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Using the nonequilibrium Green’s function (NEGF) formalism, we derive the current density formula for
ac quantum transport by including the self-consistent Coulomb interaction. It is well known that the Coulomb
interaction is very important in determining ac current in nanostructures. As pointed out by Biittiker that the
Coulomb interaction must be included to conserve the ac current. Theoretically, the displacement current can
be accounted for by including a self-consistent Hartree term in the Hamiltonian as well as the exchange and
correlation term while the ac current is calculated from particle current, i.e., (L) = q(d N, /dt) where N, is
the number operator of the « lead. For the ac current density, however, the Coulomb interaction contributes in two
ways. As the case of ac current, the self-consistent Coulomb interaction has to be included in the conventional
particle current density. In addition, we have to consider the displacement current density explicitly, which is
proportional to the time derivative of displacement field. Once the ac current density is obtained, one can calculate
the ac current by integrating it over a cross-section area along the transport direction. It is shown that ac current
obtained from the total ac current density is conserved and equal to that calculated directly from the lead using
NEGEF theory. We have applied our formalism to calculate ac current density for nanodevices by combining the
density functional theory (DFT) with NEGF theory. Specifically, we have calculated the ac current density to the
first order of frequency in a molecular device Al-C4-Al from first principles. It is found that Al-C4-Al system
exhibits inductive-like behavior under ac bias in the low-frequency limit. Furthermore, nonequilibrium charge

distribution is obtained that enables us to study electrochemical capacitance of the molecular devices.
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I. INTRODUCTION

Anticipating the future high-speed electronic devices, huge
research efforts have been made on understanding physical
processes of time-dependent quantum transport in coherent
mesoscopic systems or nanostructures.' >’ On the experi-
mental side, there exist many interesting phenomena in ac
quantum transport such as charge relaxation resistance. Charge
relaxation resistance is predicted to be the half of the resistance
quanta in theory' and is experimentally realized on a 2D
electron gas.'® Recently, an on-demand single-electron source
was realized experimentally so that a single electron is emitted
and reabsorbed periodically on the time scale of nanosec-
onds thereby generating quantized alternating current.!! Most
recently, a single-electron detector to capture this single-
electron source has been demonstrated by two experimental
groups making on-demand single-electron source a promising
candidate for 2DEG quantum computer.'>!3 As to the possible
device applications, the performance of nanotube transistors
under high frequency was studied in Refs. 17-19 and the
results indicate that there is little decrease in performance
up to gigahertz (GHz) frequencies for the nanotube.

On the theoretical side, because the quantum transport
problem under the time varying ac bias is complicated owing
to the presence of displacement current in the system, several
methods have been developed to tackle this problem, such as
scattering matrix theory,>* and NEGF formalism.>%20-23 [t
was recognized that the displacement current must be added
to conserve the current.> For ac transport, the total ac current
consists of two contributions: the conduction current defined
as rate of change of charge flow and the displacement current,
which is the rate of change of displacement field. Theoretically,
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the conduction current can be easily calculated from the lead
while the displacement current can be defined in the scattering
region. Although all the terminal ac currents calculated so far
used the definition of the conductance current, the displace-
ment current has been included implicitly in the following
way. Since the displacement current is due to the Coulomb
interaction, it turns out that by including a self-consistent
Coulomb interaction term into the Hamiltonian the conduction
ac current is conserved.>?3 In another word, there is no need to
include displacement current explicitly in the current operator.
Note that this is valid only for the global ac quantities such
as dynamic conductance or ac current. For ac current density,
however, the displacement current density must be included
explicitly as we will show in this paper. While most of the
previous studies focus on the dynamic conductance, it is also
very interesting to investigate the ac current density profile.
Such a study is important to gain further insight into the
dynamic transport processes of quantum systems. Specifically
the current density distribution can present a vivid picture of
how the current flows inside the central region, it can also
provide detailed local transport information as well. Finally,
the current density profile can provide important information
on local heating when a dissipative mechanism exists in the
quantum system.

In this paper, we have developed a theoretical formalism to
calculate the ac current density using a nonequilibrium Green’s
function method. We are interested in the regime where the
Coulomb blockade effect is not important.* By explicitly in-
cluding displacement current density and Coulomb interaction,
we show that the ac current density is a conserved quantity.
We further prove that the current obtained by integrating
the ac current density over a cross-section area along the
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FIG. 1. (Color online) A sketch illustrating the two-terminal
device. Central region is our simulation box and it contains €,z
and Q¢ regions. The ;¢ is self-energy coupling region due to the
external leads. The Q¢ region represents the molecular device. S,/S,
is an arbitrary surface outside of the left lead and inside Q¢ region.

transport direction is equal to the ac terminal current. Finally,
we note that most of the theoretical ac transport investigations
concentrate on the mesoscopic system, less attention has been
paid on atomic systems.?>** In this paper, we have combined
the nonequilibrium Green’s function method with the density
functional theory allowing us to calculate the ac current density
in the small bias voltage and frequency for an atomic junction
from first principles.

The paper is organized as follows. In Sec. I, basic formulas
for calculating ac current density are derived by using the
nonequilibrium Green’s function method (NEGF) and taking
into account the self-consistent Coulomb interaction in the
system. As an example, the ac current density to the first order
in frequency (£2) is numerically calculated in Sec. III. We have
also given techniques details and numerical analysis of results
for amolecular device Al-C4-Al In Sec. IV, summary is given.

II. THEORETICAL FORMALISM

We start from a typical two-terminal device shown in Fig. 1,
which consists of the central scattering region coupled with
two external leads where ac bias v, (f) = v, cos(wt) is applied.
Under the ac bias, the conventional current density is defined
as

ih
Jo(r.t) = —zl—m[w — V) )]s 1)

Taking the Fourier transform of Eq. (1), we have J.(r,Q) =
—dL[(V = V)p(r,r',2)]v—r, where Q is the response fre-
quency. Because the charge density matrix can be ex-
pressed in terms of lesser Green’s function p(2) =
iqg [dE/Q2n)G=(E4,E) with Ey = E +hQ, the conven-
tional current density J.(r,€2) can be expressed using lesser
Green’s function:

qh dE e ,
e =2 / AV = VG B By @)

Note that in the presence of ac bias, the translational symmetry
in time is broken and the Green’s function depends on double
time indices.

In this work, we are interested in the limit of small ac
bias voltage. In this case, the nonequilibrium lesser Green’s

function G= can be expanded to the first order in v,:>'~%3

G==G; +¢~, 3

where G is the equilibrium Green’s function and g= is
the first-order nonequilibrium correction due to the ac bias.
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Because the current calculated from the equilibrium Gg is
zero, only ac current density generated by the first-order term
g= will be considered below. Then, we have

qh dE " < ,
Je(r,2) = %fg[(V—V)g (r,r' Eq E)]p=r. (€]

In the wide-band limit, the first-order correction of lesser
Green’s function is given by?
. i
“(E..E) = ——G'T,G vy (22
8§ (EL,E) tq; 3 Ve (§2)
+igG'U\G' TG f +iqG'TG*U G f, (5

where the subscript « = L, R denotes the corresponding left or
right lead respectively; v, (2) = v, [(2 + ®) + (2 — w)];
and Iy = i(X], — ) is the linewidth function. For simplicity,
the abbreviations G = G"(E4)and f = f(E,) are used with
Ei =E+n1Q; Ui(Q) =), ug(Q)vy(2) is the first-order
Coulomb interaction due to the ac external bias. Here, u,(€2)
is the frequency-dependent characteristic potential, which
describes the first-order internal response due to the ac bias
and is determined by the Poisson-like equation:

Vg (r,Q2) = —47py(r,Q)
d ,Q d 7Q
= —4nq2% + 477512%140,0,9),

(6)

where we have used the Thomas-Fermi approximation. Here,
the frequency-dependent injectivity dn,(r,2)/dE is defined
ag 1415
dng(r,Q2) dE f — f
—_— —_— rra a ) 7
T B e U P
with dn(r,Q)/dE =), dng(r,Q)/dE. The equilibrium re-
tarded Green’s function is defined as
1
E — HO - qUeq - 26(E)’

where Hj contains all parts of the Hamiltonian including ex-
change and correlation energy except the equilibrium Hartree
potential Ugq and Xj(E) is the equilibrium self-energy due to
the external leads. It is straightforward to show that

P, Q) = pu(r,Q)ve(Q)

G'(E) = (¥

=iq /(dE/Zn)[g<(E+’Ear»r/)]r’zr» C))

is the nonequilibrium charge distribution up to first order in
ac bias. In real materials, electrodes are metallic conductors,
which will screen off the electric field over distances of the
Thomas-Fermi screening length. This allows us to choose a
large enough central scattering region 2; /g + Q¢ (see Fig. 1)
such that there will be no electric field lines penetrating the
surface of the central scattering region. According to Gauss
theorem, the total charge in the central scattering region is zero,
which is exactly the boundary condition in solving Eq. (6).
In the ab initio calculation, we found that when the length
of buffer layer is three or four unit cells, the electric field
will be screened off. In the ac transport theory, we have
implicitly made an approximation that the potential of the
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electrode shifts according to the ac bias. This is the so-called
adiabatic approximation (see Ref. 6) so that the frequency of
the bias cannot be too high. In Ref. 6, the estimated upper limit
frequency is quite high, around tetrahertz.

With the characteristic potential and lesser Green’s function
obtained, we can calculate the conventional ac current density
using Eq. (4). This, in turn, allows us to calculate the ac
current by integrating current density over arbitrary cross-
section inside the scattering region perpendicular to the
transport direction, e.g., S, in Fig. 1. It is known that in the
presence of ac bias, the following continuity equation must be
satisfied:

V- J(r,t) + dp(r,1)/dt = 0. (10)

If we integrate this equation over a large volume enclosing the
central scattering region, we have

I.(t) + Ir(t) = 0, 1)

where we have used the fact that once the Poisson-like equation
Eq. (6) is solved, we have f po(r,t)dr = 0 due to the boundary
condition and I; = f dS; - J.(r,t). Hence, once the Coulomb
interaction is included, the conventional current density will
give the conserved ac current. However, if we are interested
in the local quantity, i.e., ac current density, care must be
taken since the second term in Eq. (10) also contributes to
the ac current density. Furthermore, if we wish to implement
our theoretical formalism in the first-principles calculation, we
may have to worry about nonlocal potentials.?' Because the
nonlocal potential appears in the first-principles calculation
such as the nonlocal pseudopotential, one has to introduce
another current density Jy(r) to get a conserved current
density. Similar to the static nonlocal current density discussed
in Refs. 31 and 32, we introduce a nonequilibrium nonlocal
current density J(r):

Ju(r,Q) = —Vo(r,Q), (12)
with
—V2p(r,Q) = p,(r,Q), (13)

where p,(r,<2) is the nonlocal electron density and is defined
as

putr @) = ~2 / X [Va(rt)g<(E4 E) —ccl,  (14)

where Vy(r,r’) is the nonlocal potential in the Hamiltonian.
Obviously, p,(r,2) = 0 if all the potentials are local.

PHYSICAL REVIEW B 86, 165431 (2012)

Therefore, in the presence of nonlocal potential, the Fourier
transformation of continuity equation should be modified as

V- Jo(1,Q) + pa(r, Q) — iQo(r,Q2) = 0. (15)

From Egs. (6) and (9), we have V2U,(r,Q) = —4mp(r,Q).
Hence we identify the displacement current density corre-
sponding to the third term in Eq. (15) as J;(2) = i%VUl(Q).
Note that this expression is consistent with the classical
physics, where the displacement current density is defined
as

Ji(Q) = —LQD, (16)
4

and the displacement field D is D = —VU,(2). Hence the
continuity equation (15) becomes

Ve, ) + Ju(r, ) + Jo(r, )] = V- Ji(r,2) =0, (17)

where we introduce the total current density J, = J. + Ju +
Js. We see that the total ac current density consists of
conventional ac current density (which depends on Coulomb
interaction), displacement current density and nonlocal current
density if the Hamiltonian has nonlocal potential.

In the following, we will verify that the continuity equation
Eq. (17)is indeed correct for the two-terminal device structure.
Firstly, the divergence of conventional current density can be
calculated as

h dE
V- J/(r,Q) = ;’—m / EWZ — Vg~ (r,r \E,E)]rr.

(18)
Combining Eq. (14) with Eq. (18), we have
Vo [Je(r,2) + Ju(r,2)]
=77 o 8 8 rr

dE

- / S~ E—1Qg™ — ¢“(H — E — i,
h 2

(19)

where H = —%Vz + V(r) + Vu(r,r).
Using the relation (/ + £"G") = (E +hQ — H)G" andits
complex conjugate as well as Eq. (5), Eq. (19) becomes

.2 5
VL) I D] = S Y (A + B, 20)

i=1

where we have defined several auxiliary matrices:

dE f_f a ~r r o a A1 asa
Alpr zfﬂ;”“(Q)T[F“G —G' Ty + Y G TyG* — G'TyG Ty,

dE _ . , - dE
Azrr:/E[E’G’UlG’FG"f—G’UIG’FG“Z“f]", A3"=/ >

dE

—[GU,G*f — G UG T flers
i Q1)

o - - - dE - -
Adrr =/Z—[ErG’FG”UlG“f—GrFG“UlG“E“f]rr, Asn=/Z—[UlGrFG“f—G’FG“Ulf]m
T T

dng(r.Q)  dn(r.Q)

dE .
By = —CIQ/ Eg<(l',l',E+,E) = IQ(’IzXa: |:

1E ua(l‘,Q)} Vo (£2).
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In the wide-band limit where the linewidth function does depend on energy, we have As.. = 0. Therefore we have

. 1,
VL@ =Vt dn+J0) =iQ) | Vi) +¢

.2 4
lq Z
= 7 ~ [Ai]rr,

where we have used Eq. (6) for the characteristic potential u,,.
In the following, we will show that all A; are zero in the region
Q¢ depicted in Fig. 1.

As shown in Fig. 1, there are two different types of region
in the central scattering region: the region ¢ and the left and
right lead coupling €2; ,r region beyond which the self-energy
is zero. In the NEGF-DFT simulations, the simulation box
is Q, = Qp + Qg + Qc¢. However, when calculating the ac
current density, we will restrict ourselves to the region Q¢
since only in this region the ac current density is conserved.
This is due to the following reason. Because electrons come
into or out of the central device region through the self-energy
coupling region £2;,r, which plays the role of the source
and drain, V -Jt(r,Q)lreQL/R # 0. Since the self-energy %/,
is zero outside the coupling region $2; /g, the terms A; with
i =1,...,4 all involve surface terms I' or X" and must be
zero in Q¢ region. We therefore conclude that the total current
density J, is conserved in the central device region Qc, i.e.,
V- (0. Qlreq, = 0.

Before carrying out numerical calculations, we wish to
show that the current calculated from current density J; is
equal to the current calculated from Landauer-Buttiker type
of dynamic conductance formula. Considering an arbitrary
surface S, inside of the central molecular device region Q¢ as
shown in Fig. 1, we know that the current coming from the left
lead can be calculated through

1) = | J(r,Q)-dS. (23)

Sz

It is important to note that current density is only defined
inside the central region in the NEGF formalism, which implies
that the integration of J; over the surface S; outside of central
region is zero. Therefore we can consider a closed surface S
that encloses part of the scattering region (2;) with S; and
S, just outside of the left lead coupling region. Since surface
S| does not contribute to the current, the current expression
becomes

IL(Q)=/J,(r,Q)-dS= V-5, (24)
S

QL

Note that V - J;(r,Q2) is given by Eq. (22), which is nonzero
in the coupling region 2;. Let us consider a typical term in
Eq. (22), e.g., the first term in expression A,. Using the fact
that £" equals to X} in €, we have > G'UGTGf =
T, G'UG'TG f = Ap. Since X! is zero outside of Q,
the trace of 2; in Eq. (24) can be expanded to the whole
scattering region €2, i.e., Tr[Aolq, = Tr[Aolg,. The other
terms in A; can be treated similarly. After some algebra, we

2dna(r.Q) qzdn(r,SZ)

.o 4
'q
O(aQ aQ — Airr
o T el )}”(”h;[]

(22)
|
have
I.(2) = Tr[V - Ji(r,Q)]q, = Tr[V - Ji(r,Q)]q,
2 rdEf—f -
—% / E%Tr[i(G’ — G ()
—G" ) TG T, +iQTLG"UN(Q)G],
B
(25)

which agrees with the dynamic conductance calculated from
the lead using the standard NEGF method.?

This shows that as long as the surface S, is not inside the
self-energy coupling regions €2; and g, the integration of
current density over S, is equal to the current calculated from
the lead. Note that due to the different definitions of current
operator, there is a sign difference between our approach and
that of scattering matrix theory of Buttiker. In Sec. III, we
will use the definition of Buttiker to discuss the physics of
numerical results.

Finally, we note that the Coulomb interaction plays an
important role in ac transport and is responsible for the
displacement current. For ac current density, the displacement
current appears in two places: (1) the Coulomb interaction
term U; in Eq. (5); (2) the displacement current density J; in
Eq. (16). This is different from ac terminal current where the
displacement current is not explicitly considered. All we have
to do for ac current is to calculate the particle current from the
leads while considering the Coulomb interaction explicitly.
Here, both terms have to be included in order to conserve the
ac current density.

III. NUMERICAL CALCULATION OF AC
CURRENT DENSITY

Now, we discuss how to numerically calculate ac current
density from first principles. To begin with, we rewrite Eq. (5)
as

¢ (ELE)=iq) 5 !

Z[G’FQG“ — G'T Gy vy ()

_ iqf—g_zf{GrFGa[l — up — ugloR(%)

+[G'TLG" — G'TG ur]lvr(2) — vr()]}.
(26)
Since ), uqs = 1, only the second term is the nonequilibrium
part.
In the molecular electronics, the energy scale is electron

volt, which corresponds to 1000 THz. Therefore the second
order in the expansion of iw/E can be safely neglected for
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gigahertz-frequency range. As an application of our formalism,
we wish to calculate ac current density in the low-frequency
limit as an illustration. Therefore we expand Eq. (5) to the
first order in frequency 2 and only consider a dynamical
term by getting rid of dc terms (2 = 0). In the following,
the differential current density will be considered, which is
defined as current density divided by the voltage difference
Sv(R2) = v () — vr(2). Then, the differential conventional
current density coming from the left lead can be written as (see
Appendix)

1.9
ig’hQ [ dE e da
- /—(—am[(v _V)GTLGG
dm 21
_G'G'TLG + (G G'TG" — G'TG G i)y,

27

where the characteristic potential u, is frequency independent
if we only consider the first-order effect. Furthermore, the
Thomas-Fermi approximation®?3 is adopted, which assumes
that only the local response is considered, the frequency
independent characteristic potential (6) becomes

V2t () = —4nq2d’;f) + 4nq2d:;g)ua(r), (28)
where frequency independent injectivity is defined as
dno(r) [ dE (— . u
D = [ CaenIETG e (9)

and the local density of states dn/dE =), dny/dE. For
the boundary condition of Poisson-like equation (28), because
the total charge in the whole scattering region is zero, we
have [V -Ju(r)dr = [J,(r)-dS = 0. Hence a reasonable
boundary condition should be f - J;(r) = 0 or, equivalently,
n - du, (r) = 0, where i is the normal direction of the interface
at the boundary.

At zero temperature, the conventional current density
becomes

Jo(r,Q2)
lqth ! r r r
= V-V)HGCT.G'G* -G G'T. G
8m
+(G'G'TG)rur(r) — (G'TG*G")prup ()] =r»

(30)

where G'(E) is evaluated using Eq. (8) with E = Ey.
Correspondingly, the first order of differential displacement
current density is defined as

0
JurQ) = EGWL. G1)

The nonlocal current density Jy can be calculated using

Egs. (12) and (13) with the nonlocal electron density p,(r):*?
pn(r) =V - Jy(r) = V- Jo(r) = V- Ju(r), (32)
where V - J,(r) is given by
V- J(r,Q)
iq’Q

= —— —Re[X'G'G'T.G* — (1 + ¥'G')[L.G'G*
+((1+ X' GHMG*G* — X" G G’ TGYptty D]y (33)
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Furthermore, it is easy to check that
iqg*Q

Tr[V - Ji(r,2)]q, = iQEL, = 7

dl’lLL dnL
Tr — —uyr |,
dE dE

(34)

where E,g is emittance that describes the low-frequency
response of the system and LPDOS dn; /dE is defined as®

dnpp(r)
dE

To summarize the calculation procedure, the characteristic
potential (28) for u; should be solved firstly. Secondly,
we calculate the conventional current density J. and the
displacement current density J; using Egs. (30) and (31),
respectively, and their divergence. The divergence of the total
current density can also be calculated from Eq. (33). Thirdly,
we then calculate the nonlocal electron density using Eq. (32)
and the nonlocal current density can be obtained from Eqgs. (12)
and (13). Finally, the total current density J; can be obtained
by summing up all three components.

In the following, we will present our numerical results
of the ac current density of the molecular Al-C4-Al device.
Our numerical analysis uses the state-of-the-art first-principles
quantum transport package MATDCAL.>*** In particular, a
linear combination of atomic orbitals (LCAO) is employed to
KS equations. The exchange-correlation is treated at the LDA
level and the nonlocal norm-conserving pseudopotential®®
is used to define the atomic core. The density matrix is
constructed in orbital space and the effective potential is
obtained in real space by solving the Poisson equation.
The accuracy in the self-consistent iteration is numerically
converged to 10~* eV. Figure 2 depicts the atomic structure
Al-C4-Al system. There are 18 atoms in a unit cell with a
finite cross section along (100) direction in the semi-infinite
Al electrodes. The distance between the carbon atoms is fixed
to 2.5 a.u. and that between the carbon wire and the Al
electrode is 3.78 a.u. There are 76 atoms in the cental scattering
region.

Once the NEGF-DFT self-consistency is reached as the
numerical tolerance is less than 10~* eV, we obtain the self-
consistent Hamiltonian and Green’s function defined in orbital
space. Notice that the current density is defined in real space,
the transformation from the orbital space to the real space
should be done as in Ref. 32.

In order to calculate the ac current density, the characteristic
potential (28) should be solved. The characteristic potential
uy and up across the cross section located at z are defined

=Re[(G'T.G"+iGT,GT.G Nel.  (35)

Left Lead Device Region Right Lead

XDXIXIXIXT
DXL

|XOZOZOTOT,
IXDIXIXDAD

FIG. 2. (Color online) Schematic diagram of a molecular device
Al-C4-Al The device consists of a four-carbon-atoms chain coupled
to the perfect aluminium atomic electrodes, which will extend to the
reservoirs at =00, where the current is collected.
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FIG. 3. (Color online) The characteristic potential distribution
u;(z) (blue solid line) and ug(z) (green dashed line) along the
transport z direction. Blue square points represent Al atoms and red
square points represent C atoms.

as uy(z) = fdxdyua(r),a = L,R and are shown in Fig. 3.
According to its definition, the characteristic potential reflects
the response of the electrostatic potential inside the scattering
region to the variation of the electrochemical potential py
inside electrode «.>*37 We note that the Coulomb poten-
tial consists of two parts: equilibrium (when bias is zero)
and nonequilibrium parts. When the bias is nonzero, this
nonequilibrium Coulomb potential is due to the interaction of
injected charged with the system. In the linear bias regime, this
potential is proportional to the bias with the coefficient called
characteristic potential coined by Biittiker. To appreciate the
physical meaning of the characteristic potential u,, we vary
the left electrochemical potential by setting vg to zero and
consider u;(Z) shown in Fig. 3. As we can see from Fig. 3,
the characteristic potential u;(Z) deep inside €2, is almost
constant and around 1, which indicates that the electrostatic
potential deep inside €2; changes synchronously with the
electrochemical potential change vy, in the left electrode. In
addition, the screening effect is clearly seen. In the central
scattering region, the electrostatic potential changes due to the
variation of the left electrochemical potential, drops drastically
from left to right, and finally reaches an approximate constant
value around zero deep inside Q2g. Furthermore, we have
numerically confirmed the validity of ), u,(r) = 1 given in
Ref. 3.

To show that the current calculated from ac current density
is conserved, we define the current across the cross section
located at z:

Io(z) = /dxdy’l\- Jao(x,y.2), (36)

where o = c,d,nl,t. (The current and current density are
plotted in units of ig>Q/h.) Figure 4 depicts the different
components of current while crossing different cross sections
along z direction. We see that the total current /; is a constant
in Q¢ and equals to the emittance Ejj, i.e., V- J;(r) = 0 in
Q¢ region. As expected, the current /, varies in the coupling
regions 2; and Qg due to the presence of self-energy. Due to
the current conservation condition Za I, = 0, the emittance
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FIG. 4. (Color online) Conventional current /. (blue dash dot
line), displacement current /; (green dash line), nonlocal current 7,
(black dot line), and total current /; (red solid line) transporting along
z direction. Here, the red diamond symbol denotes the emittance £
calculated from the lead.

should satisfy the following equation:
S Eup = 0. (37

Note that the emittance E;; is negative, Eg; is posi-
tive, which indicates that the system shows inductive-like
behavior.’ This is understandable because the equilibrium
transmission T (Ey) = 0.87, which means the system is
transmissive.

Because the current density is a vector field, it can be
projected on different slices along each direction for better
visualization. Furthermore, we define x and z components
of position-related total current density J; ,(r) as the sum
of several neighboring points in the same plane, i.e.,

18
16

14}

FIG. 5. (Color online) Distribution of the position-related current
density J,(r) in x-z plane in the central of y axis slices. The
arrows indicate the magnitude and direction of current flow in each
position. Red points represent Al atoms and green points represent
C atoms projected into the x-z plane. J,(r) is plotted in units
ofig*Q/h.
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FIG. 6. (Color online) Numerical plot of z component of J, in
transverse x direction and transport z direction by the summation of
values in y direction. J, is plotted in units of i¢>Q/ h.

J L) = Z:H“* Z;Mal Ji(r) and g; is the unit length of real
space grid, i = x/z. We cut aslice in y direction (y = 12 a.u.)
to show the position-related total current density J, ,(r). As
you can see in Fig. 5 that ac current density flows in negative
direction and mainly distributes around each atom. It can be
clearly seen that the distribution of current density is due to
the scattering from Al to the carbon atoms C in Fig. 5.

It is the z component of current density that dominates the
transport properties of the molecular device. In Fig. 6, we
depict the current density J, of the whole system. The current
density J; surrounding four carbon atoms is highly negative
compared with other regions, which confirms that the carbon
atoms are conductive.

In addition, we studied the nonequilibrium charge dis-
tribution due to the ac bias. In Fig. 7, we have shown
the charge density pp(r) injected from the left lead in yz
plane by taking the average in the x direction. One can see
that the nonequilibrium charge density is polarized in the
whole system. Furthermore, the polarization is symmetric
about the center of z axis. It is natural to divide the system
into two regions 2;, according to this symmetry axis.
Correspondingly, the quantum electrochemical capacitance
C = [q, po(r)dr is equal to C = 0.02 aF.’8

IV. SUMMARY

In summary, we have developed a formalism to calculate ac
current density using NEGF formalism. We have shown that
in order to conserve the ac current density, the displacement
current density must be included explicitly in addition to

PHYSICAL REVIEW B 86, 165431 (2012)

25 30 35 40 45 50

Z (a.u.)

FIG. 7. (Color online) The nonequilibrium charge distribution
p.(r) injected from the left lead on y-z plane. p.(r) on y-z plane is
plotted in the atomic unit.

the Coulomb interaction. This is very different from the ac
current calculation. We have also shown that the ac current
calculated by integrating the total ac current density derived
from our theory across an arbitrary cross section inside the
central scattering region is a constant and equals to the
terminal current calculated directly from NEGF. We have
implemented this formalism into a NEGF-DFT scheme. As
an example, we have calculated the ac current density to the
first order in frequency for a molecular device Al-C4-Al from
first principles. It is shown that the Al-C4-Al system gives
inductive-like behavior attributing to the transmissive nature
of system in low-frequency limit. Finally, the nonequilibrium
charge distribution is studied.
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APPENDIX: DERIVATIONS FOR DIFFERENTIAL
CONVENTIONAL CURRENT DENSITY EXPRESSION

From Egs. (4) and (26), we can obtain the expression of
differential conventional current density. Firstly, we expand
the nonequilibrium part of the lesser Green’s function in
terms of the first order in frequency and only keep the first
order:

oy

8y (E4, E)/[vL(R) — vr()]

= r=f
iq

"
tiI:f/GrGr(FLG“ —I'Gyp) — %G’(FLG“ - FG“uL)i|

2 [(G" = QGGG — T G%)]

(AD)

165431-7



LEI ZHANG, BIN WANG, AND JIAN WANG

PHYSICAL REVIEW B 86, 165431 (2012)

with f' = 0 f and f” = 9 f’. Then, the corresponding differential conventional current density up to the first order in frequency

can be written as (not including the zeroth order)

!

lqth dE / Falald f r r r r
J.(r,Q) = 5 (V= V)| f'G'G'(NLG* TG ur) = (G'G'TLG" ~ G'G'TGuy
s

2m
+G' T G'G* — GrFG“G“uL)]

ig*hQ

dE
— / 5 (CINIY = VG TLGG! = G'G'TLG" +(G'G'TG = G'T G Gertt e

4m

where we have used the integration by parts in the first equality.

(A2)
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