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Tight-binding calculations of the optical properties of HgTe nanocrystals
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We propose a tight-binding model of HgTe which gives an accurate band structure in a wide energy range
compared to recent ab initio calculations. The inverted band structure near the Fermi level and its temperature
dependence are also very well described. Using this parametrization, we study the effects of the quantum
confinement on the electronic structure of HgTe quantum dot nanocrystals. We calculate the optical absorption
spectra of quantum dots with various shapes and diameters up to 10 nm. We show, using a configuration interaction
approach, that excitonic effects are negligible in this range of sizes. Our predictions for the size dependence of
the energy gap and for the optical spectra are consistent with recent experimental data.
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I. INTRODUCTION

Colloidal quantum dots (QDs) with optical gap in the in-
frared or in the near infrared are promising building blocks for
a wide number of optoelectronics applications, in particular,
for the production of cheap photovoltaic thin films or infrared
detectors.1,2 In this context, lead chalcogenide QDs have been
the most studied,2–4 but HgTe presently receives growing
interest because its zero band gap in the bulk enables complete
tunability from the infrared to the near infrared in QDs thanks
to the quantum confinement.5–15 For example, photoresponse
of HgTe QD films in the atmospheric transparency window
between 3 and 5 μm has been recently demonstrated.13

It is thus particularly important to perform theoretical
modeling of HgTe QDs (Refs. 14 and 16) in order to predict
their optical properties and to interpret the experiments. The
difficulty in this task comes from the peculiar electronic
structure of HgTe near the � point. HgTe has an inverted band
structure17 (the s-like �6 band lies below the p-like �8 band);
the conduction-band effective mass is very light (≈0.01m0) but
already 50 meV from the band edges the dispersion of the elec-
tron and light-hole bands is no longer parabolic.18 In addition,
the �6 − �8 gap energy strongly varies with temperature.19

Modeling the optical properties in the (near)-infrared thus
requires a good description of bands near the � point, but
even state-of-the-art ab initio methods have difficulties in this
task.20–23 For this reason, k · p is still considered a theoretical
method of choice to study the electronic structure of HgTe
nanostructures because it is specifically designed to describe
the bands in this important region.18,24

In this paper, we present a tight-binding (TB) model of
HgTe which gives an excellent band structure in a wide energy
range compared to Hedin’s GW calculations21 and, at the same
time, a very accurate dispersion near the Fermi level and the �

point compared to a k · p approach.18 With these parameters
we calculate the electronic structure and the optical absorption
spectra of HgTe QDs. Calculations based on a configuration
interaction (CI) technique demonstrate that excitonic effects
can be neglected for QD diameters below at least 10 nm. We
show that recent experimental results on HgTe QDs14,15 are
correctly described taking into account the uncertainty on the
QD shape. The TB model can be used to study many other
problems related to HgTe nanostructures. For example, HgTe

is also widely investigated as a topological insulator when a
gap is open by the confinement.25,26

II. METHODOLOGY

A. TB electronic structure

The electronic structure of HgTe is calculated in TB as
described in the Appendix. The TB Hamiltonian matrix is
written in a basis of atomic orbitals (sp3d5s∗) as a function of a
small number of parameters (Table I in the Appendix) which, in
the present case, are obtained by fitting on two reference band
structures: (1) close to Fermi level at k = 0, on the k · p band
structure of Ref. 18; (2) elsewhere in the Brillouin zone, on the
band structure of Ref. 21 obtained using a quasiparticle self-
consistent GW approximation in a hybrid scheme (20% LDA
and 80% GW). The good agreement with these two reference
band structures is demonstrated in Figs. 1 and 2. It is important
to point out that the k · p Hamiltonian gives a very good
description of the infrared absorption in bulk HgTe (Ref. 18)
and explains rather well the optical properties of HgTe QDs.14

Since the band structure at � strongly depends on the
temperature, we have determined TB parameters for 0 and
300 K. With these values, we obtain a �6 − �8 gap energy
of − 0.31 eV (–0.14 eV) at 0 K (300 K), in agreement with the
experimental value of − 0.30 eV (–0.12 eV).19 The spin-orbit
splitting E�8 − E�7 is equal to 1.06 eV, also close to reported
values.27 An accurate band structure as shown in Figs. 1
and 2 is a prerequisite to obtain good results for QDs with
a large variety of sizes and shapes.28 It cannot be obtained
with the same accuracy using first-nearest-neighbor sp3s∗ TB
models.29–32

The s-like projection of the wave functions is shown in
Fig. 3 for the main bands near the Fermi level. The light-hole
band (�6) has a pure s character at k = 0, but the s weight
decreases very quickly when k moves away from �. On the
contrary, the electron band has some s character everywhere
except at �. Very similar behavior of the s weight with k is
obtained using hybrid density functional theory.22

B. Excitonic states and configuration interaction

In order to evaluate the importance of excitonic effects in the
optical spectra of QDs, we have calculated the excitonic states
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FIG. 1. (Color online) Band structure of HgTe at 0 K calculated
in TB. The red dots indicate the values obtained in Ref. 21 using a
hybrid GW approach. The zero of energy corresponds to the top of
the valence band.

|�i
exc〉 using a CI method.28,33,34 Schematically, following the

well-known GW plus Bethe-Salpeter approach for excitons,35

the formation of the exciton can be seen as the result of
two processes: the injections of independent electron and
hole in the QD (GW) and their coupling by the electron-
hole interaction (Bethe-Salpeter). Therefore, in a first step,
we calculate the self-energy corrections to the TB energies
induced by the injection of the separate electron and hole in
the QD. As shown in Ref. 36, these self-energy corrections
mainly come from the dielectric polarization of the QD; they
are given by the resultant interaction between the injected
carrier and the polarization charges. They also correspond
to the Coulomb-hole term of the static COHSEX (Coulomb
hole plus screened exchange) approximation.35,36 As usual in
GW, the self-energy corrections are assumed to be diagonal in
the basis of the electron and hole states. This approximation
is particularly justified in the strong confinement regime
because the self-energy couplings are small compared to the
confinement energies. In the second step, the electron-hole
interaction is introduced, leading to a two-particle problem
(Bethe-Salpeter). The excitonic Hamiltonian is defined in
the basis of Slater determinants |ψvc〉 built from the TB
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FIG. 2. (Color online) Band structure of HgTe at 300 K for k ‖
[100] close to the � point. The energies are plotted versus [ka/(2π )]2,
where k = |k| and a is the lattice parameter. The bands calculated in
TB (red solid lines) are compared with those obtained from the k · p
approach of Ref. 18 (blue dotted lines).
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FIG. 3. (Color online) Weight of the projection of the wave
function on the s orbitals as a function of the wave vector k along
�X and �L (calculated at 0 K). The results are shown for the fifth
(�6, light-hole) and ninth (�8, electron) bands (the first band being
the lowest one in Fig. 1). The s weight is zero for the seventh band
(�8, heavy hole). Very similar results are obtained at 300 K.

single-particle states. With respect to the ground state |0〉
corresponding to filled valence states and empty conduction
states, |ψvc〉 represents the system with an electron-hole pair in
which the valence state v has been replaced by the conduction
state c. The matrix elements of the excitonic Hamiltonian in
this basis are given by

〈ψvc|H |ψv′c′ 〉
= ([εc + �c] − [εv + �v])δcc′δvv′

−
∫

c∗(x1)v∗(x2)Vcoul(r1,r2)c′(x1)v′(x2)dx1dx2

+
∫

c∗(x1)v∗(x2)Vcoul(r1,r2)v′(x1)c′(x2)dx1dx2, (1)

where x1 stands for (r1,ξ1), in which ξ1 represents the
spin variable of the particle 1. The second line in Eq. (1)
corresponds to the screened Coulomb interaction between the
electron and the hole, and the third line contains the exchange
term. Vcoul(r1,r2) describes the energy of a charge +e at r1 in
the screened potential of a charge +e at r2:

Vcoul(r1,r2) =
∫

ε−1(r1,r)
e2

|r − r2|dr, (2)

in which ε−1(r1,r) is the generalized dielectric constant (here
taken in the static limit). We have considered a screened
electron-hole exchange term in the third line of Eq. (1) instead
of a bare one as in the original derivation of the Bethe-Salpeter
equation,35 because it seems more appropriate when a finite set
of electron-hole states is used.28,37 In any case, this exchange
term has a negligible influence on the spectra shown in this
paper, as it only affects the fine structure of the exciton.

As discussed above, the term �c (�v) in Eq. (1) represents
the self-energy of the electron (hole) coming from its interac-
tion with the polarization charges induced at the surface of the
QD by its own presence28,36 (the Coulomb hole term of the
COHSEX approximation),

�c = 1

2

∫
|c(r1)|2 lim

r2→r1

(
Vcoul(r1,r2) − e2

εin|r1 − r2|
)

dr1,

(3)

where εin is the dielectric constant of the material at the position
r1. �v is defined similarly. Vcoul, the Coulomb and exchange
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FIG. 4. (Color online) Energy gap of spherical HgTe QDs (300 K)
versus diameter (magenta solid line) compared to the experimental
data of Ref. 14 (red triangles) and Ref. 8 (blue disks). The black
dotted line represents the energy of the second peak in the calculated
absorption spectrum.

terms, and the self-energies can be accurately calculated
using classical electrostatics for QDs with diameter above
≈2 nm.28,36,38 In the case of a spherical QD, we simply describe
the system as a dielectric sphere of dielectric constant εin in a
medium of dielectric constant εout. We use εin = 13 for HgTe
(Ref. 27) and εout = 2.25 for the solvent employed in Ref. 14.

C. Calculation of the optical spectra

The optical cross section of a single QD is calculated as28,39

σ (h̄ω) = 4π2e2F 2

cn

∑
i

ωi

∣∣∣∣∣〈0|
∑

n

e.rn|�i
exc〉

∣∣∣∣∣
2

L (h̄ω − h̄ωi) ,

(4)

where h̄ω is the photon energy, h̄ωi is the energy of the
excitonic state |�i

exc〉 (eigenvector of the Hamiltonian given
in Eq. (1), e is the polarization vector, n ≈ √

εout, and F =
3εout/(εin + 2εout) is the local-field factor.28 〈0| ∑n e.rn|�i

exc〉
is the dipolar matrix element in which rn is the position of the
electron n. The function L in Eq. (4) is a Gaussian, L(x) =
exp[−x2/(2σ 2)]/(σ

√
2π ), which describes the broadening of

the optical transitions. All the results presented in this work
are obtained with σ = 35 meV.

In the single-particle approximation, the sum over the
exciton states in Eq. (4) becomes a sum over electron-hole pair
states |ψvc〉 and the dipolar matrix element is just replaced by
〈c|e.r|v〉.

III. RESULTS AND DISCUSSION

A. Electronic structure and energy gap of HgTe QDs

The energy gap of spherical QDs is plotted versus size
in Fig. 4. It varies in ways such as 1/(0.02126 × d2 +
0.21562 × d + 0.01684) (in electronvolts), with d the diame-
ter in nanometers. As already shown for other semiconductor
materials,28,40 the gap of QDs with cubic, tetrahedral, or
octahedral shape is very close to the gap of spherical QDs
with the same volume. Therefore the same expression of
the gap can be used for these shapes if we define d as the
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FIG. 5. Calculated energy levels in HgTe QDs at 300 K [(a)
sphere, d = 5.98 nm; (b) octahedron, d = 5.83 nm; (c) sphere,
d = 8.99 nm]. The zero of energy corresponds to top of the bulk
valence band.

diameter of the equivalent sphere. Experimentally, various
shapes including spheres and tetrahedra seem to be obtained
after colloidal synthesis,8,11,14 but triangles are often observed
by transmission electron microscopy. In spite of the uncertainty
on the shape, the agreement between the theoretical gap and
the measured absorption edge8,14 is good, even if the theory
seems to be too low compared to experiments at large size. An
explanation of this difference is discussed below.

The energy levels of three QDs are depicted in Fig. 5.
Spherical and octahedral QDs with almost the same diameter
(here ≈6 nm) have similar electronic structure, at least near
the energy gap. The density of states is considerably higher in
the valence band than in the conduction band.

B. Optical absorption spectra

The optical cross sections predicted for HgTe QDs are
shown in Fig. 6. We have found that the excitonic effects
are very small for all the QD sizes (d up to 10 nm) that we have
investigated. The spectra obtained using CI and single-particle
approaches are almost identical, except for a small rigid shift
in energy. This result can be understood by a large excitonic
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FIG. 6. (Color online) Optical cross section of spherical (sph.)
or octahedral (oct.) QDs calculated in TB using the single-particle
approximation (red solid lines) or the CI approach including excitonic
effects (blue dotted lines). The diameter of the QDs is indicated in
the figure. The baseline of each curve is shifted vertically for clarity.
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FIG. 7. (Color online) Spectra calculated as the difference in the
optical absorption between QDs charged with n electrons and neutral
QDs. (Dashed red line: n = 6. Blue dotted line: n = 4. Magenta
dashed-dotted line: n = 2.) The QDs have spherical (a), tetrahedral
(b), or octahedral (c) shape. Black solid line: experimental difference
spectrum (Ref. 15) for electrochemical potential of − 1.2 V. Effective
diameter of the HgTe QDs: 8 nm. Temperature: 210 K.

Bohr radius induced by the small electron effective mass. By
comparison, the excitonic effects calculated using the same
methods are much more pronounced in the case of CdSe or
CdTe QDs.41

The intensity of the lowest absorption peak in Fig. 6 is
clearly decreasing with increasing size, the oscillator strength
going to zero in the bulk limit.20 This behavior is obtained
for QDs with spherical, cubic, tetrahedral, and octahedral
shapes. For increasing diameters above 6 nm, it is reasonable
to consider that the measured absorption edge coincides
progressively with our second absorption peak. Figure 4 shows
that the position of this second peak agrees very well with the
experimental absorption edge for the largest sizes.

C. Infrared absorption of charged QDs

It was recently shown that films of HgTe QDs can be
charged with electrons or holes by electrochemistry.15 Infrared
spectroscopy of the charged QDs reveals interband bleach and
intraband absorption. A difference spectrum reproduced from
Ref. 15 is shown in Fig. 7. It was measured on QDs with rather
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FIG. 8. (Color online) Same as Fig. 7 but for QDs charged with
holes. Black solid line: experimental difference spectrum (Ref. 15)
for electrochemical potential of +1.0 V.

angular shapes and with diameter estimated around 8 nm. It
corresponds to the difference between the infrared absorption
spectra taken at − 1.2 and 0 V. In that case, it describes the
variation in absorption induced by the charging of the QDs with
electrons. In order to simulate the experiments, we calculate
the optical cross section of charged and neutral QDs, and
we compute the difference. In the case of charged QDs, we
consider the thermal distribution of the electrons (holes) in
the conduction (valence) band since the experiments were
performed at 210 K. The electronic structure is also calculated
at this temperature.

The spectra obtained for QDs charged with n = 2, 4, or
6 electrons are shown in Fig. 7. Those predicted for n = 6
agree rather well with experiments, in particular for spherical
and octahedral QDs. The evolution with n also qualitatively
explains the voltage dependence of the experimental spectra.15

But the double positive peak measured between 0.1 and 0.3 V
is never reproduced by the calculations, even if we predict that
the peak broadens when electrons are added to the QDs. We
confirm that the double structure cannot be understood if we
consider spherical QDs,15 even if we consider tetrahedral or
octahedral QDs. More anisotropic shapes are certainly needed
to explain the experimental results, which is compatible with
structural characterizations of the QDs.15
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We have performed a similar analysis in the case of QDs
charged with holes (Fig. 8). The spectra calculated for the same
QDs qualitatively agree with the experimental ones if we take
into account that the position of the negative peaks (interband
bleach) varies with the QD shape in a quite sensitive manner.
The results obtained for 8-nm QDs are thus consistent with
the experimental observations, the octahedral shape giving the
best compromise if we consider Figs. 7 and 8 together.

IV. CONCLUSION

In conclusion, we show that a sp3d5s∗ tight-binding model
can reproduce accurately the band structure of HgTe compared
to state-of-the-art ab initio calculations. The description of the
temperature-dependent inverted band structure in the vicinity
of the Fermi level is also excellent. We use this model to study
the electronic structure and the optical properties of HgTe
QDs. Using a configuration interaction approach, we show that
excitonic effects are negligible. The variation of the optical
gap versus size is in agreement with recent measurements.
The shape of the bleach spectra of the QDs after charging
by electrons or holes can be explained by the calculations,
but important discrepancies between theory and experiments
remain, possibly due to uncertainties on the QD shape.15

The tight-binding parametrization should be also very useful
to address many problems which presently receive growing
interest, such as topological insulators.25,26

APPENDIX: TIGHT-BINDING PARAMETERS FOR HgTe

The electronic structure of HgTe is calculated as described
in Ref. 43 for Si and Ref. 44 for III-V materials. In TB,28,43

the Hamiltonian matrix is written in a basis of atomic orbitals
which are assumed to be orthogonal. The matrix elements
between two orbitals located on distinct atoms (hopping
integrals) are usually restricted to first, second, or third-
nearest-neighbor interactions. The Hamiltonian is written as
a function of parameters which are adjusted in order to get
the best band structure for the bulk semiconductor compared
to ab initio calculations or experimental results. A minimum
basis set of sp3 atomic orbitals and interactions restricted
to first nearest neighbors are not sufficient to describe the
conduction band with sufficient accuracy.28,43,45,46 Therefore
we have considered a basis of sp3d5s∗ (s∗ is a second s

orbital) orbitals, the hopping terms being restricted to first
nearest neighbors.44,46 Spin-orbit coupling is also included,
which requires doubling of the basis set. Following the usual
approach in TB,47 we only consider the intra-atomic terms of
the spin-orbit coupling on the p orbitals. Interatomic terms
which give rise to the Dresselhaus splitting48 around � due to
the lack of inversion symmetry are negligible in this material.49

TABLE I. TB parameters [notations of Slater and Koster
(Ref. 42)] for HgTe in an orthogonal sp3d5s∗ model.  is the
spin-orbit coupling. (a, c) The anion (Te) and the cation (Hg),
respectively. Es(c) is given at 0 and 300 K. Lattice parameter:
a = 6.453 Å.

Parameters for HgTe (eV)

Es(a) − 10.040161
Es(c) (0K) − 1.502103 Es(c) (300 K) − 1.302103
Ep(a) 1.580003 Ep(c) 5.929255
Edxy

(a) 10.139959 Edxy
(c) 15.108978

Ed
x2−y2 (a) 13.145395 Ed

x2−y2 (c) 15.431086

Es∗ (a) 12.611213 Es∗ (c) 14.801158
(a) 0.375000 (c) 0.465000
Vssσ (ac) − 0.904384 Vs∗s∗σ (ac) − 1.570513
Vss∗σ (ac) 0.357261 Vss∗σ (ca) − 0.242580
Vspσ (ac) 1.085069 Vspσ (ca) 2.014492
Vs∗pσ (ac) 1.175059 Vs∗pσ (ca) 1.405375
Vsdσ (ac) − 0.525896 Vsdσ (ca) − 1.067102
Vs∗dσ (ac) 0.485896 Vs∗dσ (ca) 0.696627
Vppσ (ac) 3.166827 Vppπ (ac) − 0.945694
Vpdσ (ac) − 1.789915 Vpdσ (ca) − 0.653612
Vpdπ (ac) 1.406422 Vpdπ (ca) 1.657517
Vddσ (ac) − 0.529629 Vddπ (ac) 2.424709
Vddδ − 1.064207

Parameters for Hg-H and Te-H (eV)

EH 2.74638
Vssσ −35.69727 Vspσ 61.82948

The TB parameters are given in Table I. The terms E

represent the on-site matrix elements, Es being, for example,
the s orbital energy in the solid. The zero of energy is taken
at the top of the valence band. The energy of the T2-like d

orbitals (xy, yz, zx) is not the same as the energy of E-like ones
(x2 − y2, 3z2 − r2) due to the Td symmetry in the crystal. Note
that these d orbitals are used to describe the conduction bands,
not the filled d bands. For example, the rather flat Hg 5d bands
between −7 and −10 eV obtained using the GW calculations
are not reproduced in TB (Fig. 1) since they are not necessary
for our purposes. The terms V in Table I completely define the
hopping matrix elements in the two-center approximation as
shown by Slater and Koster.42 For example, Vspσ (ac) represents
the (spσ ) hopping term between an s orbital on a Te atom and
a p orbital on a neighbor Hg atom, the p orbital pointing
along the axis between the two atoms, following the notations
of Ref. 42. In Table I, two values are given for the on-site s

energy of Hg at 0 and 300 K. A linear interpolation can be
used for other temperatures.

In the case of HgTe QDs, pseudohydrogen atoms are used
to passivate their surface.28,43 The Hg-H and Te-H parameters
are defined in order to push the surface states far from the band
edges.
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