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Spin-dependent thermoelectric transport in HgTe/CdTe quantum wells
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We analyze thermally induced spin and charge transport in HgTe/CdTe quantum wells on the basis of the
numerical nonequilibrium Green’s function technique in the linear response regime. In the topologically nontrivial
regime, we find a clear signature of the gap of the edge states due to their finite overlap from opposite sample
boundaries—both in the charge Seebeck and spin Nernst signal. We are able to fully understand the physical
origin of the thermoelectric transport signatures of edge and bulk states based on simple analytical models.
Interestingly, we derive that the spin Nernst signal is related to the spin Hall conductance by a Mott-like relation,
which is exact to all orders in the temperature difference between the warm and the cold reservoirs.
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I. INTRODUCTION

Thermoelectric transport coefficients define the efficiency
of a system to generate an electrical power from a temperature
gradient.1 The most established thermoelectric phenomenon
is the Seebeck effect2,3 in which a current (closed boundary
conditions) or a bias (open boundary conditions) is induced
from a temperature difference held between two reservoirs of
a junction. The transverse Seebeck coefficient, or Nernst coef-
ficient, refers to the alternative situation where the thermally
induced current (bias) flows in the direction transverse to both
the temperature gradient and the applied magnetic field.4

Thermoelectric effects have major consequences in terms
of technological impact and scientific understanding. On the
one hand, these effects offer interesting applications based
on heat-voltage conversion: thermometry, refrigeration, and
power generation.5,6 On the other hand, thermoelectric coeffi-
cients combine information from energy and charge flows at
quasiequilibrium. Furthermore, they are more sensitive to the
details of the density of states than electrical conductance.7–9

Both aspects make them a powerful tool to probe the system
dynamics.10

During the last two decades, there have been consider-
able technological advances in low-temperature nanoscale
physics. This allows precise measurements of thermoelectric
transport signals, obtained in various systems like bismuth,11

superconductors,12,13 carbon-based structures,14 or molecular
junctions.15

The recent alliance of spintronics and thermoelectric trans-
port brings up a spin analog of Seebeck and Nernst effects (see
Ref. 16 for a short review). Especially in systems with strong
spin-orbit interactions, a temperature gradient can generate a
transverse spin current (or bias) even in the absence of an
applied magnetic field. This can lead to the anomalous Nernst
effect (in the case of ferromagnetic systems)17–20 or the spin
Nernst effect (in the time-reversal symmetric situation).21–23

Systems with strong spin-orbit interactions have been
extensively studied in condensed matter physics especially
since the prediction of the spin Hall effect,24–27 which allows
for an all-electrical manipulation of spin. The spin Hall effect
generates a transverse spin accumulation as a response to
a longitudinal applied electric field. Spin-orbit interactions
have several origins that distinguish the different types of
phenomena, for instance, an extrinsic spin Hall effect can

emerge from the spin-orbit dependent scattering on impurities
or defects.24,25,28–31 On the other hand, bulk or structure
inversion asymmetries32–34 give rise to an intrinsic spin Hall
effect,26,27,35 which may be described in terms of an anomalous
velocity or a spin-dependent classical force.36–38

Recent experiments have demonstrated the existence of
an intrinsic spin Hall effect in HgTe/CdTe quantum wells
(QWs)39 by the use of the quantum spin Hall effect as
the detector. This novel electronic phase is characterized
by an insulating bulk and protected metallic edge states.
The emergence of the quantum spin Hall effect is due to
strong spin-orbit coupling and other relativistic corrections,
which reverse bands of opposite parities. The electrons obey
a massive Dirac equation and the sign of the mass term
enables us to distinguish the topological phases. The edge
states consist of Kramers pairs moving in opposite direction at
each boundary40–42 and time-reversal symmetry protects them
from nonmagnetic and elastic backscattering.43 Thereby, these
edge channels carry “dissipation-less” spin currents whose
existence in HgTe QWs has been confirmed experimentally
by measurements in multiterminal devices.44

Recently, topological insulators have been proposed as
good materials for thermoelectric conversion.45–48 The basic
idea relies on the topological protection of 1D edge states
that prevents reduction of electrical transport in disordered
systems. The authors consider narrow ribbons of quantum
spin Hall insulators or 3D topological insulator with line
dislocations. The aim is the enhancement of the contribution of
edge states to the thermoelectric transport compared to the bulk
modes. Hence, the analysis is restricted to a small energy range
excluding the valence bands. Inelastic processes are taken into
account through the Boltzmann transport theory. The latter is
used to calculate the thermoelectric coefficients in a two-band
model. Thus the efficiency of these systems to convert heat
into electricity is based on the dominance of the edge modes
on transport.

In this work, we investigate the spin-dependent thermo-
electric transport in quantum spin Hall insulators based on
HgTe/CdTe QWs in absence of magnetic fields. The behavior
of the Seebeck coefficient and the spin Nernst signal is
analyzed in a four-terminal cross-bar setup, as shown in Fig. 1.
A thermal gradient between lateral leads induces a longitudinal
electrical bias and a transverse spin current. Each of them
can be used as a probe of the topological regime as well
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FIG. 1. (Color online) Four-terminal cross-bar setup based on
HgTe/CdTe QWs used for thermoelectric transport. A longitudinal
temperature gradient �T is applied between reservoirs a and b
and generates a transverse spin current I s

c detected, for instance,
in reservoir c.

as finite size effects of the quantum spin Hall insulator. We
show that the oscillatory character of the Seebeck and spin
Nernst coefficients in the bulk gap highlights the presence
of the minigap—due to the finite overlap of the edge states
from opposite sample boundaries. Furthermore, we describe
a qualitative relation between the type of particles in a given
band and the magnitude of the spin Nernst signal. This allows
us to provide a natural explanation of the observed phenomena
based on anomalous velocities and spin-dependent scattering
off sample boundaries.

The article is organized as follows. In Sec. II, we introduce
the model Hamiltonian of the HgTe/CdTe QW and describe
the formalism necessary to calculate the Seebeck and spin
Nernst coefficients. The thermoelectric transport by the edge
states—with a particular emphasis on finite size effects—is
analyzed in Sec. III through the behavior of Seebeck and spin
Nernst signals. In Sec. IV, we focus on the spin-dependent
thermoelectric effect induced by the bulk states. We conclude
in Sec. V and present details of the calculation in the
appendixes.

II. MODEL

In this section, we present the model Hamiltonian of the
HgTe/CdTe QW and give the general expressions of the
Seebeck and spin Nernst coefficients.

A. Hamiltonian

We consider a four-terminal cross-bar setup based on a
HgTe/CdTe QW whose low-energy dynamics is described
by the Bernevig-Hughes-Zhang (BHZ) four-band model.42,44

The Hamiltonian is written in the basis of the lowest QW
subbands |E+〉, |H+〉, |E−〉, and |H−〉. Here, ± stands for
two Kramers partners but in the following, we will refer to them
as spin components, denoted by ↑,↓, for brevity. The spin z

direction corresponds to the QW growth direction, which is
[001]. The Hamiltonian can be written as

H = Vm(r)τz − Dk2 +
(

h(k) 0
0 h∗(−k)

)
, (1)

h(k) =
(
M(k) Ak+
Ak− −M(k)

)
(2)

with k2 = k2
x + k2

y , k± = kx ± iky , and M(k) = M − Bk2.
The sign of the gap parameter M determines whether we are
in the regime of a trivial insulator (M > 0) or a topological
insulator (M < 0). Experimentally, M is tuned by changing
the QW width.

The term Vm(r)τz describes an in-plane confinement poten-
tial, where τz is a Pauli matrix acting on the E/H space.
By this kind of confinement, we may ensure that outside
of the sample, i.e., in vacuum, the parameter regime is
topologically trivial, so that edge states, if present, will be
confined. Calling the inside of the sample G, the limit Vm(r) →
∞ ∀r ∈ ∂G can be used to make all components of ψ vanish
at the sample boundary, the envelope function ψ being the
solution of the Dirac equation based on the Hamiltonian
(1).

We mention in passing that this model can be extended by
a term breaking the structural inversion asymmetry (SIA) with
a z-dependent potential. The resulting Rashba-like interaction
connects the Kramers blocks of the Hamiltonian (1) affecting
the particles with opposite spin:

hR(k) =
(−iR0k− −iS0k

2
−

iS0k
2
− iT0k

3
−

)
(3)

with the Rashba coupling parameters R0, S0, and T0.49 We
have analyzed that such a term will only quantitatively affect
all our results presented below. Therefore we will not further
consider effects due to SIA in this article.

Figure 1 shows the four-terminal cross-bar setup we
analyze. The central sample is connected to four semi-infinite
leads: the reservoirs a and b are maintained, respectively,
at warmer and colder temperatures than the rest of the
system creating a longitudinal temperature gradient, while the
transverse terminals c and d are used to probe spin currents.

To model the setup and treat the thermoelectric transport
properties, we employ the tight binding approach. Therefore
we discretize the continuum model (1) on a lattice of
spacing a by the substitutions k2

i → 1
a2 (2 − 2 cos kia) and

ki → 1
a

sin(kia), where i is the index of the lattice site.
The confinement potential is implemented by the lattice
truncation in accordance with the geometry of the sample.
Rewriting the trigonometric functions in terms of translation
operators, this leads to a tight-binding Hamiltonian that only
contains nearest-neighbor hopping terms between the lattice
sites (see Appendix A for details). The energies of the model
are expressed as functions of the conduction band hopping
parameter t0 = −D+B

2a2 where the parameter values of the
HgTe/CdTe QW are taken as in typical experiments, i.e., A =
0.375 eVnm, B = −1.120 eVnm2, and D = −0.730 eVnm2.
In the low-energy regime, the lattice constant is set sufficiently
small compared to the Fermi wave length. Hence, for a =
6.6 nm, the energy unit is t0 = 44 meV. The parameter M is
chosen as |M| = 0.1t0 = 4.4 meV. In Figs. 2(a) and 2(b), we
show the subband dispersion relation for a HgTe/CdTe QW of
width 400 nm, both in the normal insulator and the topological
insulator regimes. In the latter case, finite size effects emerge
on the edge states since they substantially overlap.50 One of
the consequences of this is the opening of a minigap, as shown
in the inset of Fig. 2(b).
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FIG. 2. (Color online) Subband dispersion relation for the leads
(400-nm wide), in (a) the normal regime (M = 0.1t0) and (b) the
inverted regime (M = −0.1t0). The inset shows the mini-gap in
the dispersion caused by the overlap of edge states. The coloring
highlights the transition from electron-like character (|E±〉 in red)
to heavy-hole character (|H±〉 in blue) with full color for a 20%
excess of either contribution. The lattice constant is a = 6.6 nm, so
t0 = 44 meV. The minigap width is 6.5 × 10−3t0(=0.28 meV).

B. Landauer-Büttiker formalism and thermoelectric coefficients

The particle current Ipσ in the lead p with spin σ is obtained
by the Landauer-Büttiker formula51

Ipσ = 1

h

∑
q 
=p

∫
dE Tpσ,q(E)(fp − fq) (4)

with fp = [e(E−μp)/kBTp + 1]−1 being the electronic Fermi
distribution function, kB is the Boltzmann constant, Tp is the
temperature, and μp is the chemical potential. The transmis-
sion probability Tpσ,q(E) = ∑

σ ′ Tpσ,qσ ′ (E) from lead p with
spin σ to lead q can be evaluated using the nonequilibrium
Green’s function formalism (NEGF):52–54

Tpσ,qσ ′ (E) = Tr[�pσGR�qσ ′GA], (p,σ ) 
= (q,σ ′), (5)

where �pσ (E) = i(�pσ − �
†
pσ ) refers to projectors on veloc-

ity operators of the propagating modes, and �pσ (E) stands
for the spin-dependent self-energy. The latter is defined by
�pσ (E) = τpσ (E + i0+ − Hleads)−1τ

†
pσ , where the matrix τpσ

connects the lead p, spin σ to the adjacent sites of the
sample. GR(E) = [GA(E)]† = [E − Hsample − ∑

p,σ �pσ ]−1

is the retarded Green’s function. Further, Hleads and Hsample

represent, respectively, the lattice Hamiltonians of the decou-
pled leads and the sample. Once the transmission probabilities
are evaluated, the charge current I e

p = e(Ip↑ + Ip↓) and the
spin current I s

p = (h̄/2)(Ip↑ − Ip↓) can be obtained.

We consider a longitudinal temperature gradient between
the leads a and b by setting Ta = T + �T, Tb = T − �T,
and Tc = Td = T. In the linear response regime, the Seebeck
coefficient reports the longitudinal voltage bias �μ = μa−μb

2
generated by the temperature gradient �T under the condition
of vanishing charge currents (open boundary conditions).
Upon Taylor expansion of the Fermi functions in �T and
�μ, the Seebeck coefficient can be written as

Se = −�μ

e�T

∣∣∣∣
I e

a,b=0

≈ 1

eT

∫
dE f0(1 − f0)TSE(E)(E − μ)∫

dE f0(1 − f0)TSE(E)

(6)

with f0 = [e(E−μ)/kBT + 1]−1 the Fermi distribution function
at equilibrium. In the above equation, we defined the Seebeck
transmission functionTSE(E) = Ta,b + (Ta,c + Ta,d)/2, where
the summation over spins is implied.

Due to the presence of intrinsic spin-orbit interaction in
the sample, the longitudinal thermal gradient �T also yields
a transverse spin current I s

c (= −I s
d) in the case of closed

boundary conditions. The spin Nernst coefficient is then
defined as the ratio

Ns = I s
c

2�T

∣∣∣∣
μc,d=μ

≈ 1

8πkBT2

∫
dE f0(1 − f0)TSN(E)(E − μ). (7)

Here, we introduced the spin Nernst transmission func-
tion TSN(E) = �Tc,b − �Tc,a, with the short-hand notation
�Tc,b(E) = Tc↑,b↑ + Tc↑,b↓ − Tc↓,b↑ − Tc↓,b↓.

Interestingly, the Mott relation provides information about
the (spin-)thermotransport coefficients on the basis of the
energy dependence of the (spin-)conductance.55 In the low-
temperature limit, one can derive

Se ≈ π2k2
BT

3e

d ln Gxx(E)

dE

∣∣∣∣
E=μ

, (8)

where Gxx(E,T = 0) = e2

h
TSE(E) is the longitudinal conduc-

tance for zero temperature. Equation (8) is valid if kBT is large
compared to the scale on which TSE(E) varies. A numerical
analysis in Ref. 56 claims that Eq. (8) can be valid even if
TSE(E) varies more rapidly, as long as kBT  μ.

An analogous relation exists between the spin Nernst
signal and the spin Hall conductance. From the Sommerfeld
expansion of the transmission function in Eq. (7), one obtains
the following Mott-like formula:

Ns ≈ 2π2k2
BT

3e

dGsH(E)

dE

∣∣∣∣
E=μ(T=0)

(9)

with GsH(E,T = 0) = e
8π
TSN(E), the spin Hall conductance

at zero temperature. In Appendix B, we demonstrate that this
relation can be extended to finite temperature by defining a
smoothed function T̃SN(E) [see Eq. (B5)] that depends on
the temperatures in the leads. As a result, we find an exact
Mott-like formula for the spin Nernst coefficient

Ns(μ) = πk2
BT

12

dT̃SN(E)

dE

∣∣∣∣
E=μ

. (10)
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Since TSN(E) shows a highly oscillating behavior, the above
equation simplifies the interpretation of the spin Nernst signal
in terms of transmission functions because of the smoothing
of T̃SN(E). Equation (10) is one of the key results of our paper.

III. THERMOELECTRIC TRANSPORT CARRIED
BY THE EDGE STATES

In this section, we present the numerical results of the spin
Nernst and Seebeck coefficients for an energy regime within
the bulk gap. When the HgTe/CdTe QW is in a topologically
trivial phase, there is no subgap transport through the system.
The transmission functions TSE and TSN are then zero, and
from Eqs. (6) and (7), it follows that there are no thermoelectric
signals. On the contrary, the HgTe/CdTe QW in a nontrivial
phase hosts edge states in the bulk insulating gap. These modes
carry electrons with opposite spins in opposite directions.

With respect to the geometry of the setup, spin and electrical
currents are induced and flow respectively in transverse and
longitudinal leads, as depicted in Fig. 3. However, the finite
width of the system implies an overlap of the edge states
meaning that backscattering processes can occur.

We first investigate the behavior of the spin Nernst signal Ns

and the associated transmission function TSN. The results are
presented in Figs. 4(a) and 4(b). While the chemical potential
is in the bulk gap, the spin transport is mediated by the edge
channels so that the transmission function is simply given by

TSN = (Tc↑,b − Tc↓,b) − (Tc↑,a − Tc↓,a) = −2. (11)

Evidently, as the chemical potential reaches the boundary
of the minigap, the number of propagating states drops to
zero and transport breaks down. This results in a peak of
the transmission function TSN. Consequently, the spin Nernst
coefficient is zero in the bulk gap except when the chemical
potential reaches the boundary of the minigap. Because of
the Mott-like relation (10), a symmetric function TSN(E)
must result in an antisymmetric function Ns(E). Therefore
Ns exhibits an approximately antisymmetric peak centered
at the maximum of the transmission peak. The confinement
of the QW implies an energy shift in the band dispersion.
Therefore the boundaries of the bulk gap are not exactly

FIG. 3. (Color online) Four-terminal cross-bar setup based on a
HgTe/CdTe QW in the inverted regime. When an electrical bias is
imposed between the longitudinal leads a and b, one edge channel
carries electrons with spin up from lead a to lead c (red solid line)
and one edge channel carries electrons with spin down from lead b
to lead c (green solid line). This gives rise to a spin current in lead c
and, at zero temperature, to a quantized spin Hall conductance.
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FIG. 4. (Color online) (a) Spin Nernst transmission function as a
function of the chemical potential when the sample is in the normal
(dashed blue line) or in the inverted (solid red line) regime. The
dotted vertical lines indicate the bulk gap and minigap positions in a
finite system for the inverted regime, while the dashed vertical lines
indicate the gap in the normal regime. (b) Spin Nernst signal Ns/kB

in a system in the inverted regime at T = 2 (black solid line), 6 (green
dashed line), and 8 K (orange dotted line).

at energy |M| = 0.1t0, as we can see in Figs. 2 and 4. In
Fig. 4, the gap and minigap positions of a finite system are
indicated by vertical lines. Dotted vertical lines are used for
the inverted regime and dashed lines for the normal regime.
Interestingly, one observes that the merging of the edge state
to the conduction band causes TSN to vanish already before
the first bulk mode appears. Where μ lies between the right
dashed and dotted vertical lines, a finite TSN reappears due to
the formation of the first bulk state, in the same subband as
the edge state. Outside the gap indicated by the vertical lines,
bulk states start to participate to the spin transport resulting
in additional oscillations in TSN as a function of μ. They
transform into peaks of the spin Nernst coefficient whose
existence is understood with the same arguments as for the
minigap peak. Especially at positive chemical potential, the
magnitude of the peak is comparable to that of the mini-gap
and allows to mark the position where the edge states merge.

In Fig. 4(b), we show the behavior of the spin Nernst
coefficient for different temperatures. As kBT increases, the
position of the peaks is slightly shifted to lower energy. The
magnitude tends to decrease and the peak width is broadened.
Up to T = 6 K, the spin Nernst signal goes to zero between
the peak that specify the position of the minigap and the edge
state merging peak. Beyond this temperature, Ns is smoothed
out, so that it can not probe the edge state signal.

We now turn to the analysis of the transmission function
TSE and the Seebeck coefficient Se as a function of energy.
The results are presented in Fig. 5. Inside the bulk gap, the
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FIG. 5. (Color online) Seebeck coefficient Se[kB/e] (red solid
line) and scaled transmission function TSE/50 (black dashed line) as
a function of the chemical potential at T = 2 K. The minigap appears
as an antisymmetric peak.

transmission function TSE is constant but goes to zero when
the chemical potential is in the minigap. This feature leads to
an approximately antisymmetric peak in the behavior of Se,
which provides information on the presence and the position
of the mini-gap in the spectrum. The boundary of the bulk gap
manifests itself as the step of the transmission function and
transforms as a narrow peak in Se.

The transmission functionTSE exhibits a smoothed staircase
behavior whose steps coincide with the opening (at positive
energy) or the closing (at negative energy) of conducting
channels. This behavior transforms into a series of peaks in Se.
However, as the chemical potential increases, the magnitude
of the peaks reduces. The reason is that the considered setup
possesses four terminals that all exhibit an increasing number
of propagating modes with increasing μ. Thus intermode
scattering is more and more likely to happen. Then, the
staircase behavior of TSE diminishes and transforms into
oscillations.

We close this section with a remark on the average sign of
the Seebeck coefficient Se. It is positive in the conduction band
and negative in the valence band that reflects the sign of the
corresponding excitations in a given band.

IV. SPIN NERNST EFFECT INDUCED BY BULK STATES

A spatial dependence of model parameters, like, for
instance, an in-plane electrostatic potential V0 or the mass
confinement potential Vm, can generate a transverse spin
current resulting in a spin Hall signal for the metallic bulk
states.49 This phenomenon has been previously analyzed in
Refs. 57–59 in the context of charge and spin transport
properties at interfaces between metals and quantum spin
Hall systems. As already mentioned above, the spin Hall
conductance gives rise to the spin-Nernst signal from the bulk
states through the Mott-like relation (9). Therefore, in the next
two sections, we will focus on analytical models to describe the
scaling of the spin current and spin Hall conductance with the
band structure parameters and compare our intuitive analytical
models with the numerics.

First, however, to visualize the formation of the spin Hall
effect at the sample boundary, it is instructive to plot the local

FIG. 6. Local spin current Jz for normal metallic regime, and
electrical bias, μa − μ = −(μb − μ) with μ = 0.4t0 and T = 0.

spin current density in the numerical four-band model. In order
to do so, we first define a local spin current operator by

Ĵz(r′) = 1

i
{[r̂,H ],δ(r̂ − r′)}σz, (12)

where σz is a Pauli matrix that acts on the spin space of
the four-band model. On the basis of the NEGF, it is then
straightforward to evaluate the expectation value of the spin
current operator at T = 0, which can be expressed as

Jz(r) =
∑

p

Tr[Ĵz(r)GR�pGA]μp. (13)

In Fig. 6, the local spin current is shown for the normal metallic
bulk regime and an electrical bias applied from left to right.
One clearly recognizes a spin current flowing along the edges.

Note that our model shows local spin currents already
at equilibrium. However, at equilibrium, the spin current
integrated over the cross section of a lead cancels and thus
does not enter the spin Hall signal. For clarity, the local spin
current that we show in Fig. 6 is only the nonequilibrium part.

The rest of this section is organized as follows: parts A and B
deliver two complementary approaches to explain the interface
spin current that is transverse to the potential gradient. In
part C, the connection between these interface spin currents
and the spin-Nernst coefficient gives us a qualitative under-
standing of the behavior of spin-thermal effects for the bulk
states.

A. Effective two-band models

Here, we show that an anomalous spin-dependent velocity
naturally appears within effective two-band spin-diagonal
electron or hole band models obtained by perturbatively
folding down the four-band model [see Eq. (1)]. We apply
third-order quasidegenerate perturbation theory similar to our
previous work.49

The diagonal part of the Hamiltonian is h0 = diag(M, −
M). For the perturbation part, we consider h′↑ = ( Ṽe Ak̂+

Ak̂− Ṽh
) and
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h′↓ = h′↑∗(−k), where Ṽe/h = Ve/h ∓ Bk2 − Dk2 and Ve/h =
V0 ± Vm; the subscripts e and h refer to electron and heavy
hole bands, respectively. The B and D parameters will not
enter to the spin current in third order perturbation theory.
Note that, as compared to Eq. (1), we allow for a finite in-plane
potential V0 in this analysis. Treating k̂± as operators acting on
a perturbing potential, we obtain the spin-dependent effective
two-band Hamiltonians as follows (showing only the third
order) :

h
↑
eff,e = 1

8M2 (2A2k̂+Ṽhk̂− − {A2k̂2,Ṽe}), (14)

h
↑
eff,h = 1

8M2 (2A2k̂−Ṽek̂+ − {A2k̂2,Ṽh}), (15)

and h
↓
eff,e/h = (h↑

eff,e/h)∗. The lowest order spin-dependent term
of the effective electron/heavy hole model is thus given by

hPauli,e/h = 1

2
(h↑

eff,e/h − h
↓
eff,e/h)σz

= − A2

4M2
(∇(±V0 − Vm) × k)zσz. (16)

In the Heisenberg picture, we obtain a spin-dependent anoma-
lous velocity:

van,e/h = 1

ih̄
[r,hPauli,e/h]

= A2

4M2
σz

⎛
⎝−∂y

∂x

0

⎞
⎠ (±V0 − Vm). (17)

Since van,e/h ⊥ ∇(V0 ∓ Vm), we expect to see a spin current
along the edge of the sample, similarly to the spin current
carried by the edge states, but now the effect is induced by the
bulk modes.

Note that the assumptions for a valid perturbation theory are
quite restrictive. The condition Ak  2|M| restricts the energy
range to about |E| � 0.2t0. Further, this approach works in the
inverted regime only when one considers the bulk states and
assumes a direct gap. The main drawback of this perturbative
approach is, however, that it assumes the variation of the
potentials V0, Vm small compared to the gap 2|M|, which is not
the case for the numerical confinement potential. Therefore,
although we expect to find qualitative results by this approach,
it is important to compare it with the nonperturbative model
including hard wall boundary conditions that will be done in
the next section.

B. Hard wall boundary spin current

In this section, we present a complementary explanation of
the spin current carried by the bulk states, valid also beyond
the parameter regime Ak  2|M|, demonstrating that the
reflection of an incident wave at a hard wall boundary leads to
a spin current along the boundary. Due to a phase offset, this
spin current persists even for a superposition of waves incident
at different angles. We will show below that in the regime
Ak  2M the spin current scales like A2/M . Interestingly,
we observe that the explanation of the spin current given here
seems to be close to what is seen in the numerical four-band
tight-binding model, because the numerically calculated spin
Hall effect indeed scales like A2/M in the parameter regime
Ak  2M (with M > 0).

In the model we consider now, the hard wall boundary
condition for the envelope function is given by ψ(y = 0) = 0.
While the direction of the outgoing beam is restricted by the
energy and momentum conservation laws and is not spin
dependent, there is a spin-dependent phase shift between
incident and reflected wave. Remarkably, even for an incident
wave normal to the interface, a spin current moving along
the interface is generated. In case this interface is bent, like it
happens at the sample boundary connecting two perpendicular
leads, it will transform into a spin Hall signal [like in Fig. (6)].

We start with the following ansatz for the spin ↑ wave
function:

ψ↑(y) = 〈y|ψ↑〉 = eikyyuky
+ re−ikyyu−ky

+ ceλyuiλ, (18)

where the plane wave dependency on x has been separated off.
u±ky

and uiλ denote the spinors for fixed energy E and momen-
tum kx . The condition ψ↑(0) = 0 gives two equations for the
coefficients r and c. The corresponding coefficients for spin
down can be found by replacing kx → −kx . The operators of
transverse velocity, V

↑
x (kx) = 1

h̄
∂h↑
∂kx

and V
↓
x (kx) = −V

↑
x (−kx)

are independent of ky and complex-valued matrices. In the
following, we will plot both spin-up (in blue) and spin-down
currents (in red), evaluated by

j
↑
kx

(y) = 〈ψ↑|δ(y − ŷ)V ↑
x |ψ↑〉, j

↓
kx

(y) = −j
↑
−kx

(y). (19)

It is easy to see that the spin current

j s(y) = j
↑
kx

(y) − j
↓
kx

(y) = j
↑
kx

(y) + j
↑
−kx

(y) (20)

is symmetric in the angle of incidence θ = tan−1 kx

ky
.

Figure 7 shows the spin-up and -down currents for typical
parameters and the energy in the conduction band. The
superposition of incoming and reflected propagating waves
leads to an oscillating pattern. We are interested in the phase
shift between spin up and down. The direct terms in j

↑
kx

(y)
(i.e., two incoming or two outgoing propagating modes)
are constant in y and current conservation dictates that the
incoming and reflected currents are the same. Rotational

140 120 100 80 60 40 20
y nm

0.6

0.4

0.2

0.2

0.4

0.6

jkx eV nm

FIG. 7. (Color online) The spin-dependent currents parallel to the
interface at y = 0 are plotted, with j

↑
kx

(y) in blue (solid) and j
↓
kx

(y)
in red (dashed). For perpendicular angle of incidence (kx = 0), the
phase difference �φ is always π . The energy is E = 0.3t0 in all cases.
The thick/thin lines show the normal/inverted regime with M = 0.1t0
and M = −0.1t0, respectively. The other parameters are the same as
for the lattice model.
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invariance of the BHZ Hamiltonian and current conservation
dictate that |r2| = 1 independent of the spin. Because of
time reversal symmetry, the current of the direct terms is
independent of the spin and thus, the direct terms do not
contribute to j s(y).

The interference term between the incoming and outgoing
modes in j

↑
kx

(y) is given by

2Re
[〈
uky

∣∣Vx

∣∣u−ky

〉
re−2ikyy

]
= ∣∣〈uky

∣∣Vx

∣∣u−ky

〉
r
∣∣2 cos(2kyy − φ

↑
1 − φ

↑
2 ), (21)

where φ
↑
1 = arg(〈uky

|Vx |u−ky
〉) and φ

↑
2 = arg(r). In Ref. 57,

φ
↑
2 − φ

↓
2 is called the angle of giant spin rotation. At kx = 0,

we have

〈
uky

∣∣Vx

∣∣u−ky

〉∣∣
kx=0 = iA2ky√

A2k2
y + (

M − Bk2
y

)2
, (22)

where ky is fixed by the energy. A first-order expansion in k,
valid in the regime Ak  2|M| yields

js(y) ∝ A2k

|M| . (23)

In contrast to Ref. 58, the spin current in our analytical analysis
is connected only with the propagating solutions as explained
above. As one can see from Fig. 7, where the evanescent modes
are included, the periodicity of j

↑
kx

(y) and j
↓
kx

(y) is only slightly
affected, which means that the evanescent contribution at least
for the normal regime is minor and Eq. (23) still holds.

Let us now analyze the phase relations between spin up and
spin down currents more closely. The two phases φ

↑
1 and φ

↑
2

(defined above) behave differently as a function of the angle of
incidence, as shown in Fig. 8. We find the symmetries φ

↑
1 (θ ) =

π − φ
↑
1 (−θ ) and φ

↑
2 (θ ) = −φ

↑
2 (−θ ). For A → 0, φ↑(θ ) =

φ
↑
1 (θ ) + φ

↑
2 (θ ) becomes a step function, with φ↑(0) = π/2.

We are interested in �φ = φ↑ − φ↓. For this, we again use
a symmetry. If we flip the spin, r↓(kx) = r↑(−kx) implies
that φ

↓
2 (−θ ) = φ

↑
2 (θ ) and V ↓(kx) = −V ↑(−kx) implies that

φ
↓
1 (−θ ) = π + φ

↑
1 (θ ). Thus

�φ = φ
↑
1 + φ

↑
2 − φ

↓
1 − φ

↓
2 = 2(φ↑

1 + φ
↑
2 ) (24)

with �φ(θ ) = 2π − �φ(−θ ). For not too small parameters A

and small θ , the constant phase shift �φ(0) = π is dominant.
This phase shift ensures that the sign of the spin current
is well defined over a large range of θ . Therefore even the
superposition of many incident modes at different angles (not
included in this simple analysis) would lead to a well-defined
sign of the spin current near the interface, while far from
the interface, the spin current will be suppressed by the
oscillations.

C. Spin Nernst signal for the bulk metallic regime

In the preceding sections, we showed that the spin current
can be understood by an anomalous velocity or a spin-
dependent phase shift. The expressions we have obtained do
not depend on the effective band mass (considering the lowest
order in Ak/M). We will now show that such a scaling of

(a) 1.5 1.0 0.5 0.5 1.0 1.5
Θ

0.5

1.0

1.5

2.0

2.5

3.0

Φ1

(b)

1.5 1.0 0.5 0.5 1.0 1.5
Θ

0.15

0.10

0.05

0.05

0.10

0.15

Φ2

FIG. 8. (Color online) The spin-up phase shift of the reflected
current is φ

↑
1 + φ

↑
2 . (a) The phase (of the velocity matrix element) φ

↑
1

as a function of the angle of incidence. It has the symmetry φ
↑
1 (−θ ) =

π − φ
↑
1 (θ ). Different colors (blue, red, orange, etc.) correspond to

different choices of A = 0.05,0.1, . . . ,0.4 eV nm, where the limit
A → 0 gives a step function. Parameter values are E = 0.3t0, M =
0.1t0, and B and D have values as in Sec. II A. The picture does not
change qualitatively, if we change the parameters of the underlying
model. (b) The phase (of the reflection coefficient) φ

↑
2 for the same

parameters. For low values of A, it is proportional to A2, whereas for
large values of A it saturates.

the spin current leads to a Nernst signal proportional to the
effective band mass.

Let us assume that the applied difference in the chemical
potential �μ generates the spin and the charge responses in
the system. Then GsH = Is

I
Gxx . For a given number of modes,

Gxx is approximately constant. Therefore, using Eq. (23),
one can see that GsH ∼ |me/h|A2/M , where me/h is the
mass of the electron/heavy hole band, respectively. To the
lowest order in Ak/M , the effective two-band and four-band
masses coincide and the four-band effective masses me/h

are given by h̄2/2me = −D − B and h̄2/2mh = −D + B.
Correspondingly, through the relation between the spin Hall
conductance and the spin Nernst transmission signal TSN ∼
GsH ∼ |me/h|. The last dependence can be easily seen in
the limit for D = 0, when the band structure of the BHZ
model is particle-hole symmetric. Then, me = −mh which
is consistent with TSN ∼ |me/h| and the symmetry relation
TSN(μ) = TSN(−μ) in that case. Figure 9(a) shows numerical
results for TSN as a function of the chemical potential. In the
four-band model, the ratio of valence and conduction band
effective masses is −mh

me
≈ 4.7. The black arrows are drawn

for comparison of TSN in conduction and valence band and
are scaled by the factor −mh/me. Their position is chosen
for energies corresponding to four propagating modes in the
leads (counting spin), not counting edge states. For the normal
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(a)

0.4 0.2 0.2 0.4 0.6
Μ t0

2.0

1.5

1.0

0.5

TSN

M 0

M 0

(b)

0.3 0.2 0.1 0.1 0.2 0.3
Μ t0

0.01

0.02

0.03

Ns kB

Ns , M 0

Ns Μ , M 0

FIG. 9. (Color online) (a) Spin Nernst transmission function
TSN(μ) for the normal regime (M = 0.1t0, blue dashed) and inverted
regime (M = −0.1t0, red solid). In the bulk gap, the edge states
give rise to a quantized spin Hall conductance of e/2π , except for the
minigap. The black arrows are scaled according to the expected factor
of −mh

me
≈ 4.7 between conduction and valence band spin Hall effect

(see text). (b) Spin Nernst effect at T = 5 K, for normal (blue dashed)
and inverted regime (red solid). The latter is flipped horizontally, so
we can compare signals of the same band character.

regime [see dashed lines in Fig. 9(a)], the scaling of the
numerical TSN is very close to what we predicted from the
analytical approaches. In Fig. 9(b), we show the corresponding
spin Nernst signal. In the normal regime, we qualitatively find
Ns ∝ |mi | (i = e,h) as expected from the Mott-like relation in
combination with Fig. 9(a).

In the inverted regime (solid red line), we must consider
that near the bulk gap, the band character (E/H) has changed
(compare the red/blue coloring in Fig. 2); therefore the band
for μ > 0 gets a heavy hole character. Further, as long as the
edge states do not yet merge to the bulk, they are responsible
for an offset of TSN = −2. The black arrows again indicate the
factor −mh

me
that we expect for the comparison of conduction

and valence band signals at the same number of contributing
modes, however, now we are measuring the signal from the
level of the edge states. Analyzing numerically the scattering
matrix, we find that in the valence band the contribution to
TSN of bulk and edge states are additive, while this is not the
case for the conduction band. Taking into account this fact, it
is surprising that the simple analytical analysis applicable to
the normal regime still describes qualitatively the numerics.
We believe that this might be the case, because the first bulk
state resembles the edge state character, and our argument
about the symmetry ofTSN(μ) = TSN(−μ) for the particle-hole
symmetric Hamiltonian still holds.

V. CONCLUSION

We have analyzed the thermoelectric transport in four-
terminal setups of HgTe/CdTe quantum wells with a particular
emphasis on spin-dependent effects due to spin-orbit coupling.
Thereby, we have used a combination of analytical and numer-
ical methods to analyze spin-dependent transport phenomena.
The Seebeck and the spin Nernst signals show a peculiar
dependence on the parameters of the Bernevig-Hughes-Zhang
model that can be qualitatively understood as originating
from a spin Hall effect that arises at in-plane potential or
confinement boundaries of the system. We have demonstrated
that the spin Nernst effect is a strong experimental tool to
get a better understanding of the minigaps that arise due
to the spatial overlap of edge states on opposite sample
boundaries. Most interestingly, we have derived a Mott-like
relation between the spin Nernst coefficient and a smoothed
spin Nernst transmission function that is valid to all orders
in the temperature difference between the warm and the
cold reservoir. Our findings might help to optimize future
experiments on thermoelectric transport properties of two-
dimensional topological insulators.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN

Using the representation of the plane wave annihi-
lation operator in the basis of lattice sites (j,l), ck =
4π2

a2

∑
j,l e

ia(kxj+ky l)cj,l , we obtain the following substitution
rules for the continuum model momentum operators:

k̂x →
∫

BZ

d2k
1

a
sin(akx)c†kck

= 1

2ia

∑
j,l

c
†
j+1,lcj,l − c

†
j−1,lcj,l , (A1)

k̂2
x →

∫
BZ

d2k
1

a
[2 − 2 cos(akx)] c

†
kck

= − 1

a2

∑
j,l

c
†
j+1,lcj,l − 2c

†
j,lcj,l + c

†
j−1,lcj,l , (A2)

and analogous rules for k̂y and k̂2
y .

We define matrices on the band space �1 = τxσz, �2 =
−τyσ0, �3 = τx+τz

2 σy , �4 = − τx+τz

2 σx , and �5 = τzσ0, where
τi are the Pauli matrices acting on the E/H space and σi acts on
the spin space (τ0 and σ0 are unit matrices). Then, the lattice
Hamiltonian corresponding to H of Eq. (1) reads

Htb =
∑
j,l

[(
A�1 + R0�

3

2ia
+ B�5 + D1

a2

)
c
†
j+1,lcj,l

+
(

−A�1 + R0�
3

2ia
+ B�5 + D1

a2

)
c
†
j−1,lcj,l

+
(

A�2 + R0�
4

2ia
+ B�5 + D1

a2

)
c
†
j,l+1cj,l
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+
(

−A�2 + R0�
4

2ia
+ B�5 + D1

a2

)
c
†
j,l−1cj,l

−
(

4

a2
(B�5 + D1) + M�5

)
c
†
j,lcj,l

]
, (A3)

where the summation over the grid points (j,l) is restricted
by the geometry of the sample and we only included the most
important linear Rashba term, proportional to R0 in Eq. (3).

APPENDIX B: MOTT-LIKE RELATION

In this appendix, we show how the Mott-like relation (9)
can be generalized to finite temperatures. For this, we consider
the Fourier transform of transmission functions �Tc,q(τ ) =

1
2π

∫
dEe−iEτ�Tc,q . The spin Nernst effect is defined as

Ns = I s
c

2�T
= 1

8π�T

∫
dE

∑
q

�Tc,q(E)(fc − fq), (B1)

where the potential μ is assumed to be the same for all leads,
while the temperatures may differ. The integral has the form
of a convolution. The Fourier representation is

Ns = 1

4π

∫ ∞

−∞
dτ

i

τ
e−iμτ

∑
q

�Tc,q(τ )

�T

x

sinh x

∣∣∣∣
x=πτkB Tc

x=πτkB Tq

.

(B2)

Further, we define a symmetric “smoothing” function that
depends on temperatures of the leads c and q as

Fq(τ ) = 3

π2k2
BTc�T

x

sinh x

∣∣∣∣
x=πτkB Tc

x=πτkB Tq

. (B3)

If we put Tc − Tq = �T, we find, with �T → 0,

Fq(τ ) ≈ 3
x coth x − 1

x sinh x

∣∣∣∣
x=πτkB Tc

, (B4)

which has a width of �τ ≈ 4
πkBTc

and Fq(0) → 1. Now,
we define a temperature-smoothed spin Nernst transmission
function as

T̃SN(τ ) =
∑

q

F q(τ )�Tc,q(τ ), (B5)

which implies that T̃SN(E) = ∫
dτe−iEτ T̃SN(τ ) is real. Finally,

we obtain the relation

Ns(μ) = πk2
BTc

12

dT̃SN(E)

dE

∣∣∣∣
E=μ

, (B6)

which is exact to all orders in Tc and �T. The meaning of the
latter equation is the following one: first, taking the derivative
∂ETSN and then smoothing by temperature is the same as first
smoothing with a modified smoothing kernel and then taking
the derivative.
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