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First-principles based thermodynamic model of phase equilibria in bcc Fe-Cr alloys
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A first-principles based thermodynamic model for magnetic alloys is applied to the calculation of the Fe-Cr
phase diagram restricted by the bcc structure. The model includes magnetic, electronic, phonon, and local atomic
relaxations contributions to the free-energy derived from ab initio calculations. Atomic short-range-order effects
are found to be relatively small and they have been neglected in the calculations, assuming that alloys are in
the completely random state. In contrast, we have taken into consideration magnetic short-range-order effects,
which are found to be very important in particular above the Curie temperature. The calculated phase diagram is
in reasonable agreement with the latest CALPHAD assessment. Our calculations reproduce a feature known as
a Nishizawa horn for the Fe-rich high-temperature part of the phase diagram.
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I. INTRODUCTION

Understanding phase equilibria in Fe alloys is of great
importance for materials science and solid state physics as
well as for the development of high-performance steels. In
particular, bcc Fe-Cr alloys have lately become a subject of
intensive investigations due to their potential applications as
construction materials for nuclear fission and fusion reactors.1

According to the existing data2 the phase diagram of the bcc
Fe-Cr system is quite simple: The bcc solid solution undergoes
a decomposition onto the mixture of Cr-rich and Fe-rich alloys
at temperatures below about 750 K. However, the experimental
data on the phase boundaries are rather scattered.3 The data
by Dubiel and Inden,4 based on the samples of Fe-Cr alloy
annealed up to 11 years, can be considered as the closest to
the thermal equilibrium, but they are only for a very narrow
temperature range from 733 to 783 K.

Different empirical models have been used in phase
diagram calculations of Fe-Cr alloys.5,6 In this case, the
CALPHAD method7 has an advantage due to direct modeling
of the Gibbs free-energy based on the known experimental
information about thermodynamic properties of the system
and phase equilibria. Xiong et al.3 have recently performed a
comprehensive CALPHAD investigation of the Fe-Cr system,
and bcc Fe-Cr alloys in particular, and introduced a new
CALPHAD description, which is supposed to replace the
commonly accepted one by Andersson and Sundman.7 As
have been noted by Xiong et al.,3 “. . . In spite of numerous
experiments, the determined location of the metastable bcc
miscibility gap is still ambiguous, especially for the critical
solution temperature of the miscibility gap.”

It is clear that the existing phenomenological theories of
Fe-Cr alloys, closely or directly related to the CALPHAD
method, can provide a detailed and accurate description of
phase equilibria in this system only under the condition if
there exist reliable experimental data for a wide range of
temperatures and concentrations, which is not the case here.
The other problem of the CALPHAD-type methods is the
fact that they do not disclose the driving forces behind phase
equilibria at the atomic or electronic structure levels. The latter
are needed for effective intelligent design of new materials,
when the experimental data are not available.

Such information can be only obtained by methods based
on first-principles electronic structure calculations. Unfortu-
nately, the existing first-principles calculations of the Fe-
Cr phase diagram suffer from the incorrect account of the
magnetic state. In the earlier work by Turchi et al.8 the
phase diagram was calculated using effective pair interactions
of an Ising Hamiltonian determined in the calculations of
nonmagnetic Fe-Cr alloys. At the same time, according to
the existing phase diagram, the phase boundary of the Fe-rich
alloys is below the magnetic phase transition, that is, these
alloys are in the ferromagnetic state. The other work by
Lavrentiev et al.9 uses the opposite assumption, considering
everything in the totally ordered ferromagnetic state, which
corresponds to the zero temperature, even in the case when the
authors consider phase equilibrium at temperatures far above
the magnetic phase transition.

Recently, Lavrentiev et al.10 developed a microscopic
phenomenological model, the so-called magnetic cluster
expansion, which made possible a consideration of the
finite-temperature magnetic excitations in the phase equilibria
calculations. The parameters of the Hamiltonian were fitted to
the ab initio calculations of some FeCr structures. This model
Hamiltonian was then used to investigate the polymorphous
high-temperature transformation in pure Fe and the so-called
γ loop in the Fe-Cr alloys. Although such a consideration
looks promising, it cannot be used at low temperatures, where
quantum mechanical effects are important. Besides, it is not
clear how to use this formalism for the description of the phase
separation, where the knowledge of the Gibbs free-energy is
needed.

In fact, the importance of magnetism for the thermody-
namics of Fe and its alloys was recognized a long time
ago.11,12 As far as the Fe-Cr system is concerned, the impact
of the magnetic state upon thermodynamic properties of Fe-Cr
alloys has been clearly demonstrated in a number of recent
first-principles investigations.13–16 In particular, the enthalpies
of formation of random Fe-Cr alloys differ substantially in the
ferromagnetic and paramagnetic states.13,14,16

As has been shown in Ref. 17, even a small deviation of
the global magnetization from the saturated magnitude leads
to a substantial change of the effective chemical interactions,
which exhibit quite strong concentration dependence17–20 also
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directly connected to the magnetism and magnetic state of Cr
atoms in particular.17 Such an anomalous alloying behavior is
observed in the Fe-rich alloys in a rather narrow temperature
range of 600–900 K. This is the most important region from a
technological point of view and, as a matter of fact, the most
difficult one for accurate and reliable theoretical description.

In this paper we present a first-principles-based thermody-
namic investigation of phase equilibria in bcc Fe-Cr alloys. It
incorporates a number of models for different contributions to
the Gibbs free-energy. The first-principles results, which are
used for modeling, are obtained by the state-of-the-art density
functional theory (DFT) methods. Since the latter cannot be
directly used in the calculations of the thermodynamic proper-
ties related to the finite temperature magnetic excitations, we
use different models for the magnetic energy below as well as
above the Curie temperature.

The use of such models is of a practical necessity since an
accurate account of finite temperature magnetism in itinerant
systems is only possible in ab initio methods going beyond
DFT. Although our final results are not truly ab initio, we be-
lieve that they provide a valuable insight into the driving forces
behind phase equilibria in Fe-Cr alloys and may be helpful in
improving thermodynamic modeling in the CALPHAD-type
methods. Besides, they allow one to identify the weakest and
most difficult points in the first-principles modeling.

II. DETAILS OF FIRST-PRINCIPLES CALCULATIONS

A. Full charge density exact muffin-tin orbital
method calculations

Electronic structure calculations of Fe-Cr alloys have
been mainly performed by means of the exact muffin-tin
orbitals (EMTO) method21–24 within the framework of DFT.25

Substitutional disorder has been treated by using the coherent
potential approximation (CPA).26 The applicability of the CPA
to the electronic structure calculations of Fe-Cr alloys has
been checked in supercell calculations16,27,28 by ab initio dif-
ferent techniques including the locally self-consistent Green’s
function (LSGF) method within the EMTO formalism.29,30 In
particular, such calculations have been used to determine the
contributions from the screened Coulomb interactions to the
one-electron potential V scr

i of alloy components i, and the total
energy Escr, within the single-site DFT formalism:31

V scr
i = −α

e2qi

S
and Escr = β

2

∑
i

ciqiV
scr
i . (1)

Here e is the electron charge, S is the Wigner-Seitz radius,
and qi and ci are the average net charge of the atomic
sphere and the concentration for the ith alloy component,
respectively. The values of β were found to vary linearly
from β = 1.00 to β = 1.14, and those of α parameter to
vary nonlinearly from α = 0.658 to α = 0.830, as the alloy
concentration changes from 0 to 100 at.% Cr. Note that the
screened Coulomb interactions are treated quite arbitrarily in
the similar EMTO-CPA calculations in Refs. 13 and 14, which
may result in an inaccurate description of the thermodynamic
properties.

The total energies were determined using the general-
ized gradient approximation32 (GGA) within the full charge

density (FCD) formalism.24 All the self-consistent EMTO-
CPA calculations were performed by using an orbital momen-
tum cutoff of lmax = 3 for partial waves. The integration over
the Brillouin zone was done using a 31×31×31 grid of k
points determined according to the Monkhorst-Pack scheme33

in all the EMTO calculations except those for the exchange
interaction parameters. In the latter case, the Monkhorst-Pack
grid was 55×55×55. The core states were recalculated at each
self-consistency iteration.

The CPA was also employed for modeling the paramagnetic
state within the disordered local moment (DLM) model.34,35

In this model each alloy component is presented by its spin-up
(↑) and spin-down (↓) counterparts assumed to be distributed
randomly on the underlying lattice. The ferromagnetic state
with reduced magnetization m, due to thermal disorder of
spin orientation, has been described by the partially disordered
local moment (PDLM) model adopted in Ref. 17, where a
binary FecCr1−c alloy was presented by a random ternary alloy
(Fe↑

x Fe↓
1−x)cCr1−c, where

x = m + 1

2
. (2)

Note that in the FM and PDLM calculations, the local
magnetic moment of Cr atoms was relaxed to its equilibrium
magnitude and in most of the cases it was antiparallel to that
of Fe.13–16,36 Equilibrium Wigner-Seitz radii (or equivalently,
lattice constants), bulk moduli, and their volume derivatives
have been determined by fitting the total energies of Fe-Cr
alloys by the third order polynomials in the Wigner-Seitz radii
interval from 2.58 to 2.70 a.u. with step 0.01 a.u. at each
concentration (from 0 to 30 at.% Cr with step 2%, from 30 to
100 at.% Cr with step 10%) with specific magnetization (from
1 to 0.6 with step 0.04, from 0.6 to 0 with step 0.2). In total,
more than 4000 self-consistent EMTO-CPA calculations have
been done in order to get the needed thermodynamic functions.

B. Projector augmented wave method calculations

We have also used the full potential projector augmented
wave (PAW) method37,38 as implemented in the Vienna
ab initio simulation package (VASP).39–41 In particular, the
PAW method was used to calculate electronic structure,
equilibrium volume, and local lattice relaxations in ran-
dom Fe0.9375Cr0.0625, Fe0.875Cr0.125, Fe0.75Cr0.25, Fe0.50Cr0.50,
Fe0.75Cr0.25, Fe0.875Cr0.125 alloys. These alloys were mod-
eled by supercells of different sizes. In particular, a 128-
atom supercell formed by 4×4×4 translations of a two-
atom (×2) cubic unit cell of the bcc structure was used
in calculations of Fe0.875Cr0.125, Fe0.75Cr0.25, Fe0.50Cr0.50,
Fe0.75Cr0.25, Fe0.875Cr0.125 alloys. A larger, 256-atom supercell
[4×4×8(×2)] was used to model the random Fe0.9375Cr0.0625

alloy, while the equiatomic random alloy Fe0.5Cr0.5 was
represented by a 64-atom supercell (4×4×4) built upon a bcc
primitive unit cell.

Accordingly, we have used the 4×4×4 Monkhorst-Pack k-
point mesh in the 128-atom and 64-atom supercell calculations
and the 4×4×2 k-point mesh in the case of the 256-atom
supercell. The convergence with respect to the number of k

points has been checked by comparing the results for the
equilibrium lattice constant and elastic moduli of 128-atom
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supercell obtained using 2×2×2 and 4×4×4 k-point meshes.
In order to keep the cubic symmetry of the underlying bcc
lattice, which is preserved on average in real alloys, the shape
of the unit cells was kept fixed while all the atomic positions
inside the supercell were relaxed until the forces acting on
atoms were less than 10−2 eV/Å. The GGA32 has been
used in the PAW self-consistent calculations. The convergence
criterion for the total energy was 10−5 eV.

The total energies of pure elements in the PAW calculations
of the enthalpies of formation of a particular alloy have
been obtained by using the same supercells and parameters
of the PAW method as in the total energy calculations of
the corresponding alloy. This is necessary in order to avoid
systematic errors.

The VASP-PAW method has been also used in the force-
constant calculations, which have been done by the small-
displacement method in a way similar to that described in
Ref. 42 and as implemented in PHON43,44 code. A force-
constant (FC) model for a dilute limit is described in Sec. V C.
We used a 64-atom supercell with 6×6×6 Monkhorst-Pack
k-point mesh. The displacement amplitude was 0.04 Å. The
convergence criterion was 10−8 eV for the total energy
and 10−4 eV/Å for forces. The VASP-PAW force constant
calculations were performed in the GGA.45 The energy cutoff
was 350 eV in all the VASP-PAW calculations.

III. GROUND STATE PROPERTIES OF Fe-Cr ALLOYS

A. Lattice constants

The lattice constants of random Fe-Cr alloys have been
previously obtained theoretically at 0 K in the FM state in
a number of EMTO-CPA calculations.13,14,28,46 The present
EMTO-CPA results are practically the same. They are shown
in Fig. 1 together with our PAW supercell results for the
whole concentration range and some experimental data.47–50

In particular, we show the room-temperature data by Preston
et al.,47 the high-temperature (1200 K) data by Babyuk et al.,49

and low-temperature data by Kohlhaas et al.48 for bcc Fe and

FIG. 1. (Color online) Calculated and experimental47–50 lattice
constants of Fe-Cr alloys. The EMTO results are obtained using the
CPA. In the PAW calculations, alloys are modeled by supercells of
different sizes.

Sumin et al.50 for Fe-rich alloys (other experimental data are
not shown since they are very close to those presented in the
figure).

First of all, one can see that the experimental lattice param-
eters are noticeably higher than the theoretical ones calculated
at 0 K. In fact, this difference is mainly due to the errors in
the description of the exchange-correlation part of the GGA
total energy functional. Indeed, the experimental 0 K lattice
parameter for Fe, with the contribution from the zero-point
vibrations removed, is 2.853 Å,51 while the corresponding
theoretical values are noticeably smaller: 2.837 Å (EMTO),
2.833 Å (full-potential linearized augmented plane-wave plus
local-orbitals method, Ref. 51), and 2.832 Å (VASP-PAW, this
study).

Second, the zero-temperature FM theoretical and the room-
temperature experimental lattice parameters exhibit substan-
tially different concentration dependencies. In particular, the
theory predicts a pronounced maximum at about 8 at.%
Cr. This maximum has also been obtained in the previous
EMTO-CPA calculations13,16,28,46 as well as in the supercell
PAW28 and LSGF-EMTO calculations.30 The origin of the
difference between theory and experiment is not clear. It
might be attributed, for instance, to atomic short-range order30

in real alloys not accounted for in our calculations as well
as to some temperature-dependent anomalies of the thermal
lattice expansion. Let us note that to resolve this issue one
needs to now not only alloy composition but also atomic
configuration, which is practically impossible to deduce
from the experimental papers. Let us note that the existing
experimental low-temperature data for the lattice parameter
of Fe (2.861 Å)48 and Fe0.88Cr0.12 alloy (2.869 Å)50 show
approximately the same increase of the lattice parameter for
this concentration interval (0.0077 Å) as theoretical results
(0.009 Å).

Our calculations also predict the existence of a peculiar
temperature and concentration behavior of the lattice constants
in Fe-rich Fe-Cr alloys in the ferromagnetic state at low tem-
peratures. In Fig. 2 we show the theoretical lattice parameter of

FIG. 2. (Color online) Calculated zero-temperature lattice con-
stants for the Fe-rich Fe-Cr alloys as a function of magnetization for
three different compositions.
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FIG. 3. (Color online) Theoretical enthalpies of mixing at 0 K
and high-temperature experimental data55,56 for the enthalpies of
formation of bcc Fe-Cr alloys. The EMTO-CPA calculations are
shown by solid (FM), dashed (PDLM for m = 0.6), and dotted (DLM)
lines. The FM PAW results are shown by filled diamonds (unrelaxed)
and triangles (relaxed).

pure Fe, and two alloys containing 4 and 8 at.% Cr, as a function
of magnetization, which has been obtained in the EMTO-CPA
calculations using the PDLM model as described above. In
the case of Fe0.92Cr0.08, the lattice parameter increases with
increasing magnetization, which is the expected behavior for
an itinerant ferromagnet due to higher magnitude of the local
magnetic moment in the FM state. However, the case of pure
Fe is quite different: A pronounced maximum is observed at
m ≈ 0.8. Independently of the used model (PDLM), these
results indicate that there can exist certain peculiarities in
the temperature and concentration dependence of the lattice
spacing of Fe-rich Fe-Cr alloys, which should be further
investigated.

B. Zero-temperature enthalpy of mixing

Zero-temperature enthalpy of formation of random Fe-Cr
alloys has been determined and discussed in a large number
of ab initio calculations.9,13–16,52–54 In Fig. 3 we show the
enthalpy of mixing of Fe-Cr alloys obtained in the EMTO-CPA
calculations for three different magnetizations, m = 1, 0.6, and
0, using nonmagnetic Cr as a reference state. Our results for
the FM (m = 1) and DLM (m = 0) states are practically the
same as were reported in Ref. 16. The enthalpy of mixing in
the FM state has a minimum at about 5 at.% Cr and changes
sign at 6 at.%. The minimum gradually shifts toward Fe as
magnetization decreases and the enthalpy becomes positive
for m = 0.92 (not shown in the figure).

The accuracy of the total energy EMTO-CPA calculations
for the Fe-Cr random alloys is confirmed by the supercell
full-potential PAW calculations using VASP code: If the local
lattice relaxations are ignored, the PAW supercell and EMTO-
CPA results are practically the same as can be clearly seen
in Fig. 3. One can also see that the local lattice relaxation
energy, which is the difference between the total energies of the
supercells with and without local lattice relaxations (the form
of the supercell should be kept fixed in order to provide the

average symmetry of the bcc underlying lattice), is asymmetric
and relatively small. We find that a very good fit for this energy
is provided by the following expression:

Erel = −0.61c(1 − c)(1 + 2.382c), (3)

where c is atomic fraction of Cr and the relaxation energy Erel

is in mRy/atom.
The relaxation energy is obtained in the FM state at the

theoretical lattice parameters. At the same time, it is clear that
it depends on the magnetic state, lattice parameter, and atomic
short-range order. Unfortunately, first-principles calculations
of such dependencies are too cumbersome. Therefore, in the
following, we will neglect them assuming that the relaxation
energy is given by Eq. (3), which cannot influence much the
final results due to its relatively small value.

In Fig. 3 we also show experimental data for high-
temperature enthalpies of formation of Fe-Cr alloys.55,56 At
these temperatures (1200–1500 K) the alloys are in the
paramagnetic state, thus it is quite tempting to compare
these data with the theoretical DLM results. However, such
a comparison should be done cautiously due to the fact that
the 0 K DLM calculations take into consideration neither
magnetic nor atomic short-range-order effects, which should
be present in real alloys. Besides, they are obtained for quite
different lattice parameters (theoretical 0 K instead of high
temperature), and different types of excitations, for example,
vibrational, electronic, and magnetic are also neglected in
the DLM 0 K calculations. We will analyze all these effects
below, but, first, we will start from a consideration of magnetic
excitations, which are obviously one of the strongest and most
important in the thermodynamics of Fe alloys.

IV. THERMODYNAMICS OF MAGNETIC
EXCITATIONS IN BCC Fe

A. Magnetic energy

As has been mentioned above, one of the main problems in
the theoretical description of the phase equilibria in Fe alloys is
the absence of efficient and accurate first-principles methods
for finite temperature thermodynamic properties of itinerant
magnets. Nevertheless, the LSDA and GGA are generally
believed to be quantitatively accurate for modeling of the
energetics of magnetic excitations at high temperatures.

There are several reasons behind such a belief. First of
all, the LSDA and GGA accurately reproduce the magnon
spectrum and spin-stiffness constant of Fe (see, for instance,
Refs. 57–60), which are related to the low-temperature mag-
netic excitations. Second, the magnetic exchange interactions
obtained in the paramagnetic (DLM) state in the LSDA
calculations accurately reproduce the Curie temperature in bcc
Fe.61,62 At the same time, there is an unresolved issue with the
magnetic energy of bcc Fe.16

In Table I we show the magnetic energy defined as the en-
ergy difference between the ferromagnetic and paramagnetic
(DLM) states. Theoretical calculations have been done at the
fixed lattice constant 2.865 Å using different approximations
for the exchange-correlation energy (LDA-GGA) and different
electronic structure methods (EMTO and PAW). We have also
used two different approaches. Namely, the magnetic energy
has been obtained in the direct total energy calculations of the
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TABLE I. Magnetic energy (in mRy), determined as the differ-
ence of the total energies of the ferromagnetic and paramagnetic
(DLM) states at a fixed lattice constant (2.865 Å).

Method LDA GGA

Total energy calculations
EMTO-FCD 13.5 15.2
PAW 13.1 14.9

Magnetic exchange interactions
FM 8.3 8.7
DLM 14.5 16.3

bcc Fe in the FM and DLM states as well as from the magnetic
exchange interaction parameters.

The results from the total energy calculations are shown
in the upper part of Table I. The PAW calculations have been
performed by the VASP code for a 64-atom supercell, where, in
the case of the DLM spin configuration, Fe atoms with spin-up
and spin-down local magnetic moments have been distributed
in the unit cell in such a way that the pair correlation functions
for the first eight coordination shells corresponded to that in a
completely random alloy. Note that such supercell calculations
yield only an approximate description of the DLM magnetic
configuration if it is not a Heisenberg system since fluctuating
local environments of different sites make it extremely difficult
to provide the absence of the global magnetic moment.

In particular, in our case, the total magnetic moment of
the 64-atom supercell in the DLM configuration was about
0.8 μB . Although it is an acceptable magnitude for such a large
supercell, it can be the reason for a slight underestimate of the
magnetic energy. Nevertheless, the agreement between all the
results is very good, especially considering the large effect
produced by the approximations for the exchange-correlation
energy (LDA vs GGA).

At the bottom of Table I we also present the magnetic energy
obtained from the magnetic exchange interaction parameters
of the Heisenberg Hamiltonian:

H = −
∑

p

∑
i,j∈p

Jpeiej , (4)

where Jp are the magnetic exchange interaction parameters
for a given coordination shell p and ei is the direction of the
spin at site i. In this case the magnetic energy is equal to
J0 = ∑

p zpJp, where zp is the coordination number of the
pth coordination shell. The exchange interaction parameters
have been calculated using a magnetic force theorem57 in the
FM and DLM states. The origin of the large difference between
the FM and DLM magnetic exchange interaction parameters,
their consistency with the energetics of magnetic excitations
in the FM and DLM states, as well as their relation to the Curie
temperature are discussed in Ref. 61.

The important point here is that bcc Fe is not a Heisen-
berg magnet since its exchange interaction parameters are
dependent on the magnetic state. Nevertheless, these exchange
interaction parameters provide a quite accurate description of
the magnetic configuration close to the one in which they are
determined, that is, they are well defined energetic parameters
in the corresponding region of the magnetic phase space.61

One can also see that the magnetic energy obtained in the
direct total energy calculations is in between the results from
the magnetic exchange interaction parameters in the FM and
DLM states. In other words, the two different methods yield
approximately the same result for the magnetic energy which
is roughly about 13–14 mRy in the LSDA and about 15 mRy
in the GGA.

The problem here, as has been already mentioned by
Korzhavyi et al.,16 is the fact that ab initio (LSDA/GGA)
magnetic energy is about twice as large as the existing
experimental estimate of about 7 mRy, which is deduced
from the heat capacity data for Fe by subtracting model
electronic and vibrational contributions.12 The latter is used
in the CALPHAD modeling.3 Since the magnetic energy is
very large (can be, for instance, compared with the mixing
enthalpies presented in Fig. 3), it is extremely important to
understand where this difference can originate from.

B. Paramagnetic state

Unfortunately it is very hard to solve the issue of the
accuracy of the LSDA/GGA-based ab initio methods for the
magnetic energy. In general, it requires the comparison with
the first-principles methods, which treat accurately the finite-
temperature magnetic excitations. The existing dynamical-
mean-field theory (DMFT) calculations still do not satisfy
the criteria of being parameter-free, and they produce quite a
large error for the Curie temperature (about 1900 K in Ref. 63
and 1600 K in Ref. 64), the reason for which is not known.
Therefore, we assume here that the main problem is not related
to the errors of the LSDA and GGA used in our work.

As a matter of fact, there is an indication that the experimen-
tally assessed magnetic energy is quite largely underestimated.
In Fig. 4 we show the magnetic heat capacity above the
Curie temperature obtained in the classical Heisenberg Monte
Carlo (MC) simulations with the LSDA magnetic exchange
interaction parameters61 and the fit of the accepted assessment
of the experimental data in the CALPHAD method.3 At first
sight the difference between the theoretical heat capacity and

FIG. 4. (Color online) Magnetic heat capacity from classical
Heisenberg MC calculations and adopted in the CALPHAD method.3
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FIG. 5. (Color online) Magnetic energy relative to that in the
infinite temperature limit from classical Heisenberg MC calculations
and “experimental” data adopted in the CALPHAD method.

the data used in the CALPHAD method is not large. However,
they produce quite different magnetic energy relative to the
“ideal” paramagnetic state as can be clearly seen in Fig. 5.

According to the recent investigation by Körmann et al.,65

the heat capacity and entropy in the classical MC simulations
are very close to those in the quantum MC above the magnetic
transition temperature. Thus, the presented above classical
MC results can be considered as an accurate representation
of the Heisenberg model, especially in the high-temperature
limit, where there exists a significant difference between the
“experimental” data adopted in the CALPHAD method3 and
MC results. At the same time it is likely that the Heisenberg
model yields the lowest boundary for the heat capacity in the
case of bcc Fe since there should be an additional contribution
to the specific heat in bcc Fe due to the longitudinal spin
fluctuations.62

In fact, the experimental data for the heat capacity in the
paramagnetic state are largely scattered,66 which apparently
reflects the problems with its experimental determination
at high temperatures. This means that the magnetic energy
accepted in the latest CALPHAD evaluation,3 which obtained
from the assessment of the heat capacity data, can be indeed
underestimated.

C. Low-temperature ferromagnetic state:
Noninteracting magnons

Magnetic excitations at low temperatures are magnons and
their contribution to the thermodynamic properties can be ob-
tained either from the corresponding spin-spiral calculations or
much easier from the magnetic exchange interaction parame-
ters of the Heisenberg Hamiltonian determined in the FM state.
Such calculations for Fe, Co, and Ni have been, for instance,
previously done by Halilov et al.58,67 on the basis of ab initio
magnetic exchange interactions. Here we use the same magnon
adiabatic approach neglecting magnon-magnon interactions.

In this case, the magnon occupation numbers nq for wave-
vector q at temperature T are given by the Plank distribution

function:

nq = 1

exp(Eq/kBT ) − 1
, (5)

where

Eq = 4

M
[Jq − J0] (6)

is the magnon spectrum determined from the Fourier transform
of magnetic exchange interaction parameters Jp defined in
Eq. (4), Jq = ∑

p

∑
i,j∈p Jp exp(−iqRij ) and J0 ≡ Jq=0. Here

M is the magnetic moment of Fe in μB .
Spin-wave amplitudes θq, which are proportional to the

number of the corresponding excited magnons nq, as θ2
q =

2nq,67 are actually the azimuth angles of the corresponding
spin waves relative to the axis of the global magnetization.
Therefore, the resulting reduced magnetization m is

m =
∑

q

cos θq. (7)

The magnetic exchange interaction parameters up to the
150th coordination shell have been calculated by the EMTO
method using the magnetic force theorem57 in the FM state for
the lattice parameter of 2.865 Å. In Fig. 6 we show the magnon
spectrum in the �-P direction of the bcc Brillouin zone
calculated from the magnetic exchange interaction parameters
as well as from the EMTO total-energy spin-spiral calculations
with a small azimuth angle of 0.05π . As one can see, they
agree quite well with each other and with the experimental
data.68 As has been already mentioned, good agreement with
the existing experimental data has been obtained in a number
of the previous DFT calculations.

In Fig. 7 we show the calculated reduced magnetization,
where we compare it with the experimental data68 and classical
Heisenberg Monte Carlo results. It is, of course, very similar
to the results obtained by Halilov et al..58,67 One can see that

FIG. 6. (Color online) The magnon spectrum in the �-P direc-
tion of the bcc Brillouin zone obtained from magnetic exchange
interactions in the FM state (solid line), total energy spin-spiral
calculations azimuth angle is 0.05π (filled circles), and experimental
data (squares).68
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FIG. 7. (Color online) Reduced magnetization: Noninteracting
spin-wave calculations (squares), classical Monte Carlo (cMC) results
(diamonds), and experimental data (solid line).

the spin-wave approach reproduces accurately the experimen-
tal reduced magnetization up to about 400–500 K. Above
this temperature the magnon-magnon interactions become
important together with other types of magnetic excitations.
The latter can be also clearly seen in Fig. 8 where we
compare the magnon heat capacity, obtained from the energy
of the noninteracting spin-wave excitations, with that used in
the CALPHAD method.69 The increase of the magnon heat
capacity is apparently too weak above 400 K.

D. Finite temperature ferromagnetic state: PDLM model

It is clear that a simple model of noninteracting magnons
breaks down at quite low temperatures, where the reduce
magnetization is still very high. At the same time, accurate

FIG. 8. (Color online) Heat capacity: Noninteracting spin-wave
calculations and CALPHAD data.

FIG. 9. (Color online) The magnetic energy of bcc Fe as a
function of the reduced temperature (top panel), calculated for
particular magnetization m, which is determined from temperature
T , using parametrization (8) from Ref. 71 (bottom panel).

first-principles calculations of the reduced magnetization in
the whole temperature range are extremely complicated.
Therefore, we employ the existing experimental data, similar
to the work by Körmann et al.,65 where it has been used
in the statistical modeling. The temperature dependence of
magnetization for pure iron was experimentally obtained by
Crangle and Goodman70 and fitted to a simple analytical
expression by Kuzmin:71

m(T ) = [1 − 0.35τ 3/2 − (1 − 0.35)τ 4]1/3, (8)

where τ = T/TC is the reduced temperature and TC is the
Curie temperature, which is presented in Fig. 7.

In the first-principles calculations of the FM state with
a reduced magnetization m, we use the PDLM model
described above, where the magnetization determines the
relative concentration of spin-up and spin-down Fe atoms. In
Fig. 9 we show the PDLM magnetic energy of bcc Fe (relative
to the energy of the fully ordered FM configuration), as a
function of the reduced temperature obtained in the EMTO
PDLM calculations at the experimental lattice constants for
the corresponding temperatures.72

The magnetic energy follows closely the change of
the magnetization. When the paramagnetic (DLM) state is
reached, the magnetic energy is almost constant (there is little
temperature dependence due to the temperature-dependent
lattice constant). Thus, the heat capacity at constant pressure
P , determined as

CPDLM
P =

(
∂EPDLM

tot

∂T

)
P

, (9)

will have the temperature dependence, shown in the lower
panel of Fig. 9. As one can see, such a simple single-site
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mean-field model for the magnetic energy results in the zero
heat capacity above the Curie temperature, in the DLM state,
representing the ideal paramagnetic state, where the magnetic
short-range-order (SRO) effects are neglected. At the same
time, as has been shown above, the magnetic energy associated
with the magnetic short-range order is large, especially close
to the magnetic transition. Therefore, in order to have accurate
description of magnetic energetics, the whole PDLM model
should be corrected.

E. Magnetic short-range-order correction

The only way to take the magnetic short-range-order effects
into consideration in the present DFT calculations is to add
them ad hoc using, for instance, the results of the classical
Heisenberg Monte Carlo simulations above the Curie temper-
ature.61,73 The starting point for modeling here can be the heat
capacity, which can be divided in two temperature intervals,
below and above the Curie temperature:

Cmod
P (T ) =

{
CFM

P (T ) if T < TC ;

CPM
P (T ) if T > TC ,

(10)

where C
FM(PM)
P is the heat capacity of the FM (PM) state at

constant pressure.
A simple and convenient choice for CFM

P is a parametriza-
tion used by Inden:74

CFM
P (T ) = K ln

1 + τ 3

1 − τ 3
, (11)

where K is the fitting constant and τ = T/TC is the reduced
temperature. The magnetic heat capacity above the Curie
temperature in the paramagnetic state CPM

P has been chosen
to be equal to that obtained in the classical Heisenberg
Monte Carlo simulations. It is substantially greater than that
adopted in the CALPHAD by Xiong et al.,3 which practically
vanishes above 2000 K. As has been mentioned above, the
theoretical value of the heat capacity can be even higher in the
paramagnetic state due to the presence of the longitudinal spin
fluctuations.

To obtain Cmod
P consistent with the fist-principles results,

one should impose the following normalization condition:∫ ∞

0
Cmod

P (T )dT = EDLM
tot − EFM

tot , (12)

where E
DLM(FM)
tot is the total energy of Fe in the DLM(FM)

state.
In Fig. 10 we show the magnetic heat capacity determined

in this way together with the CALPHAD adopted data, Monte
Carlo results, and heat capacity from the EMTO total energy
calculations. The shaded area is the difference between the
model and PDLM heat capacity, obtained in the EMTO total
energy calculations. It determines the additional contribution
to the total energy, which should be added to the EMTO total
energy to make a consistent description of the thermodynamic
properties. So, the model magnetic energy, which takes the
magnetic SRO effects above the Curie temperature into
consideration [Emod

mag (T )] is

Emod
mag (T ) = Emag(T ) +

∫ T

0

[
Cmod

P (T ) − CPDLM
P (T )

]
dT , (13)

FIG. 10. (Color online) “Magnetic” heat capacity of iron. The
EMTO-PDLM total energy results (large circles) assume that the
DLM state is achieved at the Curie temperature (no magnetic SRO);
model results include renormalization due to magnetic SRO effects
above TC obtained within the proposed magnetic model; CALPHAD
data (broken line) and Heisenberg MC results (dots). The shaded
areas represent the corrections to the EMTO-CPA total energies due
to the magnetic SRO.

where Emag(T ) is the magnetic energy determined in the
PDLM calculations.

It is shown in Fig. 11 where it is compared with the PDLM
results. One can clearly see quite a strong reduction of the
model magnetic energy in the paramagnetic state close to the
Curie temperature compared to that in the PDLM calculations.
The model magnetic energy at 1500 K is 9 mRy, which is
much lower than without magnetic energy correction of about
16 mRy. Such a strong reduction of the magnetic energy due to
the magnetic SRO reconciles to a large extent ab initio theory
and evaluations based on the experimental heat capacity. In
fact, the agreement would be better if the LSDA is used instead
of the GGA in the total energy calculations. The correction
also strongly affects the magnetic free-energy in the PDLM,
as can be seen in the bottom panel of Fig. 11. The entropy
contribution in this case has been determined from the heat
capacity as


S(T ) =
∫ T

0

CP

T
dT . (14)

V. ATOMIC ALLOY CONFIGURATION OF Fe-Cr ALLOYS

In order to calculate thermodynamic properties of Fe-Cr
alloys, one should first determine the proper atomic configura-
tion as a function of concentration and temperature or choose
the corresponding model. There exist several experimental
studies of the atomic SRO in Fe-Cr alloys at different alloy
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FIG. 11. (Color online) Magnetic energy (top panel) and mag-
netic free-energy (bottom panel) of Fe obtained with the correction
for the magnetic SRO in the paramagnetic state. It is compared with
that obtained in the DPLM calculations.

compositions and temperatures.8,19,20,75 The experimental data
indicate that it is relatively small. Nevertheless, its effect on the
thermodynamic properties of Fe-Cr alloys remain unclear. In
this section we use first-principles methods in order to calculate
such an effect.

Such calculations are also important as a test of the
applied theoretical methods and models. In this particular
case, it concerns the validity of the (P)DLM approach for
the quantitatively accurate description of chemical interactions
in the corresponding magnetic state. In this paper we will
consider equiatomic alloy at 1100 K in the paramagnetic state
and Fe-rich alloys at 700 K in the ferromagnetic state with
reduced magnetization.

The configurational Hamiltonian has been defined as

Hconf = 1

2

∑
p

V (2)
p

∑
i,j⊂p

δciδcj + · · · , (15)

where V (2)
p are the pair effective interactions for the corre-

sponding coordination shell of the bcc lattice denoted by
p. The δci are the concentration fluctuations at sites i;
δci = ci − cCr, where ci is the occupation number at site i,
taking on values 1 or 0 if the site i is occupied by a Cr or Fe
atom, respectively.

The effective interactions in the PDLM state have been
calculated using the corresponding average over a mag-
netic state by the screened generalized perturbation method
(SGPM),17,31,61 which is a generalization of the GPM,76,77

including screened Coulomb interactions defined within DFT.
The SGPM calculations have been done using EMTO-CPA

code as described in Ref. 17. The screened Coulomb
interactions have been obtained in the LSGF supercell
calculations.31

In fact, the SGPM yields only the so-called chemical
contribution to the effective cluster interaction, while there
is, for instance, a vibrational contribution neglected here.
Another contribution is expected to be from the strain-
induced interactions, however, they should be relatively small
since the concentration dependence of the lattice constant
in the high-temperature paramagnetic state is quite weak
(see Fig. 1).

A. Atomic SRO of Fe-rich FeCr alloys in the FM state

Here we would like to demonstrate that the PDLM model
provides a description consistent with experiment of the
chemical interactions in the Fe-rich Fe-Cr alloys in the ferro-
magnetic state at elevated temperatures, when magnetization
is reduced. In fact, such calculations have been already
done in Ref. 17. However, the alloy composition has been
fixed to Fe0.9Cr0.1. Recently, Mirebeau and Parette,20 using
neutron diffuse scattering, have studied the atomic SRO in the
concentration range of 0 < cCr < 15 at.% at 700 K, which is
in the ferromagnetic state.

This gives us an opportunity to check the concentration
dependence of the effective chemical interactions. For that
purpose we have calculated the effective pair interactions in the
concentration interval of 0 < cCr < 25 at.% using the SGPM
method.17 The calculations have been done for a fixed lattice
constant of 2.88 Å and the reduced magnetization of 0.85,
which are close to the corresponding experimental data for
pure Fe at 700 K. Although both the lattice parameter and
magnetization depend on concentration, such a dependence
is not known. At the same time, the reduced magnetization
cannot deviate strongly from this magnitude since the Curie
temperature changes little within the concentration range up
to 20 at.% Cr.

In Fig. 12 we show our results and experimental data from
Ref. 20 for the weighted average of the first two effective
pair interactions 〈V12〉 = (8V1 + 6V2)/14 as a function of Cr
concentration. The agreement between theory and experiment
is very good (let us note that the theoretical results presented
in Ref. 20 are for the 0 K FM state). Thus, the used
approximations and models in the ab initio calculations
are indeed quantitatively accurate for the description of the
chemical interactions in Fe-Cr alloys.

Nevertheless, one should bear in mind that the effective
pair interactions presented in Fig. 12 and in Ref. 17 should
be considered as median since the effective pair interactions
in the Fe-rich Fe-Cr alloys are dependent on the local atomic
environment in the FM state.16 This also means that the Ising
Hamiltonian in the form of Eq. (15) is not valid for the accurate
description of the configurational thermodynamics. However,
a detail consideration of these effects is beyond the aim of this
paper.

B. Atomic SRO of equiatomic FeCr alloy in the PM state

The atomic SRO parameters in bcc Fe0.53Cr0.47 alloy
were determined in the anomalous x-ray-scattering study by
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FIG. 12. (Color online) Average effective pair interaction at
the first two coordination shells (squares) obtained in the PDLM
calculations for reduced magnetization 0.85, which corresponds to
700 K. Experimental from Ref. 20.

Reinhard et al.75 and theoretically investigated by Turchi
et al.,8 who determined the effective pair interactions by
the GPM within Korringa-Kohn-Rostoker (KKR)-CPA cal-
culations, which were done for the nonmagnetic (NM) state
and without the contribution from the screened Coulomb
interactions.

Here we use the SGPM, which as has been mentioned
above, to contain an additional electrostatic contribution due
to screened Coulomb interactions.31,61 Calculations have been
done for a random equiatomic alloy within the LSDA at the
experimental lattice constant 2.695 Å at 1100 K, which was
the annealing temperature in the experimental study.

In Table II we compare our results for the effective pair
interactions obtained in the DLM and NM states with the
NM-GPM-KKR results by Turchi et al.8 and the experimental
data from the inverse Monte Carlo simulations.75 The DLM
SGPM-EMTO effective pair interactions (first column) are the
one which should be compared with the experimental data,
and one can see that they are in reasonably good agreement.

One can also notice that the first two NM GPM-KKR inter-
actions by Turchi et al.8 are also in very good agreement with
the experimental data. However, this agreement is accidental,
and, as we show here, the nonmagnetic description of the
paramagnetic state results in the large error for the effective
chemical interactions. The origin of the good agreement in
this particular case is the compensation of errors: The error
due to the nonmagnetic description is, in fact, compensated by
the error due to unaccounted screened Coulomb interactions
in the GPM-KKR calculations.8

To clarify this point we have also performed NM SGPM
calculations of the effective interactions, which are shown
in the third column of Table II. As one can see, they are

TABLE II. Effective pair interactions V (2)
p (p = {lmn}) obtained

in the present SGPM-EMTO calculations in the DLM and NM
states, previous NM GPM-KKR calculations8 and deduced from the
experimental data.75

V ch
lmn (mRy)

SGPM-EMTO GPM-KKR, Ref. 8

lmn DLM NM NM (one-el.) NM (one-el.) Expt.

111 − 3.614 − 0.322 − 3.731 − 4.34 − 4.00
200 0.837 1.857 0.646 0.62 0.53
220 − 0.157 0.131 0.339 0.70 0.09
311 0.017 0.434 0.470 0.46 − 0.06
222 − 0.156 − 0.743 − 0.726 − 0.88 0.04
400 0.149 0.264 0.264 0.29 0.28
331 0.071 0.101 0.063 0.06 0.09
420 0.006 − 0.002 − 0.011 − 0.03
422 0.021 0.032 0.032 0.00
511 0.004 − 0.018 − 0.018 − 0.04
333 − 0.024 0.177 0.177 − 0.01

quite different from the interactions in the paramagnetic DLM
state. At the same time, they are in reasonable agreement
with the NM GPM-KKR calculations for all the coordination
shells, but the first three. The large difference at the first
three coordination shells is due to the additional electrostatic
contribution, which is absent in the GPM-KKR calculations8

since the one-electron part of the effective interactions in
the NM GPM-EMTO (the third column) is indeed in good
agreement with that of the NM GPM-KKR calculations.

Since the strongest interactions are well reproduced by the
present theory, we can conclude that the DLM and LSDA
provides quite accurate description of the chemical bonding
in paramagnetic Fe-Cr alloys. At this point, one can wonder
about the effect of the magnetic SRO on the atomic SRO and
vice versa. They can be indeed coupled, but such a coupling,
if it exists, should be very weak in the case of equiatomic
Fe-Cr alloys at 1100 K due strongly reduced magnetic SRO:
The Curie temperature for that alloy is about 600 K (see the
next section) and besides, the Cr atoms should give very little
contribution to the transverse spin fluctuations.

Finally, using the SGPM-EMTO interactions, we calculate
the free-energy of the atomic SRO as a function of temperature
assuming that the interactions are temperature independent.
Note that the effect of the atomic SRO is strongest for the
equiatomic alloy composition if the pair effective interactions
do not depend on the alloy composition.78

In Fig. 13 we show the contribution of the atomic SRO to the
free-energy of a completely random equiatomic alloy, which
has been determined from the SGPM-EMTO interactions
listed in Table II in the ring-mean-field calculations.79 It is
relatively small, which makes it possible to disregard the
atomic SRO effects in the first-principles thermodynamic
modeling, considering only completely random alloys. This
will significantly simplify the study, because it is a rather
nontrivial task to take into consideration the coupling between
the atomic SRO and local magnetic structure, especially in the
FM state, although the latter it is very interesting and important,
but deserves a separate investigation.
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FIG. 13. Free-energy of the atomic SRO, FASRO of Fe50Cr50,
obtained in the ring-mean-field from SGPM effective pair
interactions.

VI. THERMODYNAMIC PROPERTIES
OF RANDOM ALLOYS

A. Magnetic model for alloys

It is well known that the Cr-rich Fe-Cr alloys containing
less than 20 at.% Fe and pure Cr form different types of spin
density wave magnetic structures below the Néel temperature,
which has a maximum value of 310 K for pure Cr.82 Above
this temperature these alloys are however in the paramagnetic
state, and therefore the low-temperature magnetic structures
can be neglected in the phase diagram calculations at elevated
temperatures.

At the same time, the zero-temperature consideration is
needed as a starting point in order to build a consistent
model for the phase equilibria. Thus, we will assume that
the zero-temperature magnetic state is ferromagnetic for the
whole concentration range. Since the magnetic energy is quite
small in the case of Cr-rich alloys anyway,16 this assumption
cannot influence much the results in the paramagnetic state.

In order to build a model for the magnetic energy of
alloys, we also need to specify the magnetic state for each
alloy composition and temperature. Fortunately there exist
experimental data for the Curie temperature, which deter-
mines the boundary between paramagnetic and ferromagnetic
states. In Fig. 14 we show the experimental data for the
Curie temperature in Fe-Cr alloys.80 To simplify theoretical
consideration we use a polynomial fit, which is also shown
in the figure. Since there are no experimental data for the
reduced magnetization in Fe-Cr alloys, we will assume that it
is the same function of temperature as in the case of pure
Fe, that is, it is determined by Eq. (8). Thus, these two
analytical fits specify the magnetic state at all the points in
the concentration-temperature coordinates.

The magnetic SRO energy is quite large close to the Curie
temperature (see above), and therefore it should be taken

FIG. 14. (Color online) The experimental Curie temperature of
Fe-Cr alloys80 and its polynomial fit used in the work for theoretical
modeling.

into consideration in the case of alloys too. Although the
corresponding classical Heisenberg Monte Carlo simulations
are possible, we have chosen the same analytical form for
the magnetic heat capacity as in the case of pure Fe. This
model is quite approximate for alloys close to equiatomic
composition.74 Nevertheless, as will be shown below, this
region does not actually play a significant role in the phase
diagram calculations below the Curie temperature. At the same
time, the model is reasonable for the Fe-rich composition,
which is important.

Thus, we assume that the magnetic heat capacity in the
case of Fe-Cr alloys has a similar shape as in the case of pure
Fe, that is, it is given by Eqs. (10) and (11). However, it is
rescaled by a factor, which takes into consideration the change
of the whole magnetic energy (per atom) of an alloy (see
Fig. 14 in Ref. 16). Let us mention that such a rescaling of the
magnetic heat capacity of the alloys is similar to the “parallel
shift method.”81,83,84 The difference between this method and
ours is that instead of multiplying the magnetic heat capacity
of iron by the iron (or chromium) content, we normalize the
magnetic heat capacity by the magnetic energy of the alloy
obtained in the first-principles calculations.

B. Free-energy of lattice vibrations: The average
force constants model

First-principles calculations of the phonon spectrum in
random alloys require the use of quite nontrivial and time-
consuming techniques.85–88 It is an especially difficult task
in magnetic systems at high temperatures. Therefore, in this
work, we adopt a simplified approach, which serves one
purpose: To provide a reasonable model for the vibrational
contribution to the free-energy of alloys in the thermodynamic
modeling. Recently, Alam et al.88 formulated and used the
augmented space formalism for the calculations of the phonon
spectrum and phonon entropy in Fe-Cr alloys, however, it
is quite heavy in the implementation. Therefore, we propose
a simplified average force constants model (AFCM), which
should be quite accurate in the dilute limit.
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Within the AFCM, the force constants of a binary alloy are
given by the average “medium” force constant matrix �̃αβ(R),
which relates the force fα exerted on a medium atom in the α

direction due to the displacement uβ of the atom in position
R relative to the first one in the β direction (α and β are the
indices of the three Cartesian coordinates). Assuming that the
force constants do not depend on the local environment, which
is the case of the dilute limit, the average force constant matrix
is

�̃αβ(R) = c2�CrCr
αβ (R) + 2c(1 − c)�FeCr

αβ (R)

+ (1 − c)2�FeFe
αβ (R), (16)

where �XY
αβ (R) = f X

α /uY
β is the force constant matrix for two

sites separated by R and occupied by X and Y atoms, and c is
the atomic fraction of Cr.

The force constants have been calculated by the PAW
method using the VASP code (the details of the calculations
are given above) for dilute limit of Cr in Fe and vice versa, Fe
in Cr. In the first case, the calculations have been done at the
Fe room temperature lattice constant in the FM state. While
the Fe-Fe and Fe-Cr force constants have been determined
up to the 13th coordination shell, Cr-Cr force constants have
been determined only for the first two coordination shells.
Nondiagonal Cr-Cr force constants have been obtained by
using the proper average over all the possible displacement
of the central Cr atom. The calculations of the force constants
in the dilute limit of Fe in Cr have been done in a similar
fashion, but at the room-temperature lattice spacing of Cr.

The phonon spectrum has then been determined as for
a monoatomic solid using the average atomic mass M̃ =
cMCr + (1 − c)MFe, where MCr and MFe are the atomic masses
of Fe and Cr. The calculations of vibrational spectra, the
phonon free-energy, and entropy in the harmonic approxi-
mation have been done by program PHON43,44 in Fe-rich and
Cr-rich alloys using the corresponding force constant matrix.

In Fig. 15 we show the phonon entropy at 300 K obtained
within the model presented above, experimental data by

FIG. 15. (Color online) Phonon entropy of Fe-Cr alloys at 300 K.
The results of the model are shown by squares, the experimental
data by triangles90 and circles,91 and augmented spaced formalism
results88 by diamonds.

Lucas et al.90 and Fultz et al.91 at the same temperature,
and the recent first-principles results obtained within the
augmented space formalism by Alam et al..88 As one can see,
our model yields quite an accurate description of the phonon
entropy. Therefore, in order to use the model in the whole
concentration range, we extrapolate the low concentration
data for the phonon free-energy on both Fe-rich and Cr-rich
sides to the whole range of concentration by third order
polynomial. Such an extrapolation for the entropy is shown in
Fig. 15 by a solid line.

VII. PHASE DIAGRAM CALCULATIONS

The Gibbs free-energy of mixing of random alloys Fe-
Cr alloys 
G(c,T ) has been determined as a function of
concentration c ≡ cCr and temperature T :


G(c,T ) = 
H (c,T ) + 
Gph(c,T ) + 
Gel(c,T )

+ T 
Smag(c,T ) − T 
Sconf(c) + Erel(c). (17)

Here 
H (c,T ) is the electronic and magnetic part of the
enthalpy of formation of random Fe1−cCrc random alloys
determined in the total energy (P)DLM calculations and
containing the corresponding magnetic energy correction.
The total energy calculations have been done for the
experimental lattice constants if they were known, otherwise
the extrapolated values have been used. Alternatively, the
Debye-Grüneisen model92 could be used. However, it is too
cumbersome to take into consideration the magnetic free-
energy for every temperature and concentration. Besides, it
is not accurate. Erel is the relaxation energy determined by
Eq. (3), which we assumed to be temperature independent.

The phonon contribution 
Gph(c,T ) is


Gph(c,T ) = G
alloy
ph (c) − cGCr

ph − (1 − c)GFe
ph, (18)

where the phonon free-energy of alloy G
alloy
ph (c) and pure

Fe and Cr GFe
ph and GCr

ph has been obtained as described in
Sec. VI B. The force constants have been calculated at the
room temperature lattice constant of Fe in the FM state for
the Fe-rich part and at the room temperature lattice constant
of Cr in the NM state for the Cr-rich part. The temperature
dependence of the force constants has been ignored.

The contribution from the thermal one-electron excitations
is


Gel(c,T ) = G
alloy
el (c,T ) − cGCr

el − (1 − c)GFe
el , (19)

where Gel is the free-energy correction to the total energy
obtained in the direct first-principles calculations, and it is
given by89

Gel = −π2

3
N (EF )k2

BT 2. (20)

Here N (EF ) is the density of states at the Fermi level EF

obtained for the temperature and concentration-dependent
lattice constants. The direct calculations of the free-energy
correction confirmed the high accuracy of this formula for
Fe-Cr alloys.

The magnetic mixing entropy contribution 
Smag(c,T ) has
been determined from the model heat capacity using Eq. (14).
As has been already mentioned, it also includes contributions
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FIG. 16. (Color online) Gibbs free-energy of mixing for 865 and
970 K (bottom panel), energy correction due to the magnetic SRO
(middle panel), and analytical fit for the Curie temperature used in
the calculations (upper panel).

from other thermal excitations, for instance, from the thermal
lattice expansion. Finally, the configurational entropy of a
random alloy Sconf(c) is

Sconf(c) = −kB[c ln c + (1 − c) ln(1 − c)]. (21)

In the lower panel of Fig. 16 we show the mixing Gibbs
free-energy 
G(c,T ) calculated for two different temperatures
close to the Curie temperature of Fe. It has quite a peculiar form
with pronounced minima and maxima in the Fe-rich region.
The position of the maxima can be actually traced back to the
point of the concentration where the magnetic phase transition

FIG. 17. (Color online) Fe-Cr bcc phase diagram.

happens at the corresponding temperature (upper panel of
Fig. 16). In fact, in the absence of the magnetic SRO energy
correction, the maximum would be much more pronounced
with a pronounced peculiarity. This can be clearly seen from
the magnetic SRO energy correction presented in the middle
panel of the figure, which shows that it has a sharp minimum
at the corresponding concentrations.

The calculated bcc Fe-Cr phase diagram for random alloys
is shown in Fig. 17 together with the recent assessment of ex-
perimental data3 and the corresponding results of CALPHAD
modeling.93 The experimental data by Dubeil and Inden4

obtained after 4–11 years of annealing, are included in the
figure as well. Considering the CALPHAD results to be an
accurate fit to the experimentally available data, it is obvious
that the present calculations underestimate the solubility of
Cr and Fe in the temperature range of 700–800 K, which
especially small in the case of the Fe solubility in Cr.

Let us note that our results for the solubility of Cr in
Fe are in reasonable agreement with the small-angle neutron
diffuse scattering study of neutron-irradiated Fe-Cr alloys at
573 K.94 In this experiment the equilibrium in Fe0.88Cr0.12 and
Fe0.91Cr0.09 alloys has been reached via irradiation-enhanced
diffusion. Comparing the scattering cross section of the
irradiated and unirradiated samples, it has been found that
the solubility limit of Cr in bcc at 300 ◦C is 8.8%,94 which is
close to the present theoretical result 7%.

Another feature, which is much less pronounced in the
phase diagram recently evaluated by the CALPHAD method,
is the abnormal decrease in the solubility of Cr in Fe-rich
alloys at high temperatures close to the magnetic phase tran-
sition. This feature, called sometimes a Nishizawa horn, has
been thoroughly discussed for magnetic alloys by Nishizawa
et al.81,83,84 In this particular case, it results from a relative
stabilization of Cr alloying in the ferromagnetic state compared
to that in the paramagnetic in Fe-rich alloys up to 20 at.% Cr
(see Fig. 3).

In our calculations the Nishizawa horn is deeply pro-
nounced, and we find that it is a very stable feature,
which cannot be significantly altered by tuning the mixing
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free-energy. Of course, the present ab initio modeling of the
phase equilibria in the bcc Fe-Cr alloys is quite approximate,
especially at high temperatures. However, it is very difficult to
see the origin of the problem.

The same concerns the quite restricted solubility of Cr in
the temperature interval of 500–800 K. It is not clear how
it can be corrected since the main force driving the phase
separation in the Cr-rich Fe-Cr alloys is the very strong
chemical interactions. It is very difficult to balance them by
other contributions. In our view, more thorough theoretical and
experimental investigations are needed to establish accurate
phase diagram of Fe-Cr system.

VIII. SUMMARY

The phase diagram of bcc Fe-Cr alloys has been calculated
using a set of different models and approximations serving
the purpose of getting the Gibbs free-energy of a system as a
function of its composition and temperature. The main aim of
this investigation has been, however, to keep as much input as
possible from the-state-of-the-art first-principles calculations
within DFT and, in particular, within the GGA or LSDA. Such
a choice imposes, first of all, an obvious restriction on the
truly ab initio inclusion of the temperature-induced magnetic
excitations, which is an extremely difficult problem for this
system due to the itinerant nature of magnetism.

Restricted by the GGA (or LSDA) we have had to decide
first on the accuracy of those approximations for the magnetic
energy, the subject of extreme importance for the first-
principles modeling of Fe alloys, although it is almost never
mentioned in the literature.16 The difference of the magnetic
energy deduced from the experimental heat capacity and GGA
(LSDA) results is indeed huge, of about 7–8 mRy/atom. This
is twice of the value of the experimental enthalpy of formation
of Fe-Cr alloys in the paramagnetic state.

Our analysis, based on the classical Monte Carlo calcu-
lations of magnetic energy in the paramagnetic state, has
demonstrated that this energy, which is due to the magnetic
SRO effects, is quite large and its experimental underestimate
could be the source for the discrepancy. We have also
demonstrated that all the other properties related to the
magnetic energy (the magnon spectrum, Curie temperature)
are well reproduced by the LSDA, and therefore one can build
a quantitatively accurate model for the magnetic free-energy
based on the corresponding first-principles results for the total
energies.

Such a model, which is based on the PDLM total energies,
experimental data for the reduced magnetization and classical
Monte Carlo simulations for the energy in the paramagnetic
state, have been proposed in the present paper. Its main
ingredient is the magnetic SRO energy correction, which
allows one to eliminate the huge error in the DLM description
due to the magnetic SRO. It is introduced consistently in a
way to keep the whole magnetic energy, which is determined
in the direct first-principles calculations, properly normalized.
As has been shown, such a model leads to a substantial
improvement of the agreement between the theoretical and
experimental magnetic energies.

Another important check of the accuracy and reliability
of the used first-principles techniques is the calculations of

the effective pair interactions in Fe-Cr alloys as a function
of concentration and temperature. First of all, we show that
our PDLM model and first-principles techniques accurately
reproduce the concentration dependence of the effective pair
interactions in Fe-rich alloys in the FM state. Second, we
calculate the effective pair interactions in the equiatomic Fe-Cr
alloy in the paramagnetic state at 1100 K. These results are in
good agreement with the available experimental data. Finally,
we estimate the contribution from the ASRO to the free-energy
and show that it is relatively small, and therefore consider only
random alloys in our model calculations.

To calculate the vibrational contribution to the free-energy
of alloy we proposed here a simple average force constant
model, equivalent to the VCA. It is accurate in the case of dilute
alloys, and it reproduces very well the existing experimental
data.

The final free-energy of mixing, used in the phase dia-
gram calculations, have included practically all the relevant
contributions. One of the main assumptions is the neglect of
the atomic SRO effects. However, it is very difficult to make
everything consistent in this case due to the nontrivial character
of magnetism in this system. Nevertheless, we believe that this
error could be compensated by the contribution from the local
lattice relaxation effects, which should be reduced with the
inclusion of the atomic SRO.

The calculated phase diagram is relatively close to the one
obtained in the CALPHAD modeling. The main difference is
(1) for the solubility of Fe in Cr, which is extremely low in
our calculations compared to the CALPHAD modeling and
experimental data, and (2) for the existence of the Nishizawa
horn, which is almost absent in the recent CALPHAD
evaluation, but pronounced in our calculations.

As for the solubility of Fe in Cr, we do not know what
could be the source of so large solubility in the experiment.
Our calculations show that the phase separation tendency due
to chemical interactions is very strong in the Cr-rich Fe-Cr
alloys. It is very unlikely that other contributions, for instance,
vibrational, can be that significant at temperatures of 600–
800 K.

The experimental investigation of the Nishizawa horn in
this temperature region is extremely difficult due to the pre-
cipitation of the σ phase. Thus, more theoretical investigations
are needed to solve this disagreement.
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