a 2D
layer coherently deposited on a bulk substrate with identical
elastic constants19 [Fig. 2(c)], namely, w2D (r,h; ν) =
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W2D (r,h; ε0 = 1,E = 1,ν), with W2D (r,h; ε0,E,ν) =
πr2hEε2

0/(1 − ν). Hence the ratio

fν (r,h) = we (r,h; ν) /w2D (r,h; ν) (3)

tends to 1 when h → 0.
(ii) Because of strain relaxation at their sidewalls, tall

islands are substantially strained only over a height of the
order of their radius.19 Hence, when h → ∞, we tends to an
r-dependent constant whereas w2D scales with r2h and, for r

given, fν varies asymptotically as 1/h.
We find that the following function, which satisfies con-

straints (i) and (ii), satisfactorily fits function fν [defined by
Eq. (3)] at fixed r:

ϕν (r,h) = 1 + t1h exp[−t3h]

1 + t2h
. (4)

In Eq. (4), ti (i = 1,2,3) are r-dependent parameters which
are themselves fitted by functions:

ti(r) =
4∑

j=−1

Aij r
j . (5)

We have derived such fitting functions by performing
numerical calculations of we for more than 150 (r,h) couples
(spanning the ranges 0.04 � r/R0 � 1 and 0.01 � h/R0 � 4)
and for three values of the Poisson ratio, namely, ν = 0.25,
0.33, and 0.41. The corresponding parameters are given in
Table I. The best fit of the energy as a function of island
dimensions was found independently for each value of ν.
This produced values of the Aij parameters which are not
smooth functions of ν. However, the Aij parameters, taken
individually, have no physical meaning. Energy we and
function f , on the other hand, vary smoothly with ν, when all
other parameters (and, in particular, the dimensions) are fixed.
Hence, values of fν for other values of ν can be obtained by
interpolating fν (and not the fitting parameters Aij ).

The variations of the ratio fν for 0 � h/R0 � 4 and the
quality of the fits are illustrated in Fig. 3 for a large range
of values of the normalized island radius r/R0. In the case
r = R0, Eqs. (4) and (5) provide fits refined from those given
in Ref. 19.

The general trends are the following. At fixed island radius
r , fν decreases when island height h increases. However, at
fixed island height, the variations of fν are more complex:
whereas fν increases with small radii, it varies little and
nonmonotonically with r for r � R0/2. This manifests the in-
tricate interplay of elastic relaxation at the lateral free surfaces
of the island and NW stem when these have similar radii.
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FIG. 3. (Color online) Variations of the ratio of the elastic energy
stored in the system made of a misfitting island coherently deposited
on a NW stem [Fig. 2(a)] to that stored in a volume equal to the island,
cut in a 2D layer [Fig. 2(c)], with the layer/substrate and island/NW
misfits being equal. Variations are given as a function of island height
h for various values of the island radius r , with h and r in units of
NW radius R0, and ν = 0.33. Each symbol represents a numerical
calculation made for a given island geometry. The curves are fits of
these data with functions ϕν given by Eqs. (4) and (5). Since we gets
smaller and varies more slowly at high h, the graph is divided in two
halves for the sake of visibility: starting from h = 0.5, the horizontal
scale is contracted by a factor of 7.2 and the vertical scale is expanded
by a factor of 10 (right axis).

C. Energy minimization

Once the fitting functions are determined, we obtain an an-
alytical expression for the total energy Wt (RNW ,R,H ; ε0,E,ν)
as a function of dimensions, misfit, and elastic constants
by adding the elastic energy given by Eqs. (2)–(5) to the
surface and possibly interface energies, according to Eq. (1a)
or (1b). We then find the optimal aspect ratio of the island
for a given total deposit volume V , i.e., the radius-height
couple (Ropt,Hopt) that minimizes total energy Wt under the
constraint πR2H = V . This minimization is performed for a
wide range of NW radii RNW , deposit volumes V , and relative
lattice mismatches ε0. For each set of these parameters, the
minimum energy Wopt is then compared to the total energy
Wdisk = Wt (RNW ,RNW ,Hnom; ε0,E,ν) for a deposit of equal
volume and equal misfit wholly covering the top facet of the
NW, i.e., a disk of nominal thickness Hnom = π−1V/R2

NW

TABLE I. Parameters Aij for the calculation of the elastic energy according to Eqs. (2)–(5).

ν = 0.25 ν = 0.33 ν = 0.41
j i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

−1 4.49588 8.57313 6.50236 4.88471 8.96602 6.8399 4.65864 9.31206 6.69716
0 −4.47476 2.05094 −6.98281 −12.55246 1.92076 −12.72769 −7.58291 1.85064 −5.0962
1 14.57256 −16.75704 26.48042 65.82582 −17.5834 70.75007 29.99425 −16.21396 14.21671
2 −33.09847 50.56185 −38.63564 −165.45649 55.6273 −169.9425 −65.97962 50.81011 −9.15628
3 44.65054 −61.46454 22.1264 190.63404 −69.68977 182.91743 77.13609 −63.82867 −7.27382
4 −23.10718 30.38787 −0.43759 −80.58307 34.52705 −69.51665 −35.30009 32.13003 9.81956
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[Fig. 2(b)]. When Wopt/Wdisk < 1, the island is preferred to
the disk, whereas the disk is favored when Wopt/Wdisk = 1.

In Secs. III and IV, we investigate the system behavior
under various hypotheses. In Sec. III, the only surface energy
considered is that of the sidewalls [Eq. (1a)]. There are several
reasons for doing so. In general, the interface energy is only
a minor contribution to the total energy.36,37 This might not
be the case for the energies of the top surfaces of the NW
and island. However, only their difference appears in the
calculation. Moreover, in the usual case of the {0001} wurtzite
or {111} sphalerite polar surfaces, these quantities are not well
defined since only a pair of different such surfaces can be
created by cleavage. Only differences of such energies for the
same material are defined, and they also vary with the chemical
potentials of the group-III and group-V species in the vapor
phase38 and with strain.39 Nevertheless, in Sec. IV, we will
discuss in a general fashion how the conclusions of Sec. III
are modified for either positive or negative values of �γ .

III. RESULTS WITH ELASTIC AND SIDEWALL SURFACE
ENERGIES ONLY

In the following, we discuss the preference for forming
an island rather than a disk (Secs. III A and III B) and the
optimal aspect ratio of the island (Sec. III C) as a function
of misfit and geometry. We find that these depend little on
the value of the Poisson ratio ν. We illustrate our results for
ν = 0.33. We take E = 3.24 × 1011 Pa and γSW = 1.8 J/m2.
These values closely approximate those of NWs of (In,Ga)N
alloys with moderate In concentrations, growing along (0001̄)
with {101̄0} side facets.39–41

In the present section, in addition to the elastic energy,
we only take into account the surface energy of the sidewalls
[Eq. (1a)]. Quite generally, at fixed deposit volume V , when the
island radius R decreases from its maximum value RNW , the
elastic energy decreases (recall that the strained volume varies
roughly as R3 at low R), but at the same time the sidewall
energy, which scales with the sidewall area 2V/R, increases.
Whether or not a minimum of the total energy will occur at
some radius R < RNW depends on the relative weights of the
elastic and sidewall energies (see Sec. III B for more details).
This is already the case for growth on a 2D substrate, but here
the elastic energy is deeply modified by the proximity of the
NW sidewalls.

A. Critical misfit for island formation

Figures 4 and 5 show the variations of the ratio Wopt/Wdisk

(defined in Sec. II C) as a function of NW radius RNW and
nominal deposit thickness Hnom. In Figs. 4 and 5, the various
maps correspond to three different values of misfit ε0, and we
consider NW radii up to 50 nm and deposit thicknesses up to
2.7 nm. Note that the optimal configuration (disk or island,
and, in the latter case, optimal aspect ratio of the island) is
found for a given deposit volume V , whereas the quantity
along the y axis in Figs. 4 and 5 is Hnom = π−1V/R2

NW (see
Sec. II C). This choice is made in order to facilitate comparison
with experiments, where the amount deposited per unit area
is a privileged control parameter. For the same reason, we
express Hnom in terms of MLs of thickness 0.27 nm; this
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FIG. 4. (Color online) Map of the variations as a function of
NW radius and nominal deposit thickness of the ratio Wopt/Wdisk of
the minimum energy of the system (at given deposit volume) to its
energy in the disk configuration. The nominal deposit thickness is
expressed in monolayers of thickness 0.27 nm. The misfit ε0 of the
deposit with respect to the NW is (a) 2% or (b) 3%. The gray zones
at left and bottom are where the disk is favored (ratio equal to 1),
whereas island formation is preferred in the colored areas. Material
parameters: ν = 0.33, E = 3.24 × 1011 Pa, γSW = 1.8 J/m2.

value is arbitrary but close to the ML thickness in a standard
〈0001〉 direction for the wurtzite nitrides or 〈111〉 for the
cubic semiconductors. Nevertheless, as mentioned earlier, our
continuum approach allows us to consider deposits thinner
than 0.27 nm (1 ML here), which is useful to clarify effects
occurring at low deposit thickness (Sec. III B) and would be
necessary for other materials with lower ML thickness (in
practice, a deposit may of course have an average thickness
below 1 ML and be made of discontinuous patches of 1 ML
thickness, but our model does not handle this case).

Each map in Figs. 4 and 5 may be viewed as a stability
diagram where the gray area at left and bottom corresponds to a
stable disk and the colored bands correspond to a disk unstable
against its transformation into an island. The aspect ratios
of the optimal islands, which realize the minimum energies
plotted in Figs. 4 and 5, will be discussed in Sec. III C.

For the lowest misfit considered [ε0 = 2%; Fig. 4(a)], there
is very little tendency to island formation. We observe a
reduction of total energy for the island configuration only
for RNW > 45 nm and Hnom > 5 MLs, and at most by a
few percent. However, for ε0 = 3% [Fig. 4(b)], it becomes
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FIG. 5. (Color online) Same as Fig. 4 for ε0 = 4%. The arrows
illustrate the existence of a deposit-thickness-dependent critical NW
radius and a NW-radius-dependent critical deposit thickness.

energetically favorable to form islands at a much lower NW
radius (about 20 nm) and deposit thickness (about 1 ML).
Moreover, the reduction of energy may be substantial, e.g.,
up to about a third of the energy of the disk configuration in
the parameter ranges considered. This tendency is confirmed
in the case ε0 = 4% (Fig. 5). Then, there is a preference for
island over disk as soon as RNW > 10 nm; for higher radii, the
reduction of energy may be larger than 50%.

For a given (NW radius, deposit thickness) couple, the
relative energy reduction increases with misfit. For each couple
(at least in a large domain), there is a critical misfit above
which island formation becomes favorable, as expected from
the increased relative weight of the elastic energy with misfit
[Eq. (2)].

B. Critical NW radius and critical deposit thickness

In addition to the misfit, the geometrical parameters that
define the system exhibit critical values. We discuss this in the
case ε0 = 4% (Fig. 5), but our conclusions remain valid for
other misfits.

We first observe that for each nominal deposit thickness,
there is a critical NW radius above which the island configu-
ration becomes favorable. As illustrated in Fig. 5 for a deposit
of 4 MLs (horizontal arrow), we may adopt various criteria for
defining its value, such as the radius where, upon forming the
island, there is a vanishing gain in energy (point A) or else a
given relative gain (e.g., 20% at point B). However, whatever
the criterion and except at very small deposited thickness (see
below), this NW radius depends little on this thickness (the
boundaries in Fig. 5 are nearly vertical) and can thus rightly
be taken as a critical radius for the morphological transition.
For instance, using the first criterion, it only varies by 2.5 nm
for nominal deposits ranging between 1 and 10 MLs.

The picture is quite different at very low deposit thicknesses
(recall that we consider arbitrarily thin deposits). Then, the
disk is systematically favored and the critical NW radius
varies rapidly with deposit thickness, as witnessed by the
shallowly sloped boundaries in Figs. 4(b) and 5. This can
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FIG. 6. (Color online) Variation with island radius, at fixed island
volume V and for a given NW radius RNW = 25 nm, of the elastic (red
curves), sidewall (blue curves), and total (green curves) energies. Full
and dashed curves correspond, respectively, to deposit thicknesses of
5 and 0.2 MLs (at full NW radius). The energies are normalized to the
total energy of the disk with the same volume. Material parameters
as in Figs. 4 and 5; ε0 = 4%.

be understood by considering separately the variations of the
elastic and sidewall energies as a function of island radius,
at fixed deposit volume and for a given NW radius (Fig. 6).
For all but the thinnest deposits (full lines in Fig. 6), when
the island radius is reduced (starting from the NW radius),
considerable elastic relaxation takes place. In a range of island
radii, this overcomes the increase of sidewall energy, so that a
more or less pronounced minimum of the total energy occurs
at some radius, which defines the optimal island (Sec. II C).
On the contrary, for a low deposit thickness (dashed lines in
Fig. 6), the elastic energy of the system remains approximately
constant for a wide range of island radii because the elastic state
of the island remains very close to that of a 2D layer. When
the island radius is reduced enough for elastic relaxation to
become substantial (say, to about a third of the NW radius in
the example of Fig. 6), the sidewall energy has increased too
much to be compensated by this reduction, and no minimum of
the total energy occurs (as seen in Fig. 6, a weak local minimum
may still occur, but this is not the absolute minimum, which is
found at R = RNW ).

Hence, at a given NW radius, a transition from disk to island
occurs when the deposit thickness increases, and this transition
is very sharp. For instance, for RNW = 30 nm (vertical arrow
in Fig. 5), there is no gain in energy up to 0.25 ML deposited
(point C), but the gain in forming an island is already 1/4
of the disk energy at 1 ML (point D) and 1/3 at 2.1 MLs
(point E). The same holds for ε0 = 3%, where, for the same
radius, there is no gain up to 1.15 ML and a 10% gain at
2.4 MLs [Fig. 4(b)]. This is very reminiscent of the SK
growth mode of mismatched epitaxial layers on bulk substrates
whereby, as the deposit thickness increases, a sharp transition
occurs between a continuous 2D layer of uniform thickness
and islands resting on the remains of this layer (the wetting
layer). There are, however, differences with the standard SK
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transition. In particular, our simple model does not account
for a transition whereby the disk would transform partly into
a pseudo-2D layer covering entirely the top facet (a thinner
disk) and partly into an island resting on top of it (which is,
however, not likely since the formation of a wetting layer
would reduce the effective volume of the island and thus
increase the total energy). Moreover, we assumed that the
energies of the top facets of the NW stem and deposit are equal,
whereas a difference in substrate and deposit surface energies
plays a crucial part in the SK transition of semiconductor
heterostructures. This will be discussed in Sec. IV. Finally,
for large NW radii, i.e., precisely when we approach growth
on a bulk substrate, the deposit thickness up to which the
disk is favored tends to zero [Figs. 4(b) and 5] and not to the
finite thickness that characterizes the standard SK transition,
as opposed to the VW transition.

C. Optimal aspect ratio of the island

The optimal aspect ratio of the deposit also exhibits sharp
transitions when the system parameters are modified. This is
demonstrated in Fig. 7 where, again for ε0 = 4%, we map
the radius Ropt of the optimal island, as defined in Sec. II C,
normalized by the NW radius. Indeed, when the NW radius is
increased above the critical radius at fixed deposit thickness,
the island very quickly adopts an aspect ratio notably different
from that of the disk. For instance, for a deposit of 4 MLs, the
transition between the disk (R = RNW ) and an island having
a radius equal to only 2RNW/3 occurs for an increase of RNW

of only 0.25 nm. Of course, this transition is not likely to be
observed in practice, unless the NW radius increases by radial
growth as well as axial growth. On the other hand, the increase
of the deposit thickness at a constant NW radius corresponds to
a standard growth sequence. And this also gives rise to a sharp
transition between the disk and an island notably narrower
than the NW, all the more so that the NW radius is large.
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FIG. 7. (Color online) Map of the variations as a function of NW
radius and deposit thickness of the radius of the optimal island. The
radius is expressed in units of NW radius. Material parameters as in
Fig. 5.

IV. RESULTS WITH ALL SURFACE ENERGIES INCLUDED

In this section, we discuss how the conclusions of Sec. III
are modified by including the difference in surface energies
between the top facets of the NW and island. In Fig. 8, we
retain the same parameters as in Fig. 5, but we now consider
values of �γ equal to ±10% of the sidewall areal energy,
instead of �γ = 0.

When �γ < 0 [Fig. 8(a)], islands with wide top facets, and
ultimately disks, are favored. Consequently, the disk/island
boundary and the lines of the equal Wopt/Wdisk ratio shift
towards higher values of the NW radius with respect to the
case �γ = 0. However, although the domain of preference
for the disk with respect to the true island is enlarged, the
general shape of the diagram remains unaltered. In particular,
there still exist critical radii and critical thicknesses, albeit
larger than when �γ = 0.

The modifications might appear larger in the case �γ > 0
[Fig. 8(b)]. However, except for the thinnest deposits, the main
modification of the stability diagram is that the disk/island
boundary and the lines of equal Wopt/Wdisk are displaced
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FIG. 8. (Color online) Same as Fig. 5 with nonzero differences
of surface energies between the top facets of the island and NW
stem: (a) �γ = −0.18 J/m2, (b) �γ = 0.18 J/m2. The dashed line in
(b) marks the disk/island transition when elastic energy is ignored
(see text).
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towards lower values of the NW radius and deposit thickness
with respect to the case �γ = 0: as expected, �γ > 0
favors narrow islands and ultimately true islands compared
to disks. In this case also, the notion of critical radius remains
pertinent, although this radius varies slightly more with deposit
thickness. It is only at very low deposit thickness that the
diagram is deeply modified. In particular, islands tend to form
at any deposit thickness, whatever the NW radius, so that there
is no longer any critical thickness. This can be understood by
recalling that at small deposit thicknesses, the elastic state
of the island remains quasi-2D for a wide range of radii
(Fig. 6). The changes of the total energy with island radius
are then mainly due to the changes of the surface energy,
Ws = 2πRHγSW + πR2�γ . Then, at fixed island volume V ,(

∂Ws

∂R

)
V

= 2πR

(
�γ − V

πR3
γSW

)
. (6)

This shows that if �γ > 0, a reduction of island radius is
indeed favored when V → 0, which is at variance with the
case �γ < 0. More precisely, based solely on surface energy,
the disk becomes unstable [(∂Ws/∂R)V > 0 for R = RNW ] if
Hnom < (�γ/γSW ) RNW . This condition, shown as a dashed
line in Fig. 8(b), correctly predicts the change of orientation
of the lines of equal ratio Wopt/Wdisk from nearly vertical
to shallowly sloped at low deposit thickness, although the
quantitative determination of the critical thickness requires
inclusion of the elastic energy.

It is in the case �γ < 0 [Fig. 8(a)] that we may expect
a true SK transition. Recall that our model only treats the
complete transformation of a disk into an island and does not
allow for a wetting layer coexisting with islands. Hence, for a
given NW radius, the morphological transition occurs when the
deposit volume becomes large enough for the energy gained
in the elastic relaxation of the island to balance the increase
of energy due not only to the formation of the sidewalls, but
also now to the increase of the area of high energy γ1 at the
expense of the area of low energy γ2. If the transformation
preserved a wetting layer, then the gain in elastic energy
would only need to compensate for the formation of the
island sidewalls, and the transformation would occur at smaller
deposit volumes. We would then expect a disk/island stability
diagram that is intermediate between those calculated with
�γ = 0 (Fig. 5) and �γ < 0 in the absence of a wetting layer
[Fig. 8(a)].

V. DISCUSSION AND CONCLUSIONS

The main result of the present study is that islanding may
considerably reduce the total energy of the system constituted
of a misfitting deposit on a narrow NW stem. Whereas for
low misfit the gain of energy in forming an axial island rather
than a disk is null or marginal, it may become very significant
at higher misfits. More generally, as in the case of growth on
a bulk substrate, islanding is favored by high elastic energy
(high E or high ε0) and low surface energy (γSW ). However,
the present problem is considerably complicated by the finite
width of the NW stem and, in addition to elastic constants and
surface energies, there are three geometrical and structural
parameters that determine the energy of the system, namely,
NW radius, deposit thickness, and misfit. If one fixes the values

of any two of these, then there is a critical value of the third
one above which the formation of a genuine island is favored
compared with that of a disk of equal volume. In addition, the
critical NW radius is nearly independent of deposit thickness,
except if this one is very small. This dependence of the critical
values on many parameters makes it difficult to give simple
criteria for islanding. However, by using our fitting functions
for the elastic energy, the critical values can easily be calculated
for any material system and geometry of interest.

Moreover, it is clear, from the examples given, that these
critical values are easily accessible in existing NW systems.
Hence, a proper choice of the relevant parameters might
lead to the deterministic formation of such islands, at least
in catalyst-free NW growth. We believe that spontaneous
island formation has actually already been observed in NW
heteroepitaxy of group-III nitrides,29 although in the case of
alloys (but, of course, not for elementary or stoichiometric
binary deposits) the alternative process of inhomogeneous
layer-by-layer growth [Fig. 1(a) and Ref. 30] remains a
possibility. However, the observation of faceted insertions
with a base narrower than the NW stem27,29 is a strong
argument in favor of island growth [Fig. 1(b)] as opposed
to inhomogeneous layer-by-layer growth. These observations
are no surprise since, according to our calculations (Sec. IV),
even in systems where the deposit has a lower horizontal facet
energy than the stem [such as (Ga,In)N on GaN29 or GaN
on AlN], which favors disks, the formation of islands is still
entirely possible for realistic geometries and misfits [Fig. 8(a)].

We have determined the optimal aspect ratio of a given
deposit thickness, i.e., the shape that minimizes the total
energy. It might, however, be argued that due to fluctuations,
when the optimal configuration is a true island (Ropt < RNW ),
this aspect ratio might not be exactly realized. This would
appear to reintroduce an element of randomness in the
geometry of the deposit that is all too familiar in SK or VW
growth and which would be a drawback compared to the
growth of disk heterostructures that permits perfect control
of the geometry of the insertion (Sec. I). However, much of
the randomness in the location and the size distribution of
standard SK or VW islands stems from the availability of an
effectively infinite substrate for nucleation on which adatoms
can diffuse, which induces a competition between neighboring
nucleation sites. These factors are obviously eliminated in
the case of growth on a NW stem of very limited lateral
extension, on which only a small number of atoms is present,
due to direct deposition and maybe due to diffusion from the
sidewalls. The formation of more than one island on such
a narrow stem is very unlikely and neighboring NWs could
only interact via diffusion on the substrate. Moreover, after
capping by a material with a larger band gap (for instance, the
stem material), such islands may become quantum dots not
only structurally but also as regards their electronic properties.
In some systems, the capping seems to be conformal in that
it also wraps the sidewalls of the island to restore the stem
radius27,29 [Fig. 1(b)]. The spontaneous formation of a lateral
potential barrier is a clear advantage over the disk scheme,
where a core-shell structure has to be fabricated to passivate
the insertion sidewalls.

To conclude, the spontaneous formation of quantum islands
on top of NWs can be considered as a quasideterministic
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process with potentially beneficial aspects as regards the
electronic and optical properties of NW heterostructures. The
large energy gain that it affords for large enough (but perfectly
reasonable) misfit, nanowire radius, and deposit thickness
should make it a frequent feature of heterostructure formation,
at least in catalyst-free NW growth.
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