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Gate-tunable quantum transport in double-layer graphene
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We analyze the effect of screening provided by the additional graphene layer in double-layer graphene
heterostructures (DLGs) on transport characteristics of DLG devices in the metallic regime. The effect of
gate-tunable charge density in the additional layer is twofold: it provides screening of the long-range potential
of charged defects in the system, and screens out Coulomb interactions between charge carriers. We find that the
efficiency of defect charge screening is strongly dependent on the concentration and location of defects within
the DLG. In particular, only a moderate suppression of electron-hole puddles around the Dirac point induced
by the high concentration of remote impurities in the silicon oxide substrate could be achieved. A stronger
effect is found on the elastic relaxation rate due to charged defects resulting in mobility strongly dependent
on the electron density in the additional layer of DLG. We find that the quantum interference correction to the
resistivity of graphene is also strongly affected by screening in DLG. In particular, the dephasing rate is strongly
suppressed by the additional screening that suppresses the amplitude of electron-electron interaction and reduces
the diffusion time that electrons spend in proximity of each other. The latter effect, combined with screening
of elastic relaxation rates, results in a peculiar gate-tunable weak-localization magnetoresistance and quantum
correction to resistivity. We propose suitable experiments to test our theory and discuss the possible relevance of
our results to existing data.
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I. INTRODUCTION

Gate-tunable Anderson localization of Dirac electrons is
inaccessible in standard field-effect heterostructures due to the
strong disorder-induced inhomogeneity of the local doping
level (electron-hole puddles)1–6 ubiquitous in the materials
that show Dirac-type low-energy spectrum, such as graphene7

or topological insulator surfaces.8 Basically, the low-density
localization behavior of graphene is inaccessible experimen-
tally because the Dirac point itself is inaccessible due to
the formation of electron-hole puddles around the charge
neutrality point. However, very recently, a novel double-layer
graphene (DLG) heterostructure containing two graphene
layers separated by an insulator allowed using additional
screening effect of the second graphene layer to access a metal-
insulator transition regime. Anomalously large resistance
ρ � h/(4e2), in combination with insulating temperature
dependence, was observed in these experiments suggestive
of a metal-insulator transition (MIT).9 The physical nature of
this behavior is currently a topic of a debate.9,10 In particular,
whether the transport data of Ref. 9 represent an effective
low-density high-temperature semiclassical resistivity10 or
a low-temperature strong Anderson localization crossover
behavior9 is unclear at this stage.

On the one hand, suppressing inhomogeneity allows ac-
cess to the low-density regime kF � � 1 in which Anderson
physics is expected to dominate (here, kF is the Fermi
wave vector and � is the mean-free path). In this regime,
quantum interference of the two flavors (due to two valleys)
of chiral Dirac charge carriers in graphene may result in
the insulating behavior in the case of sufficient mixing of
the flavors by atomic-scale disorder.9,11,12 On the other hand,
the experiments of Ref. 9 were restricted to a fairly high-
temperature regime (10–100 K) where quantum interference
effects may be suppressed due to short phase-breaking length.
The observed MIT is also in contrast with more recent transport
measurements on ultrahigh-quality suspended devices13 in

which an extremely low-density inhomogeneity is achieved,
δn ∼ 108 cm−2; nevertheless, no MIT is detected (see also
more recent experiment Ref. 14). Moreover, an Anderson
insulator would be characterized by the resistivity growing
exponentially with decreasing temperature, whereas the data9

demonstrate only a roughly power-law growth. Insulating
power-law temperature dependence (resistivity growing with
decreasing temperature) is not unusual near charge neutrality
in graphene (see Fig. 2 in Ref. 9, and measurements on other
low15,16 and high13,17 mobility samples). This behavior is
explained by the combined effect of temperature-dependent
screening18 thermal excitation of electrons from the valence
band and thermally activated hopping of electrons over the
potential barriers between electron-hole puddles.19 Never-
theless, very high values of resistance reported in Ref. 9,
ρ � h/(4e2), suggest a novel behavior in this system possibly
associated with MIT. However, an alternative explanation for
the observed behavior was recently suggested,10,19 in which
case the anomalous resistance is explained by a Boltzmann
transport effect combined with strong suppression of inho-
mogeneity in DLG.10,19 The latter work is phenomenological
and relies on the assumptions of the quasiclassical transport
formalism and the phase-breaking length being shorter than the
elastic-scattering length. Therefore, a more detailed analysis
of quantum effects is required to justify the applicability
of the latter approach. One way to make progress in the
understanding of the observed behavior of the resistivity
in these devices is to analyze the metallic regime where
perturbation expansion in disorder strength may be applied.
Such theoretical analysis of the quantum interference effect
in the higher-density weak-localization regime of the DLG
system, which must be a precursor to any low-density strong-
localization crossover phenomenon, is one of the main goals
of our work.

In this paper, we consider the effect of gate-tunable
screening provided by the additional layer in DLGs on
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transport characteristics of these devices. Screening affects
both the potential of charged defects and Coulomb interactions
of charge carriers. Taking into account both effects, we analyze
the classical and quantum parts of the resistivity of graphene in
DLG geometry in the metallic regime kF � � 1. We consider
only the low-temperature regime such that elastic scattering by
the disorder limits the transport characteristics, and all inelastic
scattering effects may be included perturbatively.

We outline the results of the following analysis: (i) We
develop a framework describing the screening effect of the
two graphene layers in DLG on the Coulomb potential of
charged defects in the DLG heterostructure. (ii) We generalize
the self-consistent theory of disorder-induced electron density
fluctuations at neutrality point of graphene1 (electron-hole
puddles) and use it to estimate the screening effect of DLG
on the amplitude of the electron density fluctuations. (iii) We
analyze the effect of screening in DLG on the elastic-scattering
rate due to charged defects that determine the extent of gate
tunability of mobility in DLG. (iv) We analyze the effect of
the screening in DLG on the dephasing rate due to inelastic
electron-electron collisions. (v) We analyze the combined
effect of screening on the weak-localization correction to
the resistivity. (vi) We predict a peculiar gate-tunable mag-
netoresistance in the high-quality DLG structures with mixed
elastic-scattering mechanisms.

This work is limited to the perturbative metallic regime and
can not make any definitive conclusions about the regime of
the low density studied in the experiments of Ref. 9. However,
the theoretical framework developed in the following provides
a basis for analysis of more detailed gate-tunable quantum
transport measurements which would allow characterization
of various microscopic scattering mechanisms that determine
the behavior of the system in the low-density regime. In
particular, we believe that it is imperative that we understand
the high-density metallic regime of the DLG transport in some
depth before trying to understand the low-density crossover
MIT regime since a systematic perturbative theory is available
in the higher-density regime, whereas the low-density regime
is inaccessible to analytical theory. We hope that our work
would motivate experimental work focusing on the metallic
regime of DLG in order to investigate the conceptually im-
portant question of Anderson localization and metal-insulator
transition in graphene.

We consider a DLG consisting of two layers of graphene,
“studied” and “control” (see Fig. 1), which are used for resis-
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FIG. 1. (Color online) A schematic of a typical double-layer
graphene heterostructure used in Ref. 9. Top (blue) and bottom (red)
layers correspond to the “control” and “studied” layers, respectively,
with typical values of d = 4 nm and d0 = 20 nm considered in the
text.

tivity measurements and to provide the additional screening
effect, respectively. The two layers are separated by a thin
layer, d � 4 nm, of insulating hexagonal boron nitride (hBN)
that is thick enough to suppress direct tunneling between
the layers. The whole structure is separated by a thick layer,
d0 ∼ 20 nm, of hBN from the standard SiO2/Si substrate. The
combination of the top and bottom gates in this heterostructure
allows independent “control” of the electron densities nc and
ns in the “control” and “studied” layers, respectively. This
setup is motivated by the design of heterostructures in Ref. 9.
We assume that the mobility of the studied layer is limited by
elastic scattering of charged impurities in accordance with the
data.9

The additional screening effect of the control layer is
expected to suppress the electron-hole puddles in the studied
layer. We find that the effectiveness of the control layer
screening strongly depends on the position of impurities in
the DLG. It is efficient for the relatively small concentration
of charged defects on top of the control layer, whereas it
leads to only a moderate suppression of the inhomogeneity
induced by charges in close proximity of the studied layer and
by the remote charged defects in SiO2 substrate. The latter
inefficiency stems from the very high densities of charged
defects in the SiO2 substrate ni � 1012 cm−2 that would
require screening charge density in the control layer several
times ni , which is beyond the experimentally accessible range.
Moreover, the nonlinear screening effects in the electron-
hole puddle regime in the studied layer work against the
screening effect of the control layer making the screening
less efficient. The situation is slightly different in the case of
elastic relaxation rate due to charged defects. The screening
by control layer is more efficient in this case and leads to
the suppression of the classical part of the resistivity near the
Dirac point of the studied layer. The resulting behavior of the
resistivity as a function of the density in the control layer is
a result of a competition of the suppression of electron-hole
puddles that increases the resistivity and suppression of the
elastic relaxation rate that decreases the resistivity.

In the following, we also demonstrate that the ratio
of momentum relaxation rate to the transport rate varies
substantially with the distance between graphene and charged
defects. Therefore, measurement of the two elastic relaxation
rates can be used to determine the location of charged defects
limiting the mobility in DLG. The transport scattering rate
can be extracted from Boltzmann resistivity. The momentum
relaxation rate characterizes the broadening of single-particle
states and can be extracted from the decay of Shubnikov–de
Haas oscillations. A similar technique20 has been successfully
applied to the analysis of the standard graphene-based field-
effect transistors.21 Since our work establishes that the inho-
mogeneous puddles induced by the distant charged impurities
in SiO2 can be suppressed only partially by the control layer
screening, it is important to know where the dominant charged
impurities reside and the measurement of the single-particle
momentum relaxation (sometimes also called the quantum
scattering) time could help locate the charged impurities in
the DLG system.

Very high values of the mobility of the studied layer
encapsulated in hBN that is tunable in the range 50–120 ×
103 cm2 V−1 s−1 with the screening density in control layer
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nc indicate the dominant role of the charged defects in
the elastic scattering in this system. Furthermore, the very
high value of the observed9 maximum of the gate-tunable
mobility suggests a weak effect of neutral (immune to
screening) elastic-scattering mechanisms that break locally
the lattice symmetry of graphene. Therefore, these DLGs
may demonstrate quantum interference behavior distinct from
that observed in typical graphene flakes22–31 where strong
lattice-symmetry-breaking disorder determines predominantly
weak-localization behavior. This is especially so at relatively
low densities ns at which the effect of trigonal warping of the
Fermi line32 can be neglected.

Two identical carbon atoms in the unit cell of graphene give
rise to two degenerate flavors (valleys) of chiral Dirac charge
carriers in its electronic spectrum confined to the vicinities
of the two inequivalent corners of the hexagonal Brillouin
zone. Quantum interference of two independent flavors of
Dirac quasiparticles is associated with weak-antilocalization
behavior.32,33 The latter is, however, protected only by the
symmetry between the two sublattices in graphene, which
can be easily broken by impurities. Therefore, quantum
interference in graphene is very sensitive to the presence of
elastic-scattering mechanisms that break lattice symmetry.
Generic time-inversion-symmetric disorder in graphene can
be categorized into three types according to their effect on
quantum interference: (i) potential of the charged defects that
do not break lattice symmetry; (ii) smooth random vector
potential disorder that breaks the symmetry between the two
carbon atoms in the unit cell of graphene (intravalley disorder);
(iii) atomic-scale disorder that breaks lattice symmetry and
causes mixing of the two valleys (intervalley disorder).
Random vector potential disorder leads to suppression of the
weak-antilocalization effect, whereas the intervalley scatter-
ing restores the weak-localization behavior typical for two-
dimensional electron gas. In the case of high-quality DLG
heterostructures with very weak lattice-symmetry-breaking
scattering, the weak-antilocalization effect of Dirac electrons
plays an important role.

Additional screening in DLG affects only the scattering rate
due to charged defects in graphene and therefore changes the
relative strength of intravalley and intervalley defects with
respect to the strength of potential scatterers. This results
in the dependence of quantum correction on the electron
density in the control layer nc. In particular, an interesting
possibility arises that the intervalley elastic scattering, while
being unimportant in determining the semiclassical Boltzmann
resistivity, becomes important in determining the tuning of
the quantum interference correction from antilocalization to
localization.

In a wide temperature range, quantum interference is
limited by decoherence rate due to inelastic electron-electron
collisions. The latter is strongly affected by the screening effect
in DLG for two reasons: due to suppression of the Coulomb
interaction between charge carriers, and due to enhancement of
the diffusion coefficient that reduces the time electrons spend
in proximity of each other where interaction is the strongest.
The combination of these two effects results in strong variation
of the decoherence rate with the screening density. This gives
rise to a peculiar gate-tunable quantum correction to the
resistivity of graphene in DLG devices which may change

sign depending on the screening density in the control layer,
especially at higher temperatures. It should be emphasized
that this gate-tunable quantum correction to the Boltzmann
resistivity is manifest only when the phase-breaking length
is much larger than the elastic mean-free path, i.e., at lower
temperatures, so that the quantum interference is operational.
Since our theory treats the quantum correction perturbatively,
it applies only in the metallic regime at densities well above
the crossover to strong Anderson localization.

The most striking consequence of the gate-tunable quantum
correction can be observed in the intermediate density regime
in which the transport in the studied layer is metallic, kF � � 1,
whence the Fermi energy is low enough so that the trigonal
warping effect is negligible. The quantum correction in this
case is strongly dependent on the electron density in the
control layer. At sufficiently strong dephasing rate (sufficiently
high temperature), this results in a gate-tunable crossover
from weak-antilocalization-type magnetoresistance to weak-
localization type. A similar crossover that was temperature
driven was demonstrated in graphene previously;26,30 our work
demonstrates a similar tunability with the gate voltage in DLG
systems.

The quantum part of the resistivity also includes the
Altshuler-Aronov correction to the conductivity due to the
electron-electron interactions34,35 which typically has the sign
enhancing the localization effect and is expected to be
suppressed by the additional screening effect that typically
reduces the interaction strength. This does not have any
effect on low-field magnetoresistance, which allows us to
study the quantum interference (weak-localization) correction
separately.

The paper is organized as follows. In Sec. II, we analyze
the effect of control layer screening on Coulomb potentials
of the charged defects. Sections III and IV discuss classical
and quantum parts of the resistivity, respectively. We provide
a discussion of the relevance of our work to experiments,
particularly the data of Ref. 9, where the DLG system was
studied experimentally in Sec. V. We conclude in Sec. VI.

II. SCREENING EFFECT OF THE “CONTROL” LAYER

A. Linear screening in DLG

We start with a linear screening model for DLG heterostruc-
ture. For simplicity, we assume that a density ni of charged
defects is located in a plane a distance z from the “studied”
layer (at z = 0), which can be both above z > 0 and below
z < 0 it. The “control” layer is located at a distance d above
the studied layer (see Fig. 1).

We include both intralayer and interlayer Coulomb inter-
actions between electrons in DLG described by a symmetric
matrix U��′ with diagonal U11 = U22 = υq , and off-diagonal
elements U12 = U21 = υqe

−qd with υq = 2πe2/q being the
two-dimensional (2D) Fourier transform of the Coulomb
potential. Here, �,�′ = 1,2 correspond to the studied and
control layers, respectively. We calculate the interaction energy
of an impurity charge Z1 and a conduction electron charge Z2

in the studied layer in the presence of the screening effect of
electron gases in both studied and control layers. This can be
found using linked cluster expansion of the thermodynamic
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potential36 of the DLG. In the resulting infinite series, we keep
only the term proportional to the product of the two charges
that represents the linear screening of the interaction potential,

��(R1 − R2) = Z1Z2

∫
dq

(2π )2

υqe
−q|z|

εz(q)
eiq·(R1−R2), (1)

where q and Ri are 2D wave vector and position vector,
respectively, and Z1Z2e

−q|z|υq is the Fourier transform of the
bare Coulomb interaction between the charges Z1 and Z2. For
electrons, we can put Z1 = Z2 = 1. In Eq. (1), we introduced
a dielectric function

1

εz(q)
= 1 − eq|z|υq

2

∑
��′

D��′(q)χ��′(q), (2)

where the matrix D��′(q) takes into account the dependence of
Coulomb interaction energy on the spatial separation between
the charges in the z direction:

D��′(q) =
[

2e−q|z| e−q|d−z| + e−q(d+|z|)

e−q|d−z| + e−q(d+|z|) 2e−qd

]
.

Here, χ��′ = 〈Tτρ�(q,τ )ρ�′(−q,0)〉 is the density-density cor-
relator which is a matrix in the layer index � = 1,2, including
both intralayer and interlayer terms. The density-density
correlator is renormalized by the Coulomb interaction matrix,
which is given by an infinite perturbative series.37 Within the
random phase approximation, the result of the resummation of
the perturbation series satisfies a matrix Dyson equation38,39

χ̂−1 = (χ̂ (0))−1 + Û , (3)

where χ̂ (0) is the diagonal matrix of free-particle polarization
operators in the two graphene layers. Solving the Dyson
equation (3), we arrive at the dielectric function in the form

1

εz(q)
= 1 + υqχ

(0)
22 (1 − e−qx)

d(q)
,

(4)
d(q) ≡ (

1 + υqχ
(0)
11

)(
1 + υqχ

(0)
22

) − υ2
qe

−2qdχ
(0)
11 χ

(0)
22 ,

where x ≡ |z − d| − |z| + d. The dielectric function (4)
demonstrates a strong dependence on both the impurity
location z and the interlayer distance d, and in the limit d → ∞
approaches the monolayer form 1/ε(q) = 1/(1 + υqχ

(0)
11 ).

Static screening is described by the zero-frequency limit of
the free-particle polarization operator40,41

χ
(0)
ii = gνi

[
θ
(
2k

(i)
F − q

) + θ
(
q − 2k

(i)
F

)
F(q)

]
,

F(q) = 1 + πq

8k
(i)
F

− 1

2

√
1 − 4

(
k

(i)
F

)2

q2
− q

4k
(i)
F

arcsin
2k

(i)
F

q
,

where θ (t) stands for Heaviside step function, g = 4 stands
for spin and valley degeneracy combined, k

(i)
F and νi stand for

the Fermi wave vector and the density of states per spin per
valley at the Fermi level in the ith layer, respectively.

B. Nonlinear screening in the electron-hole puddle regime

We estimate the effect of screening by the control layer on
the density inhomogeneity in the studied layer using the simple
self-consistent approach that had shown good agreement with
more detailed Thomas-Fermi-Dirac numerical calculations in
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FIG. 2. The result of the self-consistent density calculation in
the studied layer as a function of the density in the control layer
nc for a DLG with d = 4 nm (see Sec. II B for details). (a) Solid
line corresponds to z = −20 nm, ni = 1012 cm−2. The horizontal
dashed line corresponds to the result of the self-consistent density
calculation for isolated monolayer graphene encapsulated in hBN
with the same parameters as the solid line. (b) Solid and dashed lines
correspond to z = 1 and 5 nm, respectively, with the impurity density
ni = 1011 cm−2.

the case of monolayer graphene.1,42,43 This estimate is based
on the approximate relation 〈E2

F 〉 ≈ 〈V 2〉, where the amplitude
of the fluctuation of the local Fermi energy is equated to the
local fluctuation in the potential energy of electrons, which
reflects the local electrochemical equilibrium condition. We
further assume that the local Fermi level is given by the
free-particle form EF = h̄vF k

(1)
F = h̄vF

√
πns , where vF and

ns stand for the Fermi velocity of Dirac electrons and local
density, respectively. We also assume that the screening of
impurity potential can be taken into account within linear
approximation (4). We then end up with a self-consistent
equation for the typical density fluctuation n∗. The solution of
this self-consistent problem is plotted in Fig. 2 as a function of
the control layer density nc. The discrepancy between the solid
black line in Fig. 2(a) as nc → 0 and the root-mean-square
density in monolayer without the screening layer under the
same conditions, dashed line, originates from the screening by
interband transitions in the control layer at neutrality. The
above analysis neglects nonlinear screening effects in the
control layer and therefore the saturation in the realistic DLG
device may be at a slightly different value. Nevertheless, Fig. 2
and the comparison to the monolayer case give a reasonable
estimate of the suppression of the density inhomogeneity by
screening.

C. Location of impurities in DLG

Effectiveness of screening by the control layer is strongly
dependent on the location of impurities (z) which can ac-
cumulate in three possible areas: Relatively small densities
of charged defects ni ∼ 1010–1011 cm−2 can be located at
hBN-graphene interfaces44 and on top of the control layer
which can be exposed to air in realistic DLGs. A much
larger concentration of charged impurities ni ∼ 1012 cm−2

is expected to accumulate at the surface of SiO2 substrate
that is separated from the studied layer by d0 ∼ 20 nm of
hBN (see Fig. 1). These defects do not play an important
role in transport in the high-density regime kF |z| � 1 due to
the exponential factors in Eqs. (1) and (4). However, they
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dominate transport and density inhomogeneity at very low
densities where kF |z| � 1 and hence the long-range nature of
the Coulomb disorder becomes important at low densities near
the Dirac point.

The additional screening effect in DLG is the strongest
for impurities located on top of the control layer for which the
inhomogeneity varies by an order of magnitude [dashed line in
Fig. 2(b)]. However, the screening is substantially less efficient
for the impurities located in close vicinity of the studied layer
and for the high concentration of impurities in SiO2 substrate
[see the solid line in Fig. 2(b)].

Note that our estimate of the density inhomogeneity relies
on the assumption that locally electron density resembles
quasiparticles in clean graphene. This is unjustified in the
case of strong disorder for which kF � ∼ 1 (see Secs. III A
and III B).

III. ELASTIC RELAXATION RATE
AND BOLTZMANN RESISTIVITY

A. Transport relaxation rate due to charged defects

Additional screening in DLG leads to a substantial sup-
pression of the transport scattering rate, which in Born
approximation reads as

1

τC
tr

= 2π

h̄
ni

∑
p′

(1 − cos ϕ)|〈p′|V |p〉|2δ(εp − εp′), (5)

where ϕ and q ≡ |p − p′| = 2kF | sin ϕ

2 | are the scattering
angle and momentum of electrons on the Fermi surface in
the studied layer, and |〈p′|V |p〉|2 = 1

2 (1 + cos ϕ)| υq

ε(q) |2e−2q|z|

is the matrix element of the Coulomb potential of a defect
in graphene. Figure 3 shows the variation of the transport
mean-free path approximated by Eq. (5) within experimentally
accessible densities in the control layer 109 cm−2 � nc �
1012 cm−2.
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FIG. 3. (Color online) Transport scattering length in the stud-
ied layer. Solid lines from bottom to top (red, green, blue, and
magenta) correspond to nc = 109, 1010, 1011, and 1012 cm−2, with
z = −20 nm, ni = 1012 cm−2. Dashed line corresponds to isolated
monolayer graphene with the same parameters. For comparison,
the effect of a relatively small concentration of charged defects,
ni = 1011 cm−2 near the “studied” layer z = −1 nm is shown as
dashed-dotted line. The dotted line corresponds to kF �tr = 1 where
quantum and classical parts of the conductivity are of the same order.
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FIG. 4. (Color online) (a) Momentum relaxation rate as a function
of the density in the studied layer ni = 1012 cm−2, z = −20 nm.
Solid lines from bottom to top (red, blue, green, and magenta) corre-
spond to nc = 109, 1010, 1011, and 1012 cm−2, respectively. Dotted
line corresponds to kF � = 1 where Born approximation becomes
insufficient. (b) Ratio of the transport and momentum relaxation
times. Solid lines from bottom to top (blue, green, and red) correspond
to (ni = 1011 cm−2, z = 1 nm), (ni = 1011 cm−2, z = 5 nm), and
(ni = 1012 cm−2, z = −20 nm), respectively, with nc = 1012 cm−2.
Dashed lines correspond to the same parameters with nc = 108 cm−2.

B. Momentum relaxation rate: Location of impurities

Different spatial configurations of impurities within DLG
may be distinguished experimentally by analyzing the ratio of
the momentum relaxation rate to the transport scattering rate.
These ratios are substantially different in the cases of scattering
on long-range potential of remote and nearby impurities. The
transport rate, Eq. (5), is mostly determined by backscattering
with large momentum transfer, and therefore decays quickly
with the distance z between the charged defects and the studied
layer. The momentum relaxation rate, given by,

1

τp

= 2π

h̄
ni

∑
p′

|〈p′|V |p〉|2δ(εp − εp′), (6)

includes forward scattering with small momentum transfer,
which is only weakly dependent on z [see Fig. 4(a)]. The
ratio of the momentum relaxation rate to the transport rate is
shown in Fig. 4(b) for the three different locations of impurities
considered in Sec. II C. Note that the Born approximation used
in Eq. (6) is insufficient when kF �p ∼ 1, �p ≡ vF τp [shown
as dotted line in Fig. 6(a)] and further corrections to the elastic
relaxation rate have to be included. In the case of remote
impurities in SiO2, there is a peculiar regime where kF �p ∼
1 and the Born approximation is insufficient, yet kF �tr � 1
which suggests diffusive transport. Note, however, that the
perturbative analysis presented here is quantitatively correct
only when kF �p � 1.

C. Boltzmann resistivity

Suppression of the relaxation rate is reflected in the Boltz-
mann resistivity ρ(ns,nc) = ( 2e2

h
kF �tr)−1 shown in Fig. 5(a).

It is the strongest near the neutrality point in the studied
layer in which case both ns  nc and ns  1

πz2 so that the
high concentration of defects in the SiO2 substrate dominates
the transport properties. In the formal limit 2k

(1)
F = 2

√
πns 

κ2 = 8πe2νc (κ2 is the Thomas-Fermi screening wave vector
in the control layer), the charged impurity potential becomes

165442-5



K. KECHEDZHI, E. H. HWANG, AND S. DAS SARMA PHYSICAL REVIEW B 86, 165442 (2012)

10
1

10
2

10
3

10
4

0.001

0.01

0.1

1

10

n
s
 (108 cm−2)

ρ 
(h

/e
2 )

(a)

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

n
c
 (108 cm−2)

ρ 
(k

Ω
)

(b)

FIG. 5. (Color online) Resistivity of the studied layer ρ(ns,nc).
(a) Solid lines from top to bottom (red, green, blue, and magenta) cor-
respond to nc = 109, 1010, 1011, and 1012 cm−2, respectively, with
nimp = 1012 cm−2, z = −20 nm, d = 4 nm. Dashed lines correspond
to inhomogeneity-induced maximum resistivity with the same pa-
rameters from top to bottom. (b) Resistivity at intermediate density
ns = 1011 cm−2. Top (red) line corresponds to nimp = 1012 cm−2,
z = −20 nm, bottom (black) and middle (blue) lines correspond to
nimp = 1011 cm−2 and z = 5 and 1 nm, respectively.

effectively short ranged, which leads to the resistivity inde-
pendent of the density ns ,

ρmax(nc) = π

16

(
h

2e2

)
ni

nc

(1 + 4
√

πncαx)2, (7)

where x = (|z − d| − |z| + d). This strong screening limiting
resistivity, however, is unlikely to be reached, since within
the metallic regime and accessible densities, k

(1)
F /κ2 is of the

order of unity. Moreover, the value of the resistivity at low
densities ns is affected by the doping inhomogeneity. The
resistivity maximum in the presence of density inhomogeneity
(electron-hole puddles) can be estimated2,45 using the effective
medium theory,46 which allows averaging of the resistivity of a
system split into regions with random values of resistance char-
acterized by a distribution P [ρ(n)]. The averaged resistance,
ρEMT, in this case is given by the solution of a self-consistent
effective medium equation∫

dnP [n]
ρ(n) − ρEMT

ρ(n) + ρEMT
= 0. (8)

We approximate the distribution of the density fluctuations by
a Gaussian with zero average and variance given by nrms =
〈V 4〉, which compares well with full Thomas-Fermi-Dirac
approach43 in the case of disordered monolayer graphene. The
results are shown in Fig. 5(a) as dashed lines. Note, however,
that due to the relatively weak doping inhomogeneity induced
by the remote impurities in SiO2, the value of the metallicity
parameters 2 � kF (nrms)�tr � 4 and kF �p ∼ 1 indicate that
quantum corrections could be important in this low-density
regime. However, the long-range character of the disorder
potential makes quantitative analysis of quantum interference
difficult11,47,48 in this regime.

At higher density ns , the random inhomogeneity can
be neglected and transport is metallic, therefore, the linear
screening model and the Boltzmann resistivity provide an
accurate description of the system. At even higher densities
nsπz2 � 1, the exponential factors in Eqs. (4) and (5) lead to
the strong suppression of the effect of remote impurities in

SiO2. As a result, charged defects in the vicinity of graphene
layer and neutral scatterers determine the resistivity. Finally, at
the very high density kF d � 1, the typical monolayer behavior
of the resistivity is restored [see Fig. 5(a)].

D. Intermediate density regime

There exists a regime of densities ns where Eqs. (4) and (5)
provide a quantitatively accurate description of the dependence
of the elastic relaxation rate on both densities ns and nc.
Formally, the constraints defining this regime are as follows:
(i) The effect of the density inhomogeneity on the resistivity

is negligible,
√

(ns − ns)
2  ns , where O stands for spatial

average of O. (ii) Transport in the studied layer is metallic
ns � 1

π�2
p
. In addition, we assume (iii) that the density in

the studied layer is sufficiently small, ns  nc, so that the
resistivity changes substantially with changing nc. Here, nc

is limited by the experimentally accessible density range
nc � 5 × 1012 cm−2. (iv) The trigonal warping of the Fermi
line has a negligible effect on weak-localization corrections32

τ−1
w /τ−1 = 2 (πμh̄τns)2  1, with μ ≡ vF a

4 and a ≈ 1.42 Å
is the distance between the nearest neighbors in the hexagonal
lattice of graphene. The latter constraint simplifies the analysis
of characteristics of various scattering mechanisms that deter-
mine the quantum transport in the system. (v) Scattering due to
Coulomb defects remains dominant kF z � 1. Throughout the
text, we refer to the range of densities ns where all constraints
(i)–(v) are satisfied as the “intermediate density regime.”

The intermediate density regime can be used for a quan-
titative analysis of both Boltzmann and weak-localization
contributions to the resistivity. The effect of screening electron
density nc in the control layer on the resistivity is illustrated in
Fig. 5(b). The effect of nc on the weak-localization correction
in the DLG in the intermediate density regime is discussed
below.

IV. QUANTUM CORRECTION

We generalize the perturbative theory of weak localization
in graphene32,49 to the DLG heterostructure in the intermediate
density regime defined in Sec. III D above.

A. Perturbative theory of weak localization

We briefly review the theory of weak-localization cor-
rection to the resistivity of graphene. Weak localization
originates from the interference contribution to the probability
to scatter backwards. The latter is given by the modulus
square of the sum of the quantum mechanical amplitudes
Ai associated with each possible backscattered trajectory
P ∼ |∑Ai |2. This contains the classical part Pcl ∼ ∑ |Ai |2
and the quantum interference contribution δP ∼ ∑

AiA
∗
j . The

latter vanishes for generic trajectories. However, in case A∗
j is

a time-reversal image of Ai , which is possible for loop-shaped
self-intersecting trajectories, the phase factors cancel exactly,
δP ∼ ∑′ |Ai |2. Therefore, the average contribution of this
special type of trajectory to the backscattering probability
is nonzero. δP for a given self-intersecting trajectory is
proportional to the ratio of the width of the trajectory vF λ dt

to the 2D volume Dt that can be spanned by diffusion
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during time t . The resulting correction to the conductivity
δσ ∼ ∫

λvF dt/(Dt) ∼ ln τϕ/τ is proportional to the log of the
ratio of the travel times along the longest τϕ and the shortest
τ trajectories and is typically of the order of the conductance
quantum. The longest trajectories τϕ that limit the extent of
quantum interference are given by either the system size or by
phase-breaking effects.

Two degenerate flavors (two valleys) of chiral Dirac
fermions in graphene are characterized by an isospin degree
of freedom that has a fixed projection on the direction of
momentum. Therefore, backscattering of chiral charge carriers
is accompanied by the reversal of isospin which gives rise to
an additional phase difference πN between the two images
of a looped backscattered trajectory, where N is the winding
number of the trajectory. The interference contribution to con-
ductivity in this case acquires an additional minus sign, which
results in antilocalization33 effect in contrast to the usual weak
localization in 2D.50 In realistic devices, the vector potential
(intravalley) disorder, characterized by a phenomenological
rate τ−1

z , breaks the symmetry between the two sublattices
of graphene and therefore suppresses the antilocalization
effect. Atomic-scale disorder, characterized by τ−1

iv , scatters
electrons between different valleys and therefore restores the
localization sign of the interference correction. Quantitatively,
this effect is described by a perturbation expansion in kF � � 1,
which results in the conductivity correction32

δσ = − e2

πh

[
ln

(
1 + 2

τϕ

τiv

)
− 2 ln

τϕ

τtr

1 + τϕ

τiv
+ τϕ

τz

]
. (9)

Here, the first term on the left-hand side describes intervalley
interference sensitive only to the ratio τϕ

τiv
; the second term

describes the intravalley interference which is also sensitive
to smooth intravalley scattering rate τ−1

z due to the vector
potential disorder and the total transport scattering rate 1

τtr
≈

1
τC

tr
. The left-hand side in the latter equation, given by Eq. (5),

is obtained modeling charged defects by a Gaussian disorder
with a finite range in space and zero average of the potential.

In Fig. 6(a), we show the lines in the parameter space
that separate the negative δσ < 0, localization-like correction
from the positive one δσ > 0. In the presence of strong vector
potential disorder τz ∼ τtr, the intravalley interference term is
strongly suppressed. This results in the weak-localization sign
of the correction even in the case of relatively weak intervalley
scattering [see the blue line in Fig. 6(a)]. By contrast, in
the presence of relatively weak vector potential disorder
τ−1
z  τ−1

tr , a substantially stronger intervalley scattering is
required to compensate for the intravalley term in (9) and for
the correction to have the localization sign.51 We emphasize
that these analytical considerations are entirely restricted to
the perturbative regime kF �p � 1 of the quantum interference
correction to the conductivity and do not apply to the strong
localization regime of metal-insulator transitions.

B. Intervalley scattering

Microscopic origin of the intervalley scattering at interme-
diate densities therefore deserves a more careful consideration.
Electrostatic potential can give rise to a strong intervalley
scattering only if its amplitude is larger than the bandwidth, in
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FIG. 6. (Color online) (a) Weak antilocalization to localization
crossover boundary in the parameter space of disorder in DLG.
Magenta, green, and blue lines correspond to the fixed values of
τϕ/τz = 100, 10, and 3, respectively. Red line corresponds to mono-
valent adsorbate disorder. The dashed lines show example trajectories
that a DLG initially at point A takes with changing nc in case of
fixed τϕ , straight line, and coherence limited by the system size, the
curved trajectory ∼ √

τϕ/τtr. Dashed-dotted line corresponds to the
trajectory with coherence limited by electron-electron interactions in
the diffusive regime [Eq. (13)]. (b) Weak-localization correction for
different values 0.1 μm � vF τi � 1 μm from bottom to top with
ns = 5 × 1010 cm−2. We assume ni = 1012 cm−2 at z = −20 nm
and dephasing is limited by the electron-electron interactions in
the diffusive regime T τ  1 [Eq. (13)]. We took vF τϕ = 0.3 μm
at nc = 1010 cm−2.

which case the lowest-order Born approximation is insufficient
(see Appendix and Ref. 52 for details). Such strong potentials
can be induced by lattice defects and adsorbate molecules
chemically bound to carbon atoms of the graphene lattice.
Scattering characteristics of such defects depend strongly
on the detailed nature of the electronic structure, type of
the chemical bonding, and the position of the defect in
the unit cell of graphene.53 Such details are beyond the
scope of the present analysis. Instead, we employ a more
generic phenomenological model of two types of scatterers,
namely, resonant scatterers and short-range disorder. The
former describes the effect of monovalent chemical groups
and vacancies in the graphene lattice.54–56 The scattering rate in
this case decreases with density τ−1

R ∼ (
√

n ln n)−1, which in
monolayer graphene is practically indistinguishable from that
due to charged defects 1/τC

tr ∼ 1/
√

n (see Ref. 2). The short-
range scatterer model describes atomic defects that do not
give rise to resonant scattering. The corresponding scattering
amplitude grows with density τ−1 ∼ √

n and the resulting
contribution to the conductivity is density independent. In the
case of both sources of intervalley scattering, a relatively weak
τ−1
iv is sufficient for the quantum correction to have the weak

localization sign [Fig. 6(a)].
There exists substantial experimental evidence for the

presence of intervalley scattering in graphene. In particular, the
observation of negative weak-localization magnetoresistance
suggests a rather high intervalley scattering rate correspond-
ing to Liv ≡ √

Dτiv ∼ 0.1–0.3 μm at high densities n >

1011 cm−2.22–31,57 Alternative measurements of a weak D

peak in the Raman spectrum demonstrated the presence of
intervalley scattering at high energies ∼1 eV.58 More detailed
quantitative characteristics of the intervalley scattering such as
density dependence are not currently available experimentally.
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C. Phase-breaking effect

The size of the self-intersecting trajectories that give rise
to the interference correction is limited by either the system
size or the phase-breaking effect. The latter can be caused by
scattering on magnetic defects59 or inelastic electron-phonon
or electron-electron collisions.60 Both latter effects result in
temperature-dependent dephasing rate τ−1

ϕ , which is linear
τ−1
ϕ ∼ T in the case of electron-phonon scattering and linear

or quadratic in the case of electron-electron interactions in
the diffusive and ballistic regimes, respectively. Experiments
report typical values for the dephasing length

√
Dτϕ ∼ 2 μm

at the lowest temperatures T � 1 K (Refs. 22–26) and Lϕ ∼
0.2 μm at higher temperatures T ∼ 20 K. More recent mea-
surements on large-area epitaxial graphene devices accessed
very high-temperature regime T ∼ 100 K corresponding to
a short dephasing length Lϕ ∼ 0.04 μm.59,61 The available
experimental information about the density, disorder, and
temperature-dependent phase-breaking length in graphene is,
however, not extensive, and more work is needed before
definite quantitative statements can be made in details.

D. Effect of screening on the dephasing rate due to inelastic
electron-electron collisions

In this section, we estimate the effect of additional screening
on the dephasing rate caused by inelastic electron-electron
collisions with low-energy transfer h̄ω � kBT . We estimate
the phase-breaking rate up to a numerical coefficient using
the self-consistent approach,34,35,62–64 which is sufficient to
analyze the dependence of the phase-breaking rate on the
densities in the two layers of DLG. There are two distinct
dephasing temperature regimes, diffusive kBT � h̄τ−1

tr and
ballistic kBT  h̄τ−1

tr , which correspond to distinct tempera-
ture dependencies of τ−1

ϕ .
In the diffusive regime kBT τtr  h̄, electrons undergo

diffusive motion which increases the time they spend in the
vicinity of each other (where interaction is the strongest)
and therefore enhances the inelastic-scattering rate. Electron-
electron collision rate is given by the Fermi golden rule

1

τin
= 4πν3

∫ ∞

−∞
dω dε′F (ε,ε′,ω)W 2(ω),

(10)
F (ε,ε′,ω) = f ′

ε (1 − fε−ω)(1 − fε′+ω) + (1 − f ′
ε )fε−ωfε′+ω,

where fε ≡ 1/[1 + exp(βε)] and β−1 = kBT . The interaction
kernel in (10) is given by

W 2(ω) = 1

ν4

∑
|〈αγ |U11|βδ〉|2δ(ε − εα)δ(ε′ − εγ )

× δ(ε − ω − εβ)δ(ε′ + ω − εδ). (11)

The matrix element of the screened interaction is written
in terms of exact eigenstates |α〉 of noninteracting Dirac
Hamiltonian in the presence of a given disorder potential.
The screened electron-electron interaction potential in DLG
is given by U11(q,ω) = υq

ε0(q,ω) which includes the dynamical
dielectric function of Eq. (4) where we need to set z = 0 for
interaction within the studied layer.

The expression for the collision rate (10) has to be averaged
over disorder realizations. The result of this averaging can be
then expressed in terms of the diffusion propagator in graphene

D(q,ω), which describes the transport of the charge density
through the disordered system. The diffusion propagator is
found by solving the diffusion equation (∂t − �D1) D(r,r′) =
δ(r − r′) in the studied layer.65 Here, Di is the diffusion
coefficient in the studied (i = 1) or control (i = 2) layer,
respectively. As a result, Eq. (10) at q�1  1 and ωτtr  1
takes the form

1

τϕ

= 8ν

π

∫
τ−1
ϕ

dω d2q

(2π )2

ω|U (q,ω)|2
sinh ω

[ReD(q,ω)]2 , (12)

where we keep only the logarithmically divergent terms. Also,
we introduce a low-energy cutoff ω ∼ τ−1

ϕ which reflects the
fact that only collisions with large enough energy transfer
ω � τ−1

ϕ produce a substantial dephasing of the electrons
with diffusion time limited by τϕ .34,35,66 Solving (12) self-
consistently gives an estimate for the dephasing rate.

At high densities such that q�i � 1, i = 1,2, the screening
is ballistic for which case we can approximate qυqχii(q,0) ≈
κi , and Eq. (12) gives

1

τϕ

= C̃
T

8πν1D1
ln πν1D1, (13)

with

C̃ ≈ 1

2

ζ 2(
ζ + κ2

κ1)

)2 , (14)

where we introduce the screening parameter κi = 8πe2νi for
the ith layer and ζ ≡ 1 + 2dκ2.

At lower densities, the polarization operator acquires a
diffusion pole

χi(q,ω) ≈ gνi

(
1 + iω

1

−iω + Diq2

)
. (15)

The presence of the diffusion pole affects only the coefficient
in Eq. (13). In the case of short screening length κi = 8πe2νi >

�−1
tr , we obtain, for the coefficient C → C̃,

C = 1

1 + κ2
κ1

D2
D1

(
ζ + κ2

κ1

) + D2
D1

ζ 2
(
1 + κ2

κ1

D2
D1

)
(
ζ + κ2

κ1

)(
1 + (

ζ + 2 κ2
κ1

)
D2
D1

) . (16)

In the limit of κ2/κ1 � 1, the results (16) and (14) both
approach

C ≈ 1

2

κ2
1

κ2
2

. (17)

The dephasing rate (13) is strongly dependent on the screening
density nc in the control layer through the diffusion coefficient
D1 and the factor C or C̃.

In the high-temperature T τtr � 1 ballistic regime, the
polarization operator is approximated by the free-particle
form40,41 χi(q,ω) ≈ gνi(1 + i ω

vF q
) at ω/(vF q)  1. The de-

phasing rate in this case is given by67

1

τϕ

≈ (kBT )2

16ν1
(
ζ + κ2

κ1

) ln
kBT

16πv2
F ν1

, (18)

where parameters κi = 8πe2νi and ζ ≡ 1 + 2dκ2 have the
same meaning as above, and we assume κid  1.
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E. Gate-tunable quantum interference correction

In the presence of mixed scattering sources, the suppression
of the transport scattering rate with growing nc results in the
increased relative strength of neutral scattering mechanisms.
This is a simple consequence of the Coulomb scattering
being effectively screened out by the control layer. As a
result, the amplitude of the quantum interference correction
varies as a function of nc. To illustrate this, we assume a
large concentration of charged defects ni located in the SiO2

substrate and a small concentration of resonant scatterers ñi .
Then, we have τ−1

tr ≈ τ−1
C + 2τ−1

iv where we use τ−1
z ≈ τ−1

iv

valid for a small concentration of single-site defects. In the
present analysis, we ignore the effect of screening by the
control layer on the shift of the chemical potential in graphene
due to charged defects.

Depending on the mechanism limiting the phase coherence,
a variety of behaviors of the conductivity correction as a
function of the screening density nc are possible [see Fig. 6(a)].
For screening independent τ−1

ϕ due to dephasing by magnetic
impurities, the system initially at point “A” in Fig. 6(a) takes
a trajectory represented by the straight dashed line. In smaller
devices, coherence is more likely to be limited by the system
size, in which case the effective rate τ−1

ϕ ≡ D
L2 = vF �tr

2L2 depends
on the diffusion coefficient and hence is sensitive to the screen-
ing effect of the control layer. This regime corresponds to the
curved dashed trajectory in Fig. 6(a). The effect of screening
by the control layer is the strongest in the case of dephasing
limited by electron-electron interactions. In this case, the ratio
τϕ/τtr depends on nc through the coefficient C in Eq. (13), and
the system takes the trajectory shown as the dashed-dotted
line in Fig. 6(a). This is the situation most likely to be
realized in experiments on large exfoliated flakes of graphene.
Dependence of the weak-localization correction on nc for this
case is given by Eq. (9) combined with (5) and (16), which
is shown in Fig. 6(b). The effect of additional screening by
control layer therefore expands the parameter range in which
the weak-localization sign of the quantum correction could be
observed, and thus the possibility of a transition from the weak
antilocalization to weak localization as a function of the control
layer density (i.e., gate tunable) in the nominally metallic
studied layer is very high in this case. This predicted transition
has not yet been seen in experiments, but may actually exist in
the samples of Ref. 9 in the metallic regime of the studied layer.

Weak-field magnetoresistance allows an unambiguous
measurement of the weak-localization correction. At small
fields B  Bϕ = h/e(Dτϕ), the magnetoresistance can be
approximated by

δσ ≈ e2

24πh

(
B

Bϕ

)2

�

(
τϕ

τiv

,
τϕ

τz

)
,

�

(
τϕ

τiv

,
τϕ

τz

)
≡

⎡
⎣1 − 1(

1 + 2 τϕ

τiv

)2 − 2(
1 + τϕ

τiv
+ τϕ

τz

)2

⎤
⎦ .

(19)

In this regime, we expect a gate-tunable crossover from weak-
antilocalization to weak-localization magnetoresistance to be
observable especially at higher temperatures.

V. COMPARISON WITH EXPERIMENT

In this section, we discuss the relation of the theory
presented above to the recent transport measurements in
DLG.9 The clever DLG design of Ref. 9 provides an
opportunity to use the additional gate tunability of the
resistivity in the studied layer

ρ(ns,nc) = ρC(ns,nc) + ρR(nc) (20)

to distinguish the contributions of charged ρC(ns,nc) and
neutral ρR(nc) scattering mechanisms in the intermediate
density regime (see Sec. III D). The latter can be deduced from
the dependence of the mobility of the studied layer μ(nc) on
the control layer density reported in the Supplemental Material
of Ref. 9. On the one hand, these data are consistent with
the presence of a high concentration of charged defects ni ≈
1012 cm−2 at the surface of SiO2 substrate located at z = −20
nm away from the studied layer.9 On the other hand, a similar
behavior could result from a smaller concentration of charged
defects ni ≈ 1011 cm−2 in close vicinity of the studied layer
or on top of the control layer [see Fig. 5(b) for comparison].
The two situations may be distinguished experimentally by
comparing the transport and momentum relaxation rates [see
Fig. 4(b)]. At low carrier densities, however, the precise
location of impurities does not play an important role and
therefore the substantially larger concentration of defects
likely to be present in SiO2 dominates the transport properties.

The situation is different in the case of density inhomo-
geneity. We find that DLG is relatively inefficient in screening
out electron-hole puddles induced by the high concentration
of defects in SiO2 as well as defects in close proximity to
the studied graphene layer itself. Both allow some control
in the experiments: the former can be reduced by changing
the substrate, and the latter may be reduced by improving
the sample preparation. Moreover, both improvements were
recently implemented in suspended devices.13

In the absence of more systematic data, we can esti-
mate the residual mobility associated with neutral scattering
mechanisms from the maximum of the mobility curve μ(nc)
at the maximum density in control layer reported in the
Supplemental Material of Ref. 9. The result is μ(ns = 1011) ∼
1.2 × 105 cm−2 V−1 s−2, which corresponds to a relatively
small density of resonant scatterers, such that vF τR � 0.8 μm
suggesting that the DLGs analyzed in Ref. 9 may demonstrate
gate-tunable weak antilocalization to localization crossover at
intermediate densities.

Finally, we discuss the effect of coupling between graphene
and hBN substrate which gives rise to spectacular new features
in the electron spectrum at high densities.68 However, at low
carrier densities, this effect is not expected to be dramatic.
Transport characteristics of graphene could be affected in
three possible ways: (i) triangular symmetry of hBN breaks the
sublattice symmetry of graphene and therefore gives rise to an
additional trigonal warping of the Fermi surface;69 our estimate
shows negligible effect on the weak-localization correction at
low densities ns � 1011 cm−2; (ii) hBN-induced Moire pattern
may dominate the density fluctuation at the neutrality point.
This effect, however, has not been clearly identified in the local
probe data4 to this point and therefore we expect it to be smaller
than current levels of inhomogeneity induced by charged
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defects; (iii) additional intervalley scattering may be caused
by strong coupling of graphene to hBN. However, existing
experimental data and ab initio calculations70 suggest a rather
weak coupling which is not expected to give rise to strong
intervalley scattering. Nevertheless, a more detailed analysis
is required to completely rule out all of these possibilities.

VI. DISCUSSION AND CONCLUSION

Our goal in this work has been a careful theoretical study
of the screening by the control layer in determining transport
properties of the studied layer in double-layer graphene
systems experimentally introduced in Ref. 9. The problem
of interest to us is both subtle and complex, involving many
disparate aspects of electronic transport phenomena, and our
study is at best an approximate one because of the highly
complex nature of the problem. In particular, we are inter-
ested in studying both semiclassical Boltzmann and quantum
localization contributions to the DLG resistivity, including the
control layer screening effect, on an equal footing as much
as possible. Since potential intravalley and intervalley elastic
scattering affect quantum localization properties qualitatively
differently, our work must include all mechanisms in the pres-
ence of control layer screening with equivalent considerations
for all scattering processes contributing to the semiclassical
and the quantum parts of graphene resistivity. Since the phase-
breaking length arising from inelastic scattering processes is an
important ingredient in determining localization effects arising
from quantum interference, we consider electron-electron
interaction induced inelastic phase decoherence effects in
our theory, neglecting electron-phonon interaction which is
known to be weak in graphene.71 We also neglect all direct
contributions to transport from inelastic scattering processes
since our interest is relatively low-temperature transport where
quantum interference may play a role rather than high-
temperature transport where inelastic phonon scattering plays
a role. We investigate the role of the control layer screening on
the density inhomogeneity (i.e., electron-hole puddles) near
the Dirac point, finding that screening by the control layer
is ineffective in suppressing the electron-hole puddles arising
from charged impurities in the SiO2 substrate far from the
studied graphene layer (in fact, this is an important qualitative
result of our work). Finally, our work treats both long-range
Coulomb disorder arising from random charged impurities
in the environment and the short-range disorder arising from
neutral atomic defects on an equal footing.

Since the theory involves (at least) six different independent
characteristic length scales (elastic mean-free path due to
long- and short-range disorder and intravalley and intervalley
scattering lengths, the inelastic phase-breaking length, the
Fermi wavelength, the density fluctuation correlation length,
the thermal length, etc.), it is necessarily a complex problem
necessitating various approximations focusing on different
aspects of the transport phenomena. We concentrate on low-
temperature transport at relatively high “metallic” densities
where the quantum interference contribution to the resistivity
can be treated as a perturbative weak-localization correction to
the semiclassical Boltzmann resistivity. This precludes us from
commenting directly on the very low-density nonperturbative
insulating behavior (as observed in Ref. 9) from the perspective

of strong Anderson localization phenomenon, but our theory
establishes the clear possibility of a gate-tunable transition
from weak-antilocalization to weak-localization behavior in
graphene at metallic densities, which would be a necessary
precursor to a possible strong localization crossover behavior
at low densities. Whether such a weak-localization transition,
which must precede any strong-localization-induced
low-density metal-insulator transition, is operational in Ref. 9
was unfortunately not studied there, and the prediction of such
a gate-tunable transition in the weak-localization behavior is
an important prediction of our work. We emphasize that such
transition must be studied at relatively low temperatures, and
it may be missed at the higher-temperature range (10–100 K)
of study used in Ref. 9. In addition, the strong-localization-
induced insulating behavior at low carrier density should be
exponential in temperature, and not a power law as observed
in Ref. 9. Given our concrete theoretical predictions, we
hope that future experiments on DLG systems will resolve
the important question of a possible low-density quantum
localization transition in clean graphene. Our work shows that
it is possible for the intervalley scattering in graphene to be
strong enough to induce localization, but at the same time be
weak enough not to strongly suppress high-density mobility,
particularly in the presence of screening by the control layer.

In conclusion, we analyze the effect of gate-tunable screen-
ing provided by the additional control layer in DLG on both
classical and quantum parts of the resistivity of a high-quality
studied layer in which elastic scattering is limited by charged
disorder. We find the following: (i) The additional screening
in DLG is relatively inefficient at screening out electron-hole
puddles induced by the high concentration of defects in SiO2

as well as defects in close proximity to the studied graphene
layer itself. In the latter cases, the screening provides roughly a
factor of 2 suppression within the control layer density range of
1010–1012 cm−2. Therefore, the suppression of electron-hole
puddles itself is insufficient to explain the contrast between
the strongly insulating behavior observed in DLG (Ref. 9)
structures and the absence of such in stand-alone graphene
samples including highly homogeneous suspended samples.13

(ii) The screening effect of control layer results in a relatively
strong suppression of the elastic relaxation rate resulting in
gate-tunable mobility of the studied layer in the DLG at
intermediate density ns . (iii) We show that the location of
the charged defects limiting the mobility of the DLG can
be determined by measuring the ratio of the momentum
relaxation and transport relaxation rates. (iv) Additional
screening effect of the control layer strongly suppresses the
potential of Coulomb interaction between charge carriers.
(v) The combined effect of (ii) and (iv) results in a strong sup-
pression of the dephasing rate due to inelastic electron-electron
collisions which determines the sign and the magnitude of the
quantum interference correction to the resistivity. (vi) As a
consequence of (ii) and (v), the weak-localization correction to
the resistivity is gate tunable. (vii) The very low concentration
of resonant or short-range scatterers that has little effect
on the Boltzmann part of the resistivity in the high-quality
studied layer in DLG nevertheless can provide sufficient
intervalley scattering for the quantum correction to resistivity
to have a negative (weak-localization) sign. Moreover, the
additional screening in DLG improves the coherence in the
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FIG. 7. The ratio of intravalley scattering time (τ1) to intervalley scattering time (τ2), τ1/τ2, or equivalently, the ratio of the scattering rates
γ2/γ1, where γi = h̄/τi for the long-range Coulomb potential. (b) and (c) show τ1 and τ2, respectively, as a function of density for an impurity
density ni = 1011 cm−2. Note that τ1 ∝ n1/2 and τ2 ∝ n−1/2.

system and therefore expands the range in which quantum
correction of weak-localization sign is observable. (viii) We
find that high-quality DLG structures where charged defects
are the dominant source of elastic scattering manifest a
peculiar gate-tunable crossover between weak-antilocalization
and weak-localization magnetoresistance. The latter could be
observed in the intermediate density regime in which electron
density in the studied layer is sufficiently high for random
inhomogeneity to be neglected and the transport to be metallic
and at the same time is low enough for the effect of the control
layer screening to be substantial (see also Sec. III D).

In this paper, we developed a theoretical framework that
can be used for a systematic experimental characterization
of the symmetry-breaking mechanisms in DLG in the
intermediate density regime which could allow further
understanding of the observed strongly insulating behavior
at low densities. This work could also be used to describe a
more generic double-layer heterostructure involving materials
other than graphene that realize other universality classes
of Dirac electrons such as surfaces of strong and weak
topological insulators. Such heterostructures could be useful
to study experimentally gate-tunable quantum interference
and Anderson localization effects in these systems, which are
a topic of active current theoretical interest.72
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APPENDIX: INTERVALLEY SCATTERING
DUE TO CHARGED DEFECTS

The intervalley scattering rate due to Coulomb impurities
can be separated from the intravalley part by taking low- and
high-momentum parts of the sum over p′ = p + q + G in
Eq. (5), where G is the reciprocal lattice vector. For intravalley
scattering, we include only G = 0 which results in

1

τC
1

= niν

h̄

∫ 2kF

0

q2dq

k3
F

[
V (q)

ε(q)

]2 √
1 − (q/2kF )2. (A1)

For intervalley scattering, we take the smallest allowed recip-
rocal vector that connects the two corners of the hexagonal
Brillouin zone |G| = |K − K′| = 2π/3a, where a = 1.42 Å
is the C-C distance. Then, the intervalley scattering time is
given by

1

τC
2

= niν

h̄

1

k|G − k|
∫ q+

q−
q dq[V (q)]2 sin θ, (A2)

where q± = |G − p| ± p and sin θ is given by the following
relation:

q =
√

|G − p|2 + p2 − 2|G − p|p cos θ. (A3)

In Fig. 7, we show the calculated ratio of intravalley scattering
time to intervalley scattering time τC

1 /τC
2 as a function of

density for the long-range Coulomb impurities. Since the ratio
is very small, the intervalley scattering plays a little role in the
transport when the Coulomb disorder dominates. At the same
time, a phenomenological model of delta-range disorder gives
τ1/τ2 = 1 at all densities.
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