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Diffusion of hydrogen within idealized grains of bcc Fe: A kinetic Monte Carlo study
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Structural defects in materials such as vacancies, grain boundaries, and dislocations may trap hydrogen and
a local accumulation of hydrogen at these defects can lead to the degradation of the materials properties. An
important aspect in obtaining insight into hydrogen-induced embrittlement on the atomistic level is to understand
the diffusion of hydrogen in these materials. In our study we employ kinetic Monte Carlo (kMC) simulations
to investigate hydrogen diffusion in bcc iron within different microstructures. All input data to the kMC model,
such as available sites, solution energies, and diffusion barriers, are obtained from first-principles calculations.
We find that hydrogen mainly diffuses within the interface region with an overall diffusivity that is lower than
in pure bcc Fe bulk. The concentration dependence of the diffusion coefficient is strongly nonlinear and the
diffusion coefficient may even decrease with an increasing hydrogen concentration. To describe the macroscopic
diffusion coefficient we derive an analytic expression as a function of hydrogen concentrations and temperatures
which is in excellent agreement with our numerical results for idealized microstructures.
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I. INTRODUCTION

Hydrogen is a very common impurity in iron-based mate-
rials. It is incorporated into the material during production
and service and exhibits a high mobility within the bulk
phase. It has further been shown that microstructural defects
in the material such as vacancies, dislocations, and grain
boundaries can trap hydrogen impurities.1–4 The resulting
local accumulation of hydrogen at these defects can then
lead to a degradation of the mechanical properties of the
material, which is also referred to as hydrogen embrittlement.5

To explain the complex mechanisms underlying hydrogen
embrittlement various approaches have been developed includ-
ing hydrogen-enhanced local plasticity (HELP),6–8 hydrogen-
enhanced decohesion (HEDE),9–13 and superabundant vacancy
formation.14

The most important aspects in trying to understand the
behavior of hydrogen within a material and its role in hydrogen
embrittlement are the hydrogen solubility, the interaction
of hydrogen with defects, and the hydrogen mobility. The
solubility of hydrogen within pure bcc Fe is relatively low.
Point and extended defects, however, can provide interstitial
sites that are energetically much more favorable for hydrogen
than the tetrahedral site in bcc Fe. In a recent study we
investigated the solution energy of H in the presence of open
and close-packed grain boundaries (GB) in bcc and fcc Fe15

employing density-functional theory (DFT)16,17 calculations.
We find that in general hydrogen prefers the interstitial sites
within the grain boundary region (with the exception of
close-packed grain boundaries in fcc Fe). In particular we find
a large energy gain of 0.4–0.5 eV for hydrogen interstitials
at the �5[001](310) grain boundary in bcc Fe (�5 in short)
as compared to the bulk region. This indicates that hydrogen
segregates to the grain boundary and is trapped there.

The mobility of hydrogen within pure bcc Fe bulk is
high. The calculated diffusion barrier for H atoms moving
between neighboring tetrahedral sites is ∼0.1 eV.15,18 This is
consistent with earlier experimental observations indicating
that H diffuses rapidly within bcc metals.19–23 Experimental

studies investigating the diffusion of hydrogen in the pres-
ence of dislocations, grain boundaries, and phase boundaries
show that the measured diffusivity depends on the hydrogen
concentration.24 In bulk Pd, Pd grain boundaries, and Pd/Al2O3

phase boundaries, the diffusion constant generally increases
with increasing H concentration.24 Within a theoretical study
employing kinetic Monte Carlo (kMC) simulations it was
illustrated that the attraction of H to screw dislocations in
Fe materials can significantly affect H diffusion.2 To properly
evaluate the mobility of hydrogen within a certain material it is
thus important to also consider the effect of the microstructure.

In this study, we employ kMC simulations to address
H diffusion in the presence of grain boundaries in bcc
Fe. In a previous study we found that the H diffusion
barriers within the grain boundary region of bcc Fe are
much higher (0.25–0.6 eV)15 than in the bulk region. This
suggests that H interstitials diffuse relatively slowly or are
effectively immobile within the grain boundary interface,
and that therefore the grain boundaries do not provide fast
diffusion channels for hydrogen. Utilizing the information
about available interstitial sites, diffusion barriers, and solution
energies extracted from our DFT calculations, we set up a
series of kMC models that represent idealized microstructures.
The first model is an idealized cubic grain structure in bcc Fe,
with and without point defects included in the bulk region
of the grain. Since the model grains are much smaller than
grains in the actual material we consider in our second model a
parallel arrangement of grain boundary interfaces. This layered
structure naturally introduces an anisotropy in the diffusivity.
The third model presented in this paper represents a more
detailed structure of the �5 grain boundary in bcc Fe. Within
the above models, H diffusion constants are determined as
a function of H concentrations and temperatures. From the
results obtained within these model systems general trends
for H diffusivity in various structural environments can be
extracted. We then compare the numerical results to the derived
analytic expression that describes the macroscopic diffusivity
of hydrogen in different microstructures.
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The paper is organized as follows. The computational
approach is detailed in Sec. II. In Secs. III and IV the results for
H diffusion within the idealized cubic grain structure with and
without additional point defects are presented. The results for
the layered structure and for the more detailed model of the �5
grain boundary are discussed in Secs. V and VI, respectively.
Our findings are summarized in Sec. VII.

II. COMPUTATIONAL APPROACH

A. Kinetic Monte Carlo

We employ kinetic Monte Carlo25,26 simulations to in-
vestigate H diffusion under various conditions and within a
number of idealized microstructures. Within kMC simulations
the time evolution of the system is described by a stochastic
trajectory. The system states along this trajectory are connected
by processes associated with certain probabilities. Here, we use
a lattice approach; i.e., possible atomic positions are mapped
onto a lattice and the system can evolve by atoms (hydrogen)
hopping between neighboring lattice sites (interstitial sites in
bcc Fe bulk and grain boundaries). Within harmonic transition
state theory27 the microscopic rate constant for a hop, ki ,
associated with process i can be written as

ki = ν0,i exp(−�Ei/kBT ) , (1)

where ν0,i is the attempt frequency, kB is the Boltzmann
constant, T is the temperature, and �Ei is the energy barrier
associated with process i. For all processes that can occur
within our kMC models the corresponding energy barriers
were calculated employing DFT calculations. Transition states
were identified using the nudged elastic band method28,29 as
implemented in the VASP code.30,31 In all calculations the
generalized gradient approximation (GGA, PW91)32,33 was
used for the exchange-correlation functional. Convergence
with respect to the energy cutoff for the plane waves and the
integration of the Brillouin zone was ensured (details regarding
the DFT calculations can be found in Ref. 15). For a given
system configuration the sum over all rate constants of all
possible processes is evaluated, ktot = ∑

i ki , and a process p

to move to the next system state is chosen according to

p−1∑
i=0

ki < ρ1ktot �
p∑

i=0

ki, (2)

where ρ1 is a uniform random number between 0 and 1. Since
the kMC algorithm simulates a sequence of Poisson processes,
the real time evolution for each kMC step can be evaluated as34

t → t − ln(ρ2)/ktot, (3)

where ρ2 is a second random number between 0 and 1.
The diffusion constant tensor is calculated from the mean

square displacement of the hydrogen atoms. To obtain better
statistics on the diffusion constants we follow an approach
outlined previously2,24,35 and divide the kMC trajectory into a
number of segments. The diffusion constant is calculated as
the time-weighted average of the diffusion constants for each
segment i,

Dkk =
∑

i

Dkk,i�ti/t, (4)

where for the tetragonal structures analyzed in this paper the
diagonal components of the diffusion tensor Dkk suffice; �ti =
ti − ti−1 is the time length of segment i, t is the total length of
the kMC trajectory, and

Dkk,i = 〈[rk(ti) − rk(ti−1)]2〉/2�ti (5)

is the diffusion constant for segment i. Here, rk(ti) is the
position of a H atom in the k direction (with k = x,y,z) at
time ti and 〈· · ·〉 denotes the average over all particles. The
overall diffusion constant D is is defined as the average of the
diagonal components of the diffusion tensor, D = 1

3

∑
k Dkk .

Similarly, we define the probability ps of finding hydrogen
atoms in certain sites s (e.g., bulk, interface, or point defect
sites) as

ps =
∑

i pi,s�ti

t
, (6)

with

pi,s = Ni,H,s

NH
, (7)

where NH is the total number of hydrogen atoms in the
simulation and Ni,H,s is the number of hydrogen atoms at
site type s in the trajectory segment i.

B. Analytic description of the diffusion constant

The analytic expression for the diffusion constant D

within a symmetric lattice and in the limit of low hydrogen
concentrations is given by the classical Arrhenius expression

D = D0 exp(−�E/kBT ) , (8)

with D0 = �a2
0ν0. �E is the diffusion barrier, a0 is the jump

distance for a diffusion hop, and � is a geometric prefactor
that is related to the connectivity of each site to its neighboring
sites. For isotropic diffusion the geometric prefactor follows36

� = n

2d
, (9)

where n is the number of equivalent nearest neighbor sites and
d is the dimensionality of the system.

To obtain an analytic expression for the probability to find
hydrogen in various types of interstitial sites we assume a
grand canonical ensemble and express the total number of H
atoms within the system as24

NH =
∑

s

ns

1 + exp[(Es − μ)/kBT ]
, (10)

where the sum runs over the various interstitial site types s, ns

is the number of sites of type s, Es is the solution energy of
hydrogen at site type s, and μ is the chemical potential. The
probability to find hydrogen at site type s is therefore

ps = NH,s

NH
= 1

NH

ns

1 + exp((Es − μ)/kBT )
. (11)

The analytic results for the probability of finding hydrogen
in certain sites can directly be compared with our numerical
results employing Eq. (6).
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C. H-H interactions

The analytic expression is strictly only valid for an idealized
model system without any interactions between hydrogen
atoms. However, in bcc Fe hydrogen atoms show repulsive
nearest-neighbor interactions, which influences solution en-
ergies as well as diffusion barriers. To fully include these
interactions requires a more sophisticated treatment of the
Fe-H system. To account for the effect of H-H interaction
to a first approximation we express the total energy of a
configuration including pair interactions

Etot =
∑

i

Ei +
∑
i,j>i

V
pair
ij . (12)

Here, Ei is the solution energy of a H atom at a particular site
for the noninteracting case and V

pair
ij is the pair interaction. The

pair interactions are extracted from DFT calculations37 using8

V pair = Etot(Fe128H2) − Etot(Fe128)

− 2[Etot(Fe128H) − Etot(Fe128)], (13)

where Etot(Fe128) is the total energy of a 128 atom bcc
Fe supercell, and Etot(Fe128H) and Etot(Fe128H2) are the
total energies of the same cell containing one and two
additional H atoms, respectively. Within the DFT calculations
a configuration with H atoms in first-nearest-neighbor sites
is not stable and thus occupation of nearest-neighbor sites is
excluded within the kMC model. For H atoms in second- and
third-nearest-neighbor sites we obtain V

pair
2 = 0.131 eV and

V
pair

3 = 0.059 eV. The influence of the H-H interaction on the
diffusion barriers, �E, is then approximated by38

�E =

⎧⎪⎨
⎪⎩

�Emin if 1
2�Etot < −�E0,

�Emin + �Etot if 1
2�Etot > �E0,

�E0 + 1
2�Etot otherwise.

(14)

Here, �Etot = Etot
FS − Etot

IS is the difference in total energy
between the initial (IS) and final (FS) state of a kMC move
as obtained from Eq. (12). �Emin is the minimum barrier that
must be overcome even for large energy differences between
initial and final states and is set to 0.088 eV. The values of
�E0 are given by the diffusion barriers when H interactions
are neglected (see Table I).

Based on hydrogen diffusion in perfect bcc Fe, the zero-
point energy (ZPE) correction to the H diffusion barriers is
estimated to be less than 50 meV.18 This value is much smaller
than the differences between the respective diffusion barriers in

TABLE I. Diffusion barriers between various sites i within the
idealized cubic grain. �Ei denote the barriers for a single H atom,
�E0,i are the corresponding values entering Eq. (14) including H-H
interaction. All values are given in eV.

Process i �Ei (eV) �E0,i

bulk site → bulk site 0.088 0.088
bulk site → interface site 0.088 0.344
interface site → bulk site 0.600 0.344
interface site → interface site 0.250 0.250
bulk site → point defect 0.088 0.419
point defect → bulk site 0.750 0.419

z

x

FIG. 1. (Color online) Model of an idealized cubic grain in bcc
Fe. The spheres represent tetrahedral interstitial sites in bcc Fe, each
having four nearest neighbors at the same distance. Interface sites are
shown in blue, and bulk sites are shown in green.

the bulk and the interface and in between the bulk and interface
regions (see Table I). It is thus not expected that the ZPE
corrections will significantly influence the obtained results and
are thus not explicitly considered in the current study.

III. IDEALIZED CUBIC GRAIN

To study hydrogen diffusion within an idealized cubic grain
structure of bcc Fe we use the model shown in Fig. 1. In
this simple model we only consider two different site types,
bulk and interfaces sites, shown as blue and green spheres in
Fig. 1, respectively. All sites in the kMC model are arranged
as tetrahedral sites in bcc Fe (preferred interstitial site for
hydrogen), each having four nearest neighbors at the same
distance. Thus the two site types have the same geometry, but
different solution energies and respective diffusion barriers.
The grain boundaries between bulk regions are represented
by three layers of interface sites. Within the kMC simulations
we use a simulation cell with a side length of x = 45.312 Å
containing 5952 interface and 43 200 bulk sites. The simulation
cell is periodically repeated in all three dimensions.

The total number of H atoms within the system is

NH = NH,intf + NH,bulk, (15)

where NH,intf and NH,bulk are the number of H atoms at
the interface and bulk sites, respectively. When the H-H
interactions are neglected, we can correspondingly express
the number of H atoms within the two site types as

NH,intf = nintf

1 + exp[(Eintf − μ)/kBT ]
(16)

and

NH,bulk = nbulk

1 + exp[(Ebulk − μ)/kBT ]
. (17)

The probability of finding H at bulk sites is therefore

pbulk = NH,bulk

NH,bulk + NH,intf
. (18)

To determine the solution energies and respective diffusion
barriers between the two site types we use the results of our
recent DFT study.15 The bulk sites in our model correspond
to tetrahedral interstitial sites in bcc Fe, and the interface
sites correspond to the most stable interstitial site within
the grain boundary region of the �5 GB. According to our
DFT calculations the interstitial site at the �5 GB provides
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FIG. 2. (Color online) Logarithm of the diffusion constants for
hydrogen as a function of the inverse temperature within the dilute
limit. The black triangles are the results for hydrogen diffusion
between tetrahedral sites in perfect bcc Fe. The blue, green, and red
symbols represent the diagonal components of the diffusion tensor for
the idealized cubic grain structure confirming an isotropic diffusion
of hydrogen. The dashed lines correspond to linear fits of the kMC
data.

a trap for H interstitials with a binding energy of �Ebind =
Ebulk − Eintf = 0.512 eV. There are four different processes
for hydrogen diffusion between bulk and interface sites:
bulk → bulk, bulk → interface, interface → bulk, and
interface → interface. The energy barriers, �Ei , to determine
the rate constants for these processes according to Eq. (1) are
likewise taken from our recent DFT study15 and are listed
in Table I. The attempt frequency ν0 is set to 1013 s−1 for all
processes.

In Fig. 2 results for hydrogen diffusion constants for the
cubic grain structure and for a perfect bulk structure are
compared within the dilute limit. The perfect bulk structure
contains only bulk sites with a diffusion barrier of 0.088 eV
between neighboring sites and serves as a reference within our
simulations. In Fig. 2 the logarithm of the diffusion constants
is shown as a function of the inverse temperature. If we
assume an Arrhenius-like behavior, see Eq. (8), then the slope
corresponds to −�E/kB and the y intercept corresponds to
ln(D0). For our reference, the perfect bulk system, a barrier
of �E = 0.088 eV is extracted from the slope. We obtain
ln(D0) = −16.52, as expected from the theoretical value of
ln(�a2

0ν0) with � = 4/6, a0 = 1.001 Å, and ν0 = 1013. Within
the grain structure the three diagonal components of the
diffusion tensor, Dxx , Dyy , and Dzz, are equivalent confirming
the isotropic diffusion of hydrogen. The slope of the linear
fit to the simulation data yields a value for the effective
diffusion barrier of �E = 0.256 eV, which corresponds to
the barrier for an interface → interface hop, suggesting that
diffusion mainly takes place within the interface region. The
fitted value of ln(D0) = −16.95 is smaller than in perfect
bulk. Assuming that the diffusion only takes place within the
interface region and each interface site has only two adjacent
interface sites, i.e., � = 2/6, one can obtain a theoretical value
of ln(D0) = −17.21. It can also be seen that within the dilute
limit diffusion is slower in the grain structure than in the perfect
bulk structure. This can be explained by the fact that within
the grain structure hydrogen is confined to the interface region
which exhibits a higher barrier for diffusion.
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FIG. 3. (Color online) Diffusion constants as a function of H
concentrations in an idealized cubic grain for temperatures of
(a) 300 K, (b) 600 K, and (c) 1000 K. The blue triangles denote nu-
merical results from the kMC simulations without H-H interactions;
the dashed lines are obtained from Eq. (19). The green diamonds are
obtained from kMC simulations with H-H interactions; the dotted line
marks the analytic results (see Appendix). The red curve represents
the diffusivity of H in perfect bcc Fe within the dilute limit.

In Fig. 3 hydrogen diffusion constants as a function of
H concentration are shown for temperatures of T = 300,
600, and 1000 K. The kMC results without H-H interaction
are illustrated by blue triangles; the results including H-H
pair interactions are shown as green diamonds. In the case
without H-H interactions the diffusivity is constant for low
H concentrations for all three temperatures, it then decreases
as the number of H atoms approaches the number of interface
sites, before it again increases quickly to a considerably higher
value. This behavior can be explained as follows: (I) At low
H concentrations diffusion mainly takes place in the interface
region and the associated diffusivity is lower than in perfect
bulk (red line in Fig. 3) due to a higher diffusion barrier in the
interface region; (II) when the H concentration approaches the
number of interface sites, a dip occurs in the diffusion constant.
This is due to blocking in the interface region; i.e., hydrogen is
mainly confined to the interface region filling all the interface
sites and effectively blocking diffusion processes. (III) At
high H concentrations (NH > nintf ), the overall diffusivity
results mainly from bulk diffusion, which is much faster and
thus the diffusivity increases. The dip in the diffusivity for
hydrogen concentrations close to the number of interface sites
is less pronounced for higher temperatures, because at higher
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temperatures H atoms have a higher probability of escaping
from the interface to the bulk region. At very high hydrogen
concentrations the diffusivity decreases again due to blocking
in the bulk region.

Our numerical results from the kMC simulations can also
be described by an analytic expression. The overall diffusion
constant is a combination of diffusion in the interface and in
the bulk region and can thus be approximated as the weighted
sum over the two contributions:

D(T ,NH) =
∑

s

ps(T )D0,s exp

(−�Es

kBT

)
�s(T ,NH). (19)

The sum is weighted by the probabilities ps of being in the bulk
or interface region; see Eq. (11). In addition the blocking39 in
the two regions is accounted for by the factor

�s(T ,NH) =
(

1 − NH,s(T ,NH)

ns

)
, (20)

where Ns(T ,NH) = ps(T )NH is the average number of hydro-
gen atoms at site type s and ns is the number of sites of type
s. Diffusion in between the two site types is assumed to be in
equilibrium and these processes do not significantly contribute
to the overall diffusivity. The prefactor D0,s contains the
geometric prefactor �s , the attempt frequency ν0, and the hop-
ping distance a0, with ν0 = 1013 s−1 and a0 = 1.001 Å. The
geometric prefactors for the bulk and interface regions, �bulk

and �intf , are obtained by fitting to the numerical kMC data.
Before comparing the analytic and numerical results of the

diffusion constants we verify that the hydrogen concentration
in the two regions is indeed in equilibrium. For this, we
evaluate the probability to be in the bulk region, pbulk, within
our kMC simulation according to Eq. (6) and compare it to the
analytic result in Eq. (11). In Fig. 4 the results are shown for a
temperature of T = 600 K. The analytic result agrees well with
the kMC results. For high H concentrations, pbulk converges
to the theoretical limit nbulk/(nbulk + nintf ). Comparing Figs. 3
and 4, one can find that for a wide range of concentrations,
hydrogen is indeed confined to the interface region, even at

0.1 1.0 10.0 100.0
c [H/interface sites] (%)

0.0

0.2

0.4

0.6

0.8

1.0

p bu
lk

FIG. 4. (Color online) Probability of finding hydrogen in the bulk
region of an idealized cubic grain at T = 600 K as a function of
H concentration. The circles represent numerical results from the
kMC simulations; the dashed line shows the result from the grand
canonical ensemble model [see Eq. (11)]. The solid blue line marks
the theoretical limit nbulk/(nbulk + nintf ).

T = 600 K. Only when the interface sites are filled with
hydrogen, diffusion in the bulk region enhances the overall
diffusivity.

Using our kMC data at T = 300, 600, and 1000 K, the
geometric prefactors are �intf = 0.377 and �bulk = 0.644.
As shown in Fig. 3, the analytic results are in excellent
agreement with the kMC results. The fitted values for the
geometric prefactors also agree well with their theoretical
values. In the bulk region each site has four nearest neighbors
yielding �bulk = 4/6 = 0.667, whereas the interface region
is a 3D network of 2D grain boundary plains with only
two nearest neighbors for each interface site, yielding �intf =
2/6 = 0.333. The small deviation of the numerical fitted values
from the ideal theoretical ones is mainly due to diffusion
processes in the vicinity of neighboring bulk and interface
sites where the local connectivity differs from the ideal one.

Including H-H interactions in our kMC model we observe
a change in the diffusivity compared to neglecting H-H
interactions as the H concentration approaches the number
of available interface sites. But the overall shape of the curves
remains the same: a constant diffusivity at low H concen-
trations, then a dip that becomes shallower with increasing
temperature, and finally a strong increase due to contributions
from bulk diffusivity is observed. The dip, however, occurs at
a lower H concentration. This results from effective increase
in blocking due to the strongly repulsive nearest-neighbor
interactions. To describe the diffusivity including the H-H
interaction with a simple analytic formula is not possible.
Since the solution energies as well as diffusion barriers depend
on the H-H interactions, also the probability of finding H
at a certain site type as well as the blocking factor are no
longer simple functions of the number of H atoms. Thus
Eqs. (11) and (19) cannot be applied. We used the numerical
probabilities from our kMC simulations and a modified
blocking factor to estimate the applicability of our analytical
approach (details are given in the Appendix). The results are
shown as dotted green lines in Fig. 3. The numerical and
analytical results compare reasonably well, but especially the
depth of the dip for lower temperatures is not well reproduced.
This suggests that the more complex interplay of diffusion
processes resulting from simple H-H pair interactions could
not easily be reproduced by a simple mean-field approach.

IV. IDEALIZED CUBIC GRAIN WITH ISOLATED
POINT DEFECTS

In addition to the interface and bulk sites we next included
point defects in the bulk region as a third site type into our
model. Point defects such as vacancies or substitutional atoms
are typically present in materials and may as well influence
the diffusion of hydrogen. Within our idealized cubic grain
model we include 400 and 40 point defect sites corresponding
to a point defect concentration of about 0.80% and 0.08%,
respectively. The point defect sites have the same geometry
as bulk and interface sites, but different energetics. Since
hydrogen binds even stronger to vacancies than to interface
sites,40 the point defect sites are also considered to be more
stable in our kMC model. The corresponding microscopic
diffusion barriers are summarized in Table I.
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FIG. 5. (Color online) Diffusion constants as a function of H
concentration at T = 600 K in an idealized cubic grain [blue (dark)
triangles] and in an idealized grain with an additional 0.80% [orange
(light) squares] and 0.08% (green diamonds) point defects in the
bulk region. The symbols denote results from the kMC simulations;
dashed/dotted lines indicate analytic results according to Eq. (19).
The red curve represents the diffusivity of H in perfect bcc Fe within
the dilute limit.

Since the point defects are not connected to each other
there is no direct hop from one point defect to the next.
Hence, the geometric prefactor �trap for point defects in
Eq. (19) is expected to be zero. However, the point defects
alter the distribution of hydrogen within the system and thus
the corresponding probabilities ps .

In Fig. 5 the results for H diffusivities in an idealized
cubic grain with and without point defects are compared for
a temperature of T = 600 K. For a high defect concentration
and at low H concentrations most hydrogen atoms are trapped
at the point defects and hence do not directly contribute to
the overall diffusivity. Therefore, the diffusion constants are
lower as compared to those in the same grain without point
defects. At higher H concentrations the effect becomes less
pronounced and eventually all point defects and interface sites
are filled, and hydrogen atoms in the bulk region dominate
the overall diffusion. At lower defect concentrations the effect
becomes almost negligible.

For the grain model including point defects the fitted
geometric prefactors for the interface region, bulk region, and
point defects are �intf = 0.376/0.369, �bulk = 0.634/0.640,
and �trap = 0.0/0.0 for high/low defect concentrations, re-
spectively. The analytical results obtained from Eq. (19) are
in excellent agreement with the kMC results as shown in
Fig. 5. Note that the fitted geometric prefactors for the model
without point defects are �intf = 0.377 and �bulk = 0.644. The
geometric prefactor for the bulk region decreases slightly in
the presence of point defects, since the point defects reduce the
effective number of equivalent nearest-neighbor sites within
the bulk region.

The defect concentrations assumed here are very high
as compared to the vacancy concentration in pure Fe. The
formation energy of a vacancy in bcc Fe, Ef , is around
1.7 eV.41 The average number of point defects, Np, at a
temperature T is given by

Np = ni exp

(−Ef

kBT

)
. (21)

Our kMC model represents ni ≈ 4000 Fe sites, which yields
Np = 1.3 × 10−11. Thus, at realistic defect concentrations the
diffusivity within the interface region will hardly be effected.

In the limit of low hydrogen concentrations and low
temperatures Eq. (19) reduces to an expression previously used
to describe H diffusion in the presence of point traps in iron
materials.2,42 Assuming there are only bulk and isolated point
defect trapping sites with �trap = 0.0, Eq. (19) reads

D(T ,NH) = pbulkD0,bulk exp

(−�Ebulk

kBT

)
�bulk(T ,NH),

(22)

with

pbulk =
nbulk

1+exp[(Ebulk−μ)/kBT ]
ntrap

1+exp[(Etrap−μ)/kBT ] + nbulk
1+exp[(Ebulk−μ)/kBT ]

. (23)

For both low H concentrations and low temperatures we can
approximate exp(Ei − μ/kBT ) � 1 and

pbulk ≈
nbulk

exp[(Ebulk−μ)/kBT ]
ntrap

exp[(Etrap−μ)/kBT ] + nbulk
exp[(Ebulk−μ)/kBT ]

= 1

1 + ntrap

nbulk
exp

(
�Ebind
kBT

) , (24)

where �Ebind = Ebulk − Etrap is the binding energy of hydro-
gen to the trapping site. Furthermore, for low H concentrations
�bulk → 1 and substituting Eq. (24) into Eq. (22) leads to the
known expression2,42

D(T ) = D0,bulk exp

(−�Ebulk

kBT

)

×
[

1 + exp

(
�Ebind

kBT

)
ntrap

nbulk

]−1

. (25)

As can be seen from Eq. (25) the effect of point defects
becomes negligible for small numbers of trapping sites, a small
binding energy, or high temperatures.

V. IDEALIZED LAYERED STRUCTURE

The idealized cubic grains discussed in Secs. III and IV are
small compared to typical grain sizes in materials. In atomistic
simulations grain boundary structures are thus often modeled
as parallel arrangements of interface planes to describe their
2-dimensional nature. As a second microstructure model we
investigate the diffusion of hydrogen within such an idealized
layered structure as shown in Fig. 6.

All sites in the kMC model reflect the geometry of tetrahe-
dral interstitial sites in bcc Fe. The GB region is represented
by three layers of interface sites indicated by blue spheres
in Fig. 6. Additionally, the three layers above and below the
interface region are marked as intermediate sites (red spheres).
The structure is highly anisotropic, and diffusion within the
interface layers and perpendicular to them is expected to
differ significantly. Within the kMC simulations cells with
side lengths of x = y = 11.328 Å and z = n × 11.328 Å (with
n = 1–5) are used, which are periodically repeated in all three
dimensions.
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x

z

FIG. 6. (Color online) Model of an idealized layered structure of
parallel grain boundary regions in bcc Fe. The spheres represent
tetrahedral interstitial sites in bcc Fe, each having four nearest
neighbors at the same distance. Interface sites, intermediate sites,
and bulk sites are shown in blue, red, and green, respectively.

In a first step we investigate the diffusivity of H as
a function of the interface-interface distance. Here, the
intermediate sites are equivalent to bulk sites; the corre-
sponding barriers are taken from case (I) in Table II. The
results of the kMC simulations at T = 600 K are shown
in Fig. 7. In Figs. 7(a) and 7(b) the diagonal components
of the diffusion tensor parallel, D‖ = 1/2(Dxx + Dyy), and
perpendicular, D⊥ = Dzz, to the interface layers are depicted,
respectively. Diffusion perpendicular to the interface layers
is much slower than parallel to the interface, but in both
directions the diffusivity exhibits a linear dependence on
the distance between the interface layers. This is due to the
probability of finding H atoms within the bulk region, pbulk.
According to Eq. (19) at low H concentration (with �bulk ≈
�intf ≈ 1) the overall diffusion constant depends linearly
on pbulk (with pintf = 1 − pbulk) where the slope depends
on the difference in diffusivity in the bulk and interface
regions. Since the diffusivity in the bulk region is higher
than in the interface region, the overall diffusivity increases
linearly with increasing pbulk. pbulk again increases likewise
linearly with increasing interface-interface distance as shown
in Fig. 7(c). Since within our current model the condition
exp(�Ebind/kBT )(nintf/nbulk) � 1 holds (i.e., there is a no-
table number of interface sites with a significant binding
energy), Eq. (24) can further be simplified

pbulk = nbulk

nintf
exp

(−�Ebind

kBT

)
, (26)

suggesting that pbulk is proportional to the ratio of bulk
and interface sites, nbulk/nintf , at a given temperature T . As
nbulk increases linearly with the interface-interface distance,
whereas nintf remains constant, their ratio increases linearly
and so does pbulk.

TABLE II. Diffusion barriers, �Ei , between various sites i within
the idealized layered structure. The three cases represent three
different models to approximate different GBs in bcc Fe.

Process i Case (I) Case (II) Case (III)

bulk → bulk 0.088 0.088 0.088
bulk → intermediate 0.088 0.088 0.088
intermediate → bulk 0.088 0.288 0.088
intermediate → intermediate 0.088 0.200 0.088
intermediate → interface 0.088 0.088 0.088
interface → intermediate 0.600 0.400 0.500
interface → interface 0.250 0.550 0.550
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FIG. 7. (Color online) H diffusivity and H distribution as a
function of the interface-interface distances within the layered
structure: (a) components of the diffusion tensor parallel to the
interface, D‖ = 1/2(Dxx + Dyy); (b) component of the diffusion
tensor perpendicular to the interface, D⊥ = Dzz; (c) probability of
finding H in the bulk region, pbulk. Symbols denote results from the
kMC simulations, and dashed lines correspond to linear fits.

Diffusion perpendicular to the interface layers can be
described in an even simpler model. Since the interface region
provides traps for H atoms with an energy gain of 0.512 eV
and H diffuses rapidly within the bulk region, the diffusion
perpendicular to the interface can be approximated by H
hopping between two adjacent grain boundary planes. Within
this 1D model the hoping rate is k⊥ = ν⊥e−�E⊥/kBT , and

D⊥ = �⊥a2
⊥ν⊥ exp

(−�E⊥
kBT

)
. (27)

Here, �⊥ = 2/2 = 1 and a⊥ is the interlayer distance. As
discussed, the probability of finding H in the bulk region,
pbulk, is proportional to the interlayer distance and thus is
the time, τ , that H spends in the bulk region, yielding the
relation pbulk ∼ a⊥ ∼ τ = 1

ν⊥
. Hence, the attempt frequency

ν⊥ is inversely proportional to a⊥, and as a result, the diffusion
constant D⊥ is proportional to a⊥, which is consistent with the
results shown in Fig. 7(b). The linear dependence of 1/ν⊥ on
the interlayer distance is strictly only valid if the bulk region
is much thicker than the interface region. With increasing
interface-interface distance and in the limit of an infinitely thin
interface layer, the effective hopping barrier �E⊥ converges to
the barrier for escaping from the interface region �Eintf→bulk.

As a second step the dependence of the diffusivity within
the layered structure on the H concentration is investigated.
The results of the kMC simulations are shown in Fig. 8 for
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FIG. 8. (Color online) Diffusion constants as a function of H
concentration at T = 600 K in an idealized layered structure. The
diffusivities parallel (D‖) and perpendicular (D⊥) to the interface
layers are shown in (a) and (b), respectively. The blue triangles
denote the numerical results from the kMC simulations without H-H
interactions; the dashed lines are the analytic results obtained via
Eq. (19). The green diamonds show the results for kMC simulations
including H-H pair interactions; the dotted green lines are obtained
from the modified analytic expression (see Appendix). The red curve
represents the diffusivity of H in perfect bcc Fe within the dilute limit.

T = 600 K. The simulation cell with z = 22.656 Å contains
128 interface sites and 1408 bulk sites.

Figure 8(a) illustrates the diffusivity parallel to the interface
(D‖). Similar to the results for the cubic grain structure the
diffusivity is constant and lower than bulk diffusion for low H
concentrations. When the number of H atoms approaches the
number of available interface sites, blocking occurs and a dip is
observed for D‖. For even higher concentrations the diffusivity
increases quickly due to contributions from bulk diffusion. The
dashed line shows the results of our analytic model obtained
from Eq. (19). The fitted geometric prefactors are �‖,intf =
0.455 and �‖,bulk = 0.638, and the numeric and analytic results
are in very good agreement. Since the interface layers can be
considered as parallel, 2-dimensional planes, the theoretical
value for the geometric prefactor is �‖,intf = 2

4 = 0.5. Within
the bulk region the geometric arrangement is unchanged, i.e.,
�‖,bulk = 4

6 = 0.667. Again the fitted geometric prefactors are
close to the ideal theoretical values.

Figure 8(b) shows the diffusivity perpendicular to the
interface plane, D⊥, as a function of H concentration. For
low concentrations diffusion perpendicular to the interfaces is
much slower than parallel diffusion. This is due to the fact
that the H atoms are largely confined within the interface
region. At large H concentrations bulk diffusion dominates and
the diffusivity becomes isotropic. Since diffusion within the
interface layers does not significantly contribute to D⊥, there
is also no blocking effect observed. Instead, the diffusivity
increases smoothly as the number of H atoms approaches

the number of interface sites and bulk diffusion becomes
dominant. The dashed line is obtained within our analytic
model. Here, the agreement between numerical and analytic
results is also remarkable. The fitted geometric prefactors are
�⊥,intf = 0.0 and �⊥,bulk = 0.470. The zero value of �⊥,intf

confirms that diffusion within the interface layers does not
contribute to D⊥. The value of �⊥,bulk is smaller than the
expected value of 0.667. The deviation can be explained by
the fact that H diffusion in the bulk region perpendicular to
the interfaces is interrupted by trapping within the interface
planes effectively lowering the overall diffusion constant. It
also indicates that our assumption within our analytic model,
that the overall diffusion is a weighted sum over the diffusion
within the different regions, does not fully apply to D⊥.
Here, the overall diffusion is a combination of diffusion
within the bulk region and trapping within the interface
region.

If we include H-H interaction in our kMC model for the
layered structure, we observe a change in the diffusivity as
compared to neglecting H-H interactions as shown by the
green diamonds in Fig. 8. Similar to the results obtained for the
idealized cubic model, the overall shape of the curves remains
the same. Again the dip in diffusivity for diffusion parallel
to the interface occurs at lower H concentrations indicating
an effective blocking due to the repulsive H-H interactions.
Correspondingly, diffusivity perpendicular to the interface
increases at lower H concentrations since the repulsive H-H
interactions make it more favorable for H atoms to escape from
the interface region at lower concentrations. The dotted green
lines in Fig. 8 represent the results of our modified analytic
expression as discussed in the Appendix. Again we observe
that the agreement is reasonable albeit not as good as for the
case without H-H interactions.

In a third step we investigate the influence of different
types of GBs on the diffusivity. Our DFT calculations for the
�5 GB in bcc Fe15 indicate that diffusion perpendicular to the
GB interface proceeds via an intermediate site. Furthermore,
the more close-packed �3[11̄0](112) GB (�3 in short) in
bcc Fe exhibits rather large diffusion barriers within the
interface region as well as perpendicular to it.15 We consider
three different cases for which the barriers are summarized
in Table II. Case (I) resembles our original setup where the
intermediate and bulk sites are equivalent and the diffusion
barrier between interface sites is larger than in the bulk region
but still considerably lower than the diffusion barrier out
of the interface region. In case (II) intermediate sites are
introduced where the diffusion barrier between intermediate
sites is lower but almost comparable to the escape barrier
into the bulk region. Case (III) resembles the situation within
the �3 GB in bcc Fe. Both the diffusion barrier within and
the one perpendicular to the interface region are rather large.
As already discussed, for a temperature of T = 600 K and
in the dilute limit for case (I) hydrogen is largely confined
to the interface region and almost the entire diffusion takes
place in the interface region, although the diffusion barrier
is higher than in the bulk region. In case (II) approximately
half of all diffusion processes are found in the intermediate
region, which only provides about 1/5 of the available sites.
This indicates that diffusion within the intermediate region is
preferred, guiding hydrogen along the grain boundary, thereby
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FIG. 9. (Color online) Simulation cell of the �5 grain boundary
in bcc Fe. The red spheres represent Fe atoms, and the GB interface is
indicated by the blue dashed line. All interstitial sites are characterized
with respect to a reference atom denoted by R.

partially alleviating the trapping effect of the energetically low
lying interface sites. For case (III) we find that the interface
region only acts as a trap for hydrogen. Diffusion is almost
entirely observed in the bulk region and there is no enhanced
diffusivity in the intermediate region, i.e., in this case the
GB does not influence the preferred diffusion direction of
hydrogen.

Our findings for the idealized layered structures indicate
that depending on the nature of the actual GB the interface
region might either determine the preferred diffusion direction
or trap and effectively immobilize hydrogen atoms at the
interfaces. In the next section we extend our layered model
to more closely resemble the structure of the �5 GB in bcc Fe.

VI. �5 GRAIN BOUNDARY IN bcc Fe

The structure of the �5 grain boundary in bcc Fe is
illustrated in Fig. 9. To set up a kMC model that describes
the diffusion of hydrogen within the �5 GB, it is necessary
to identify all stable interstitial sites for H atoms within this
structure as well as possible diffusion processes between these
sites. Here we performed extensive DFT calculations to obtain
reliable values for solution energies and diffusion barriers. Our
results are thus not dependent on any fitted parameters but all
input data are extracted from ab initio calculations. We have
investigated the stability of hydrogen within various interstitial
sites in a previous study15 and found that within the �5 GB
interstitial sites close to the interface region are energetically
more favorable for H atoms than the tetrahedral site in bulk
bcc Fe. The DFT calculations revealed 8 distinctive interstitial
sites within the �5 GB. The relative solution energies of H
within these sites with respect to the most stable site (if3) are
summarized in Table III.

TABLE III. Relative positions of various symmetry-inequivalent
interstitial sites within the �5 grain boundary in bcc Fe. The positions
are given with respect to the reference atom R in Fig. 9. Solution
energies are listed relative to the most stable interstitial site, if3. The
relative solution energy of a tetrahedral bulk site is 0.500 eV.

Site �x (Å) �y (Å) �z (Å) �E (eV)

if1 7.041 0.000 0.001 0.050
if2 3.917 0.000 0.007 0.269
if3 5.522 0.000 0.075 0.000
im1 4.249 0.000 0.659 0.237
im2 1.287 0.000 0.759 0.208
im3 7.591 0.000 1.204 0.315
im4 6.854 −0.001 1.504 0.373

To identify suitable transition states for diffusion processes
between the various interstitial sites we employed the nudged
elastic band method28,29 as implemented in the VASP code.30,31

The computational details can be found in Ref. 15. We found
12 different diffusion processes; the corresponding barriers
extracted from the DFT calculations are summarized in
Table IV.

Based on our very detailed DFT study the kMC model of the
�5 GB structure is constructed by mapping the 8 identified
interstitial sites onto a lattice connected by the 12 diffusion
processes listed in Table IV. The (1 × 1 × 1) supercell of
the �5 GB shown in Fig. 9 has the dimensions x = 8.98 Å,
y = 2.84 Å, and z = 71.78 Å. In addition to the tetrahedral
interstitial sites in the bulk region, the relative positions of
the different interstitial sites close to the interface region with
respect to a reference atom R (see Fig. 9) are listed in Table III.
The reference atom R sits within the GB plane. Due to the
mirror symmetry of the GB interface, for an interstitial site
at (�x, �y, �z) with �z > 0.1 Å, there is an equivalent site
at (�x, �y, −�z). Since the �5 GB has a base-centered
orthorhombic structure, for an interstitial site at (�x, �y, �z)
there exists an equivalent site at (�x + x/2, �y + y/2, �z).
For the kMC simulations we used a model corresponding to a

TABLE IV. Hydrogen diffusion barriers for possible transitions
between interstitial sites in the �5 grain boundary in bcc Fe. Values
are given for both the forward and backward process. The process
im3 ↔ im2 takes place between second-nearest neighbors, while all
other transitions are between nearest-neighbor sites.

Process �Eforward (eV) �Ebackward (eV)

if3 ↔ if1 0.118 0.068
if1 ↔ im3 0.339 0.074
im3 ↔ im2 0.109 0.216
im2 ↔ bulk 0.383 0.091
if3 ↔ im4 0.429 0.056
if2 ↔ im1 0.020 0.052
im1 ↔ if3 0.102 0.339
im4 ↔ bulk 0.201 0.074
bulk ↔ bulk 0.088 0.088
if3 ↔ if3 0.250 0.250
if3 ↔ im2 0.241 0.033
im4 ↔ im3 0.030 0.088
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FIG. 10. (Color online) Diffusion network within the �5 GB.
The red spheres represent Fe atoms, and the blue lines illustrate the
diffusion probabilities for various H diffusion paths.

(2 × 6 × 1) supercell that is repeated periodically in all three
dimensions. The model contains 48 if1, 48 if2, 48 if3, 96 im1,
96 im2, 96 im3, 96 im4, and 10 224 bulk sites.

The interstitial sites and microscopic diffusion processes
create a complex diffusion network for hydrogen that is
highly anisotropic. To illustrate this network the contribution
of different processes to the overall diffusivity is shown in
Fig. 10 for low H concentrations. The relative line thickness
corresponds to the relative probabilities of observing H atoms
diffuse along this connection. For all three temperatures of
T = 300, 600, and 1000 K, diffusion within the bulk region is
negligible. Thus, diffusion in the z direction is slow since for
this hydrogen has to leave the interface region and cross the
bulk region towards the next interface. The plots on the left
side of Fig. 10 show a view along the y axis, [001] direction,
illustrating the diffusion network in the x direction. Although
there is a thick connection between the if3 and if1 site there
exists no continuous diffusion pathway within the interface. To
diffuse in the x direction hydrogen has to leave the interface
taking less favorable paths. Thus diffusivity in the x direction is
low for small hydrogen concentrations as also shown in Fig. 11.
For the diffusion in the y direction hydrogen can continuously
move along if3 sites without leaving the interface region as
shown in the plots on the right side of Fig. 10 (view along
the x axis, [13̄0] direction). With increasing temperature the
diffusion network becomes more isotropic within the interface
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FIG. 11. (Color online) Components of the diffusion constant
tensor as a function of H concentration within the �5 GB in bcc Fe.
Results are shown for (a) 300 K, (b) 600 K, and (c) 1000 K. The kMC
results for Dxx , Dyy , Dzz, and the overall diffusivity D are represented
by blue squares, green diamonds, orange circles, and black triangles,
respectively. The analytic results are shown as dashed lines in the
corresponding color. The red curve represents the diffusivity of H in
perfect bcc Fe within the dilute limit.

plane. This is also reflected in the different components of the
diffusion tensor shown in Fig. 11. For T = 300 K at low H
concentrations Dxx and Dyy differ by almost two orders of
magnitude, whereas at T = 1000 K they are comparable.

As discussed in the previous sections, for the idealized
interface structures the diffusivity shows a strong dependence
on the hydrogen concentration. In Fig. 11 the diagonal
components of the diffusion constant tensor as a function of
the hydrogen concentration are shown for T = 300, 600, and
1000 K for the �5 GB. For low H concentrations diffusion in
the interface region dominates and the diffusivity is anisotropic
as expected from the discussion of the diffusion network. For
large H concentrations diffusion is again isotropic since bulk
diffusion dominates. The overall diffusion constants measured
in the kMC simulations are the result of the statistical interplay
of all possible diffusion processes. In our simple analytic
model diffusion within a certain site type is associated with
one specific barrier, whereas in the �5 GB there are several
processes and thus barriers associated with one site type
and diffusion within the interface layer proceeds via several
site types. It is thus not possible to accurately describe the
diffusivity within our simple analytic model in Eq. (19).
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Nevertheless, in order to obtain an understanding of how
much the diffusions within the GB interface and the bulk
region contribute to the diffusion constant, we approximate
the diffusivity within �5 GB by selected and/or combined
processes within the analytic model.

H diffusion along the x direction and within the GB
interface follows the path if3 → im4 → im3→ im2 → if3
(see Fig. 10). We assume that this diffusion path is dominated
by the step if3 → im4 with a barrier of 0.429 eV. Following
Eq. (19), we approximate the diffusivity in the x direction,
Dxx , as

Dxx = pif3(T )D0,xx,if3 exp

(−�Eif3→im4

kBT

)
�if3(T ,NH)

+pbulk(T )D0,xx,bulk exp

(−�Ebulk

kBT

)
�bulk(T ,NH),

(28)

with D0,xx,s = �xx,sa
2
xx,sν0. The other contributions to the sum

are neglected. Still, as in the case of isolated point defects,
the other interstitial sites influence the hydrogen distribution
and thus the corresponding probabilities in Eq. (28). The hop
length between two adjacent if3 sites along the x direction is
axx,if3 = 4.486 Å.

Along the y direction, the overall diffusion constant, Dyy , is
similarly approximated within our analytical model. Diffusion
in the y direction either takes place within the bulk region or
in between if3 sites. For the hop between two adjacent if3 sites
along the y direction, the hop length is ayy,if3 = 2.837 Å and
the barrier �Eif3→if3 = 0.250 eV; the other diffusion processes
are not taken into account.

As discussed in Sec. V, for H diffusion along the z direction
(perpendicular to the interface), the GB interface acts like
a point trap. All geometric prefactors for diffusion between
interface sites are essentially zero, and only bulk diffusion
contributes to Dzz.

The analytic results are shown together with the kMC
results in Fig. 11. For Dyy the agreement is excellent,
indicating that diffusion in bulk and along if3 sites are indeed
the dominating processes. For Dxx and Dzz the analytic results
deviate from the numeric data, especially for lower tempera-
tures. Still, considering the simplicity of our analytic model
the agreement is quite remarkable for T = 600 and 1000 K.

The fitted values of the geometric prefactors are in the
x direction �xx,if3 = 1.531, �xx,bulk = 0.747; in the y direc-
tion �yy,if3 = 1.074, �yy,bulk = 0.701; and in the z direction
�zz,bulk = 0.705. All bulk values are relatively close to the
theoretical value of 0.667. Diffusion in the y direction along
if3 sites corresponds essentially to a 1D chain with two nearest
neighbors, yielding a theoretical value of �yy,if3 = 2/2 = 1.
The good agreement between fitted and theoretical values for
the geometric prefactors in the y direction also indicates that
the simple analytic model is suitable here.

Diffusion within the y direction, Dyy , exhibits a small
blocking effect as seen within our idealized models, which is
again most pronounced for low temperatures and vanishes at
higher temperatures. At T = 1000 K there is no dip, but Dyy

somewhat decreases with increasing H concentration. This is
due to the fact that at 1000 K the effective diffusion constant
within the bulk region is actually smaller than in between

interface sites; i.e., Dyy,bulk < Dyy,if3 with Dyy =
pif3Dyy,if3 �if3 + pbulkDyy,bulk �bulk [see Eq. (28)]. The diffu-
sion barrier between if3 sites is larger than between bulk sites,
but at high temperatures the prefactor, which is about a factor
of 10 larger for diffusion between if3 sites, dominates. Thus
at high concentrations where bulk diffusion has the largest
contribution the overall diffusivity, Dyy , decreases. At all
temperatures, diffusion perpendicular to the interface planes,
Dzz, is slowest, due to trapping of H within the grain boundary
region. With respect to diffusion in the x direction (Dxx) the
kMC results for T = 300 K suggest that the if3 site likewise
acts as a point trap. At this low temperature H atoms that
occupy if3 sites are nearly immobile in the x direction. Once
the H concentration reaches that of if3 sites, diffusion in the x

direction may occur following the path im2 ↔ bulk → im2 or
im4 → bulk → im4 with smaller diffusion barriers of 0.38 eV
and 0.21 eV, respectively. These effectively lower barriers are
also consistent with the increase and relatively large value of
Dxx with increasing H concentration as shown in Fig. 11(a).
For high temperatures and high H concentrations bulk
diffusion dominates and the diagonal components of the dif-
fusion tensor are equivalent, indicating an isotropic diffusion
behavior. In all cases the overall diffusion in the grain boundary
structure is slower than diffusion in perfect bcc Fe bulk.

It is apparent that for the more realistic model of the �5
GB in bcc Fe our analytic model is too simple to fully describe
the diffusion of hydrogen. Nevertheless, the observed trends
at high temperatures may be understood qualitatively with
a simple analytic approximation. Based on the kMC results,
a diffusion network was established and the processes that
dominate the diffusion under various conditions were extracted
yielding a more detailed understanding of hydrogen diffusion
within grain boundary structures.

VII. CONCLUSIONS

Employing kinetic Monte Carlo simulations we have
studied hydrogen diffusion within various models representing
different arrangements of grain boundaries and point defects in
bcc Fe. The defect regions exhibit interstitial sites with a sig-
nificantly lower solution energy for H atoms, effectively acting
as trapping sites. Within an idealized cubic grain structure we
observe a characteristic behavior of the diffusion tensor as a
function of hydrogen concentration. At low concentrations H
is confined to the interface region and the diffusivity is low as
compared to diffusion in perfect bcc Fe bulk. As the number of
H atoms approaches the number of interface sites the diffusion
constant drops due to blocking of available interstitial sites. At
large H concentrations bulk diffusion dominates the behavior
and a significant increase of the diffusivity is observed. Taking
into account H-H interactions within the idealized cubic grain
we observe that the overall dependence of the diffusivity on the
H concentration is maintained, but the dip in diffusivity occurs
at much lower H concentrations. This is due to an effective
blocking resulting from the repulsive H-H interactions. Large
concentrations of additional point defects lower the diffusivity
for small H concentrations, but do not change the behavior for
larger concentrations. Also, at realistic defect concentrations
the effect appears to be negligible.
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Within a layered arrangement of grain boundary planes
the diffusion is anisotropic. Parallel to the interface diffusion
is similar to the one observed within the grain structure.
Perpendicular to the interface diffusion is much slower and can
effectively be described by a 1D model of H atoms hopping
between neighboring interface planes. The effect of the grain
boundary on the diffusion of hydrogen strongly depends on the
actual solution energies and diffusion barriers between differ-
ent interstitial sites. The effect of H-H interactions in the lay-
ered structure is similar to the idealized cubic grain: The overall
dependence of the diffusivity on H concentration remains the
same, but a shift to lower H concentrations is observed.

The more detailed model of the �5 GB in bcc Fe
showed that the overall diffusion is a complex interplay of
various microscopic diffusion processes. Depending on the
conditions (hydrogen concentration, temperature, diffusion
direction) different processes dominate the diffusion resulting
in a complex diffusion network. Still, the general trends with
respect to temperatures and hydrogen concentrations may be
understood from a simplified analytic model.

We have derived a simple, analytical expression for hy-
drogen diffusion within microstructures that consist of several
distinctive regions (such as bulk, interfaces, point defects). The
analytic model is in very good agreement with the numerical
results for the idealized structures. Including H-H interactions
imposes, however, a configuration dependence of the solution
energies and diffusion barriers which makes it impossible to
derive a simple analytic expression and requires more sophisti-
cated approaches. Likewise, for the more detailed model of the
�5 GB the analytic model only works for conditions where
the diffusion is dominated by a few, specific processes, but
naturally it fails to capture the more complex interplay between
a number of different microscopic diffusion processes.

In all structures the diffusivity is lower than in perfect bcc
Fe bulk, indicating that the grain boundary regions do not serve
as fast diffusion channels. Nevertheless, at low concentrations
hydrogen is confined to the interface region; i.e., the arrange-
ment of grain boundary planes and thus the microstructure
significantly influences the preferred diffusion direction.
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APPENDIX: INCLUDING H-H INTERACTIONS
IN THE ANALYTIC MODEL

The H-H interactions introduce a concentration dependence
of the solution energies and diffusion barriers. It is thus not
possible to derive the probability of finding H in a certain
site type, ps , from Eq. (11). To obtain an estimate of the
diffusivity from our analytic model in Eq. (19), we have used
the numerical results for ps as obtained from the corresponding
kMC simulations. In addition, the repulsive H-H interactions
can be viewed to a first approximation as an additional factor
that effectively enhances the blocking effect. We thus modify
the blocking in Eq. (20) as

�s(T ,NH) =
(

1 − C × NH,s(T ,NH)

ns

)
. (A1)

The constant C reflects the enhanced blocking and is fitted
to the numerical results. Only one value of C is used for
all site types. Within the idealized cubic grains a value of
C = 3.55 is obtained. Since each hydrogen atom has at most
two second-nearest neighbors in a lattice of tetrahedral sites
in bcc, a maximum fractional occupancy of fmax = 0.25 is
expected. This is close to the fitted value of 1/C = 0.28. Using
the modified blocking factor and the numerical values for the
probabilities ps the dotted lines in Fig. 3 are obtained.

The same approach is used to estimate analytic results for
the idealized layered structure (dotted lines in Fig. 8). For
diffusion parallel to the interface a value of C‖ = 5.21 is
obtained. The much higher value of C‖ is due to the quasi-
two-dimensional diffusion within the interface region and
thus an effectively lower fractional occupancy. For diffusion
perpendicular to the interface a value of C⊥ = 3.10 is obtained.
The magnitude of the constant C indicates hereby the strength
of the repulsive interactions.

Since the blocking factor cannot become negative, the
approximation is restricted to hydrogen concentrations that
do not exceed the maximum fractional occupancy 1/C within
each site type.
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