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Theory of interfacial plasmon-phonon scattering in supported graphene
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One of the factors limiting electron mobility in supported graphene is remote phonon scattering. We formulate
the theory of the coupling between graphene plasmon and substrate surface polar phonon (SPP) modes and
find that it leads to the formation of interfacial plasmon-phonon (IPP) modes, from which the phenomena of
dynamic antiscreening and screening of remote phonons emerge. The remote phonon-limited mobilities for SiO2,
HfO2, h-BN, and Al2O3 substrates are computed using our theory. We find that hexagonal boron nitride (h-BN)
yields the highest peak mobility, but in the practically useful high-density range, the mobility in HfO2-supported
graphene is high, despite the fact that HfO2 is a high-κ dielectric with low-frequency modes. Our theory
predicts that the strong temperature dependence of the total mobility effectively vanishes at very high carrier
concentrations. The effects of polycrystallinity on IPP scattering are also discussed.
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I. INTRODUCTION

Graphene, a single-layer of hexagonally arranged carbon
atoms,1 has been long considered a promising candidate
material for post-Si CMOS technology and other nanoelec-
tronic applications on account of its excellent electrical2

and thermal transport3 properties. In suspended single-layer
graphene (SLG), the electron mobility has been demonstrated
to be as high as 200 000 cm2V−1s−1.4 However, in real
applications such as a graphene field-effect transistor (GFET),
the graphene is physically supported by an insulating dielectric
substrate such as SiO2, and the carrier mobility in such
supported-graphene structures is about one order of magnitude
lower.4 This reduction in carrier mobility is further exacerbated
in top-gated structures5 in which a thin layer of a high-κ
dielectric, such as HfO2 or Al2O3, is deposited or grown
on the graphene sheet.6–8 The degradation of the electrical
transport properties is a result of exposure to environmental
perturbations such as scattering by charge traps, surface
roughness, and remote optical phonons, which are a kind of
surface excitation. Such environmental effects are encountered
in metal-oxide-semiconductor (MOS) structures.9 Hess and
Vogl first suggested that remote phonons [sometimes also
known as Fuchs-Kliewer (FK)10 surface optical (SO) phonons]
can have a substantial effect on the mobility of Si inversion
layer carriers.11 Fischetti and coworkers later studied the
effects of remote phonon scattering in MOS structures and
found that high-κ oxide layers have a significant effect on
carrier mobility in Si9 and Ge.12 This method was later applied
by Xiu to study remote phonon scattering in Si nanowires.13 In
Refs. 9 and 13, it was found that the plasmons in the channel
material (Si) hybridized with the surface polar phonons (SPP)
in the nearby dielectric material to form interfacial plasmon-
phonon (IPP) modes. This hybridization occurrence naturally
leads to the screening and antiscreening of the SPP from the
dielectric material. Scattering with these IPP modes results in
a further reduced channel electron mobility in 2D Si and Si
nanowires.

Likewise, remote phonon scattering is one of the mecha-
nisms believed to reduce the mobility of supported graphene,
with the form of the scattering mechanism varying with the

material properties of the dielectric substrate. Experimentally,
hexagonal boron nitride (h-BN) has been found to be a
promising dielectric material for graphene, and it is commonly
believed that this is at least partially due to the fact that
remote phonon scattering is weak with a h-BN substrate.14 On
other substrates such as SiO2

15,16 and SiC,17,18 the mobility of
supported graphene is lower. Thus it is important to develop an
accurate understanding of remote phonon scattering in order
to find an optimal choice of substrate that will minimize the
degradation of carrier mobility in supported graphene.

Although the subject of remote phonon scattering in
graphene19–23 and carbon nanotubes20,21 has been broached in
the recent past, the basic approach used in the aforementioned
works does not deal adequately with the dynamic screening
of the SPP modes. In graphene, dynamic screening of SPP
modes has its origin in SPP-plasmon coupling, and the two
time-dependent phenomena have to be treated within the same
framework. Typically, the coupling phenomenon is ignored,
and screening of the SPP modes is approximated with a
Thomas-Fermi (TF) type of static screening,19,22,24 which
is adequate for the case of impurity scattering25,26 but can
lead to a miscalculation of the scattering rates since the
use of static screening underestimates the electron-phonon
coupling strength,19 especially for higher-frequency modes.
The failure to incorporate correctly SPP-plasmon coupling into
the approach means that the dispersion relation of the SPP (or,
more accurately, of the IPP) modes is incorrect and that the
dynamic screening of the remote phonons is not accounted for
in a natural manner.

To understand the screening phenomenon in our situation,
let us first give a bird’s eye view of the physical picture. This
picture is somewhat different from what is found in the more
familiar semiconductor-inversion-layer, high-κ-dielectric ge-
ometry, since the absence of a gap in bulk graphene renders
its dielectric response stronger and qualitatively different—
almost metal-like, as testified by the presence of Kohn
anomalies in the phonon spectra27,28—than the response of
a two-dimensional electron gas. Graphene plasmons interact
with the SPP modes through the time-dependent electric field
generated by the latter, and the former are forced to oscillate at
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the frequency of the latter (ω). When ω is less than the natural
frequency of the plasmon (ωp), i.e., ω < ωp, the electrons can
respond to the SPP mode and screen its electric field. On the
other hand, when ω > ωp, the motion of the plasmons lags that
of the SPP mode, resulting in poor or no screening, or even
in antiscreening, which can actually augment the scattering
field.29 In bulk SiO2, the main TO-phonon frequencies are
around 56 and 138 meV. At long wavelengths (λ > 10−8 m),
the plasmon frequencies for a carrier density of 1012 cm−2 are
comparable or smaller than the TO-phonon frequencies. Thus a
TF-type approximation is inadequate especially for describing
the screening (or more accurately, the antiscreening) of the
138 meV TO phonon modes. Our calculations suggest that,
contrary to what is found in the semiconductor/high-κ case9

and to the claims made in Ref. 19, the higher-frequency SPP
modes cannot be ignored despite their reduced Bose-Einstein
occupation factors at room temperature.

It is our intention in this paper to provide a systematic
description of the coupling between the substrate SPP and
the graphene plasmon modes, and relate this coupling to
the dynamic screening phenomenon. Our theory can be
generalized to graphene heterostructure such as double-gated
graphene although this falls outside the scope of our paper
and will be the subject of a future work. We begin by
deriving our model of the IPP system. Its dispersion is then
calculated from the model. The pure SO phonon and graphene
plasmon branches are compared with the IPP branches. Also,
we compute the electron-IPP and the electron-SPP coupling
coefficients for different substrates (SiO2, h-BN, HfO2, and
Al2O3). We show that the IPP modes can be interpreted as
dynamically screened SPP modes. Scattering rates are then
calculated and used to compute the remote phonon-limited
mobility μRP for different substrates at room temperature
(300 K) with varying carrier density. The temperature depen-
dence of μRP at low and high carrier densities is compared.
Using the μRP results, we analyze the suitability of the various
dielectric materials for use as substrates or gate insulators in
nanoelectronics applications. We also discuss the effects of
polycrystallinity on remote phonon scattering.

II. MODEL

A. Coupling between substrate polar phonons
and graphene plasmons

Our approach to constructing the theoretical model of the
coupled plasmon-phonon systems follows closely that of Fis-
chetti, Neumayer, and Cartier9 although some modifications
are needed to describe the plasmon-phonon coupling. One of
the primary difficulties in describing the coupled system is the
anisotropy in the dielectric response of graphene: graphene
is polarizable in the plane but its out-of-plane response is
presumably negligible. If the graphene sheet is modeled as a
slab of finite thickness with a dynamic dielectric response
in the in-plane direction [ε‖

gr (ω) = εgr (1 − ω2
p/ω2), where

ωp is the plasma frequency] and none in the out-of-plane
direction [ε⊥

gr (ω) = constant ], the dispersion of the SPPs
remains unchanged, indicating that the SPP and plasmon
modes are uncoupled. This absence of coupling is implicitly
assumed in much of the current literature on SPP scattering

FIG. 1. (Color online) Schematic of set up of graphene-substrate
system. The SLG is modeled as an infinitely thin (in the z direction)
layer of polarizable charge. A gap of d separates the graphene charge
sheet and the substrate surface.

in graphene19,22–24,30 although it has already been shown
to be untrue in 2D Si9 and Si nanowires.13 Furthermore,
there is considerable experimental support for the coupling
of graphene plasmons to the SPPs.31–34 As we will show
later, accounting for this coupling results in the formation
of IPP modes, which are screened (antiscreened) and scatter
charge carriers in graphene more weakly (strongly) than the
unhybridized SPP modes. This “uncoupling problem” persists
even when one inserts a vacuum region between the graphene
slab and the substrate. Ultimately, this alleged lack of coupling
can be traced back to the continuity of the electric displacement
field D at the interface between the graphene slab and the
substrate or vacuum. Given that the dynamic response of the
graphene is only in the in-plane directions and that the coupling
should be with the p-polarized waves of the substrate, the
slab approach is not likely to be correct. To overcome this
difficulty, we find it is necessary to treat the graphene as
a polarizable charge sheet (as shown in Fig. 1) rather than
as a finite slab with a particular in-plane dielectric function.
This polarization charge then generates a discontinuity in the
electric displacement along the surface of the graphene. It
is this discontinuity that couples the dielectric response of the
substrate to that of the graphene sheet. The basic setup is shown
in Fig. 1. The graphene is an infinitely thin sheet coplanar with
the (x,y) plane and floating at a height d above the substrate that
occupies the semi-infinite region z < 0. Notation wise, we try
to follow Ref. 9. In the direction perpendicular to the interface,
the (ionic) dielectric response of the substrate is assumed to
be due to two optical phonon modes, an approximation used
in Ref. 9, that is

εox(ω) = ε∞
ox + (

εi
ox − ε∞

ox

) ω2
TO2

ω2
TO2 − ω2

+ (ε0
ox − εi

ox

) ω2
TO1

ω2
TO1 − ω2

, (1)

where ωTO1 and ωTO2 are the first and second transverse optical
(TO) angular frequencies (with ωTO1 < ωTO2), and ε∞

ox , εi
ox ,

and ε0
ox are the optical, intermediate, and static permittivities.

We can also express εox(ω) in the generalized Lyddane-Sachs-
Teller form:

εox(ω) = ε∞
ox

(
ω2

LO2 − ω2
)(

ω2
LO1 − ω2

)
(
ω2

TO2 − ω2
)(

ω2
TO1 − ω2

) ,
where ωLO1 and ωLO2 are the first and second longitudinal
optical angular frequencies. The variables Q and R represent
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the two-dimensional wave and coordinate vector in the (x,y)
plane of the interface, respectively.

As in Ref. 9, we try to derive the longitudinal electric
eigenmodes of the system since the transverse modes (given
by poles of the total electric response) correspond to a
vanishing electric field and so to a vanishing coupling with
the graphene carriers. In effect, the longitudinal modes are the
transverse-magnetic (TM) solutions of Maxwell’s equations.
It was also shown in Ref. 9 that one may ignore the effects
of retardation. Therefore we need only to employ simpler
electrostatics instead of the full set of Maxwell’s equations.

We begin our derivation by writing down the Poisson
equation for the bare scalar potential �,

−∇2�(R,z) = 1

ε0
ρox(R,z,t), (2)

where ρox is the (periodic) polarization charge distribution at
the surface of the substrate that is the source of scattering,
and ε0 is the permittivity of vacuum. Equation (2) describes
the electrostatic potential within the graphene. However, the
effective scalar potential felt by the graphene carriers is
different and should include the collective screening effect
of the induced electrons/holes, which changes the right-hand
side (RHS) of Eq. (2). Hence we modify Eq. (2) by adding a
screening charge term on its RHS, and we obtain the Poisson
equation for the screened scalar potential �scr,

−∇2�scr(R,z,t) = 1

ε0
[ρox(R,z,t) + ρscr(R,z,t)] , (3)

where ρscr is the screening charge term. The integral form of
Eq. (3) is

�scr(R,z,t) = �(R,z,t) +
∫

dR′dz′G(Rz,R′z′)ρscr(R′z′,t),

(4)

where G(Rz,R′z′) is the Green function that satisfies the
boundary conditions [see Eq. (14)], and the equation

−∇2[ε(R,z)G(Rz,R′z′)] = δ(R − R′,z − z′) . (5)

The bare potential �(R,z,t) is defined as �(R,z,t) =∫
dR′dz′G(Rz,R′z′)ρox(R′z′,t). The second term on the RHS

of Eq. (4) represents the screening charge distribution. The
bare and screened potentials can be written as sums of their
Fourier components:

�(R,z,t) =
∑

Q

φQ,ω(z)e−iQ·Reiωt , (6a)

�scr(R,z,t) =
∑

Q

φscr
Q,ω(z)e−iQ·Reiωt , (6b)

where it must be understood that only the real part of Eq. (6)
is to be taken here and in the following sections. Given the
cylindrical symmetry of the problem, the Fourier components
φQ,ω and φscr

Q,ω depend only on the magnitude of the wave
vector Q.

From Eq. (4), we obtain the following expression for the z-
dependent part of the Fourier-transformed screened potential:

φscr
Q,ω(z)eiωt = φQ,ω(z)eiωt +

∫
dz′GQ(z,z′)ρscr

Q,ω(z′,t). (7)

Equation (7) is solvable if the polarization charge ρscr
Q,ω is

expressed as a function of the screened scalar potential. Here,
we assume that ρscr

Q,ω responds linearly to φscr
Q,ω and write the

screening charge term as

ρscr
Q,ω(z,t) = e2
(Q,ω)f (z)φscr

Q,ω(z)eiωt , (8)

where 
(Q,ω) is the in-plane 2D polarization charge term and
f (z) governs the polarization charge distribution in the out-
of-plane direction. For convenience, we model the graphene
as an infinitely thin sheet of polarized charge and set f (z) =
δ(z − d). Combining Eqs. (7) and (8), we obtain the expression

φscr
Q,ω(z) = φQ,ω(z) + e2

∫
dz′GQ(z,z′)
(Q,ω)f (z′)φscr

Q,ω(z′).

(9)

The expression in Eq. (9) becomes

φscr
Q,ω(z) = φQ,ω(z) + e2GQ(z,d)
(Q,ω)φscr

Q,ω(d)

= φQ,ω(z) + e2GQ(z,d)
(Q,ω)φQ,ω(d)

+ e4GQ(z,d)
(Q,ω)GQ(d,d)
(Q,ω)φscr
Q,ω(d)

= · · ·
= φQ,ω(z) + e2GQ(z,d)
(Q,ω)

1 − e2GQ(d,d)
(Q,ω)
φQ,ω(d),

and the corresponding component of the electric field
perpendicular to the interface at z = 0 is

ẑ · EQ,ω|z=0 = − ∂

∂z
φscr

Q,ω(z)

∣∣∣∣
z=0

= −∂φQ,ω(z,t)

∂z
− ∂GQ(z,d)

∂z

× e2
(Q,ω)

1 − e2GQ(d,d)
(Q,ω)
φQ,ω(d)

∣∣∣∣
z=0

. (10)

For notational simplicity, we write

φscr
Q,ω(z) = φQ,ω(z) + GQ(z,d)PQ,ωφQ,ω(d), (11a)

ẑ · EQ,ω = −∂φQ,ω(z,t)

∂z
− ∂GQ(z,d)

∂z
PQ,ωφQ,ω(d), (11b)

where

PQ,ω = e2
(Q,ω)

1 − e2GQ(d,d)
(Q,ω)
. (12)

Here, we emphasize that Eq. (11a) is the key to determining
the dispersion relation as we shall show later.

The Green function GQ(z,z′) in Eq. (7) obeys the relation

−
(

∂2

∂z2
− Q2

)
GQ(z,z′) = 1

ε0
δ(z − z′) . (13)

We require the Green function to satisfy the following
conditions at and away from the interface (z = 0):

ε0
dGQ(z = 0+,z′)

dz
= ε∞

ox

dGQ(z = 0−,z′)
dz

, (14a)

GQ(z = 0+,z′) = GQ(z = 0−,z′), (14b)

GQ(z < 0,d) = GQ(0,d)e+Qz, (14c)

GQ(z > d,d) = GQ(d,d)e−Q(z−d). (14d)
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The solution to Eq. (13) is35

GQ(z,z′) =
{ 1

2ε0Q
(e−Q|z−z′ | − λe−Q|z+z′ |), z > 0,

1
2ε0Q

(1 − λ) e−Q|z−z′ |, z � 0,
(15)

where

λ = ε∞
ox − ε0

ε∞
ox + ε0

.

The bare potential in Eq. (11a) can be written as

φQ,ω(z) =
{

A1e
−Qz, z > 0,

A2e
+Qz, z � 0,

where A1 and A2 are the amplitudes of the bare potential for
z > 0 and z � 0, respectively. Thus the expression for the
screened potential in Eq. (11a) is

φscr
Q,ω(z) =

{
A1e

−Qz + GQ(z,d)PQ,ωA1e
−Qd, z > 0,

A2e
+Qz + GQ(z,d)PQ,ωA1e

−Qd, z � 0.

(16)

At the interface z = 0, the continuity of the component of the
electric field parallel to the interface requires the continuity of
φscr

Q,ω, i.e., φscr
Q,ω(z = 0+) = φscr

Q,ω(z = 0−), giving us

A1 + A1GQ(z = 0+,d)PQ,ωe−Qd

= A2 + A1GQ(z = 0−,d)PQ,ωe−Qd . (17)

Similarly, the continuity of the perpendicular component of the

electric displacement, i.e., ε0
dφscr

Q,ω(z=0+)
dz

= εox(ω)
dφscr

Q,ω(z=0−)
dz

leads to

ε0

[
A1 − A1

1

Q

dGQ(z = 0+,d)

dz
PQ,ωe−Qd

]

= εox(ω)

[
− A2 − A1

1

Q

dGQ(z = 0−,d)

dz
PQ,ωe−Qd

]
. (18)

Substituting Eqs. (14a) and (14b) into Eqs. (17) and (18), we
obtain the following relations:

A1 = A2, (19a)

ε0

[
1 − 1

Q

∂GQ(z = 0+,d)

∂z
PQ,ωe−Qd

]

= εox(ω)

[
−1 − 1

Q

∂GQ(z = 0−,d)

∂z
PQ,ωe−Qd

]
. (19b)

Rearranging the terms in Eq. (19b), we obtain

ε0 + εox(ω) + [
εox(ω) − ε∞

ox

]
GQ(0,d)PQ,ωe−Qd = 0, (20)

which can be rewritten as

[ε0 + εox(ω)] {1 − [GQ(d,d) − GQ(0,d)e−Qd ]e2
(Q,ω)}
− (

ε0 + ε∞
ox

)
GQ(0,d)e2
(Q,ω)e−Qd = 0,

or more explicitly,

[εox(ω) + ε0]

[
1 − (1 − e−2Qd )

e2
(Q,ω)

2ε0Q

]

− e2
(Q,ω)

Q
e−2Qd = 0 . (21)

Equation (20) gives us the dispersion of the coupled plasmon-
phonon modes and is sometimes called the secular equation.9

Physically, we expect three branches (two phonon and one
plasmon). We write the coupled plasmon-phonon modes as
ω

(I)
Q , ω

(II)
Q , and ω

(III)
Q for each Q point. In the limit d → ∞,

Eq. (21) becomes

[εox(ω) + ε0]

[
1 − e2
(Q,ω)

2ε0Q

]
= 0,

which gives us as expected the dispersion for the two
uncoupled SPP branches and the single plasmon branch in
isolated graphene.

B. Plasmon and phonon content

The solutions of Eq. (21) represent excitations of the
IPP modes. However, the effective scattering amplitude of
a particular mode may not be substantial if it is plasmonlike.
Scattering with a plasmonlike excitation does not necessarily
lead to loss of momentum since the momentum is simply
transferred to the constituent carriers of the plasmon excitation
and there is no change in the total momentum of all the carriers.
On the other hand, scattering with a phononlike excitation does
lead to a loss of momentum since phonons belong to a different
set of degrees of freedom. Therefore, as in Ref. 9, it is necessary
to define the phonon content36 of each IPP mode. The phonon
content quantifies the modal fraction that is phononlike and
modulates its scattering strength. Likewise, we can also define
the plasmon content of the mode. To find the plasmon content,
we first consider the two solutions ω

(−g,α)
Q (α = 1,2) obtained

from the secular equation Eq. (21) by ignoring the polarization
response [setting 
(Q,ω) = 0 ]. Following Ref. 9, the plasmon
content of the IPP mode ω

(i)
Q is defined here as

�(g)
(
ω

(i)
Q

) =
∣∣∣∣∣
[
ω

(i)2
Q − ω

(−g,1)2
Q

][
ω

(i)2
Q − ω

(−g,2)2
Q

]
[
ω

(i)2
Q − ω

(j )2
Q

][
ω

(i)2
Q − ω

(k)2
Q

]
∣∣∣∣∣ , (22)

where the indices (i,j,k) are cyclical. Note that the expected
“sum rule,”9

3∑
i=1

�(g)
[
ω

(i)
Q

] = 1 , (23)

holds. Equation (23) implies that the total plasmon weight of
the three solutions is equal to one (as it would be without
hybridization). The (nonplasmon) phonon content is then
defined as 1 − �(g)[ω(i)

Q ]. In order to distinguish the TO1-
and TO2-phonon parts of the nonplasmon content, we need to
define the relative individual phonon content. For TO1 phonon,
the content is computed by ignoring its response and replacing
εox(ω) in Eq. (21) with ε∞

ox (ω2
LO2 − ω2)/(ω2

TO2 − ω2). From
the solutions of the modified secular equation [ω(−TO1,1)

Q and
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ω
(−TO1,2)
Q ], the relative TO1-phonon content of mode i will be

R(TO1)
[
ω

(i)
Q

] =
∣∣∣∣∣
[
ω

(i)2
Q − ω

(−TO1,1)2
Q

][
ω

(i)2
Q − ω

(−TO1,2)2
Q

]
[
ω

(i)2
Q − ω

(j )2
Q

][
ω

(i)2
Q − ω

(k)2
Q

]
∣∣∣∣∣ ,
(24)

where, as before, i, j , and k are cyclical. The relative
TO2-phonon content can be similarly defined by replacing
the superscript (−TO1,α) with (−TO2,α). Hence, the TO1-
phonon content will be

�(TO1)
[
ω

(i)
Q

] = R(TO1)
[
ω

(i)
Q

]
R(TO1)

[
ω

(i)
Q

]+ R(TO2)
[
ω

(i)
Q

]{1 − �(g)
[
ω

(i)
Q

]}
.

(25)

The TO2-phonon content �(TO2)[ω(i)
Q ] can be similarly defined.

Given Eqs. (22) and (25), the following sum rules have been
numerically verified:

3∑
i=1

�(TO1)
[
ω

(i)
Q

] =
3∑

i=1

�(TO2)
[
ω

(i)
Q

] = 1, (26a)

�(g)
[
ω

(i)
Q

]+ �(TO1)
[
ω

(i)
Q

]+ �(TO2)
[
ω

(i)
Q

] = 1, (26b)

for each mode ω
(i)
Q .

C. Scattering strength

As we have seen earlier, the IPP modes that result from the
SPP-plasmon coupling have a different dispersion from that
of the uncoupled SPP and plasmon modes. The electric field
generated by the IPP modes is also different from that of the
uncoupled SPP and plasmon modes. Since the remote phonon-
electron coupling is derived from the quantization of the energy
density of the electric field,9 we expect this difference in the
electric field to be reflected in the scattering strength of the
IPP modes.

To find the scattering strength of an IPP mode, we have to
determine the amplitude of its electric field. In Eq. (16), there
are three unknowns (A1, A2, and ω), two of which (A1 and

ω) can only be eliminated through Eqs. (17) and (18). To find
A1, we follow the semiclassical approach in Ref. 9, where the
time-averaged total energy of the scattering field is set equal
to the zero-point energy. In the following discussion, we set
A1 = AQ. We first compute the time-averaged electrostatic
energy 〈U scr

Q,ω〉 associated with the screened field:

〈
U scr

Q,ω

〉 = 〈
1

2

∫
dzdR ε

[
ω

(i)
Q

]∣∣∇[φscr
Q,ω(z)eiQ·R−iω

(i)
Q t
]∣∣2〉 .

(27)

The angle brackets 〈. . .〉 denote time average. The volume
integral in Eq. (27) is the result of three contributions:
one from the substrate (z � 0), one from the graphene-
substrate gap (0 < z � d), and one from the region above the
graphene (z > d). Each term can be converted into a surface
integral. Adopting a “piecewise approach” to compute the
integral in Eq. (27), we must evaluate three surface integrals.
To do so, we need the explicit expressions for GQ(z,d):

GQ(z,d) =

⎧⎪⎪⎨
⎪⎪⎩

1
2ε0Q

(1 − λ) e+Q(z−d), z � 0,

1
2ε0Q

[e+Q(z−d) − λe−Q(z+d)], 0 < z � d,

1
2ε0Q

[e−Q(z−d) − λe−Q(z+d)], z > d,

(28)

and for − ∂
∂z

GQ(z,d):

− ∂

∂z
GQ(z,d) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2ε0

(1 − λ) e+Q(z−d), z � 0,

1
2ε0

[−e+Q(z−d) − λe−Q(z+d)], 0 < z � d,

1
2ε0

[e−Q(z−d) − λe−Q(z+d)], z > d.

(29)

We can now evaluate the electrostatic energy in the regions
z � 0, 0 < z � d, and z > d:〈
U scr

Q,ω

〉 = 〈
U scr

Q,ω(z � 0)
〉 + 〈

U scr
Q,ω(0 < z � d)

〉 + 〈
U scr

Q,ω(z > d)
〉
.

(30)

As mentioned earlier, the volume integrals in Eq. (27) can be
recast as surface integrals. Thus

〈
U scr

Q,ω(z � 0)
〉 = ε0A2

QQ

2

[
1 − 1

Q

∂GQ(z = 0+,d)

∂z
PQ,ωe−Qd

]
[1 + GQ(z = 0+,d)PQ,ωe−Qd ], (31a)

〈
U scr

Q,ω(0 < z � d)
〉 = εox

[
ω

(i)
Q

]
A2

QQ

2

[
1 + 1

Q

∂GQ(z = 0−,d)

∂z
PQ,ωe−Qd

]
[1 + GQ(z = 0−,d)PQ,ωe−Qd ]

+ ε0A2
QQ

2

[
e−Qd − 1

Q

∂GQ(z = d+,d)

∂z
PQ,ωe−Qd

]
[e−Qd + GQ(z = d+,d)PQ,ωe−Qd ], (31b)

〈
U scr

Q,ω(z > d)
〉 = −ε0A2

QQ

2

[
e−Qd − 1

Q

∂GQ(z = d−,d)

∂z
PQ,ωe−Qd

]
[e−Qd + GQ(z = d−,d)PQ,ωe−Qd ] . (31c)

In Eq. (31b), ε̄ox(ω) is the dielectric function of the substrate, which we distinguish with the overhead bar, and distinct from
εox(ω). As we shall see later, as in Ref. 9, the function ε̄ox(ω) is chosen in a way consistent with the particular excitation that we
want. Let us regroup the terms in Eqs. (31) into those on the substrate surface at z = 0 and those on the graphene at z = d. At
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z = 0, we have

〈
U scr

Q,ω(z = 0)
〉 = ε0A2

QQ

2

[
1 − 1

Q

∂GQ(z = 0+,d)

∂z
PQ,ωe−Qd

]
[1 + GQ(z = 0+,d)PQ,ωe−Qd ]

+ εox

[
ω

(i)
Q

]
A2

QQ

2

[
1 + 1

Q

∂GQ(z = 0−,d)

∂z
PQ,ωe−Qd

]
[1 + GQ(z = 0−,d)PQ,ωe−Qd ], (32)

while at z = d, we have

〈
U scr

Q,ω(z = d)
〉 = ε0A2

QQ

2

[
e−Qd − 1

Q

∂GQ(z = d+,d)

∂z
PQ,ωe−Qd

]
[e−Qd + GQ(z = d+,d)PQ,ωe−Qd ]

− ε0A2
QQ

2

[
e−Qd + 1

Q

∂GQ(z = d−,d)

∂z
PQ,ωe−Qd

]
[e−Qd + GQ(z = d−,d)PQ,ωe−Qd ]. (33)

We have to be careful in computing 〈U scr
Q,ω〉. Mathematically, it may seem that we ought to set 〈U scr

Q,ω〉 = 〈U scr
Q,ω(z = 0)〉 + 〈U scr

Q,ω(z =
d)〉. However, note that the term 〈U scr

Q,ω〉 accounts for the various excitation effects, ionic and electronic, but the term 〈U scr
Q,ω(z = d)〉

corresponds to the charge singularity in the zero-thickness graphene sheet. It is a “self-interaction” of the charge distribution in
the graphene which has no dependence on ω, unlike 〈U scr

Q,ω(z = 0)〉, so that we should not expect it to contribute physically to
the scattering of the graphene carriers. To see this more clearly, we rewrite Eq. (27) as

〈
U scr

Q,ω

〉 = 〈
1

2

∫
dzdR D · E

〉
=
〈

1

2

∫
dzdR (ε0E + PL + Pe) · E

〉
,

where PL and Pe are the polarization fields of the lattice (substrate) and the graphene electronic excitation, respectively. The
following identification can be made:

〈
U scr

Q,ω(z = 0)
〉 = 〈

1

2

∫
dzdR (ε0E + PL) · E

〉
,

〈
U scr

Q,ω(z = d)
〉 = 〈

1

2

∫
dzdR Pe · E

〉
,

and since we are only interested in the interaction of the lattice polarization field with the graphene carriers, we set
〈
U scr

Q,ω

〉 =〈
U scr

Q,ω(z = 0)
〉
, i.e.,

〈
U scr

Q,ω

〉 = A2
QQ

2

{
ε0 + ε̄ox

[
ω

(i)
Q

]+ [
ε̄ox

[
ω

(i)
Q

]− ε∞
ox

]
GQ(z = 0,d)PQ,ωe−Qd

}
: [1 + GQ(z = 0,d)PQ,ωe−Qd ], (34)

where we have used the relationship 1
Q

∂
∂z

GQ(z = 0−,d) = GQ(z = 0,d). In Eq. (34), the first factor [ε0 + ε̄ox(ω) − · · · ] resembles
the secular equation (20). Indeed, if we replace εox(ω) with εox(ω), then 〈U scr

Q,ω〉 = 0 as expected. This is no coincidence since
U scr

Q,ω represents the energy of the charge distribution present at the substrate-vacuum interface and the secular equation in
Eq. (20) is a statement about the absence of charges at the substrate-vacuum interface. This also confirms our earlier choice of
excluding the contribution from the surface charges at z = d, since that contribution does not disappear when we replace εox(ω)
with εox(ω). By regrouping the terms according to the position of their charge distribution in Eq. (30), we make the relationship
to the secular equation Eq. (20) manifest. Using Eq. (12), the expression for the screened electrostatic energy can be rewritten as

〈
U scr

Q,ω

〉 = A2
QQ

2

{
ε̄ox

[
ω

(i)
Q

]− εox

[
ω

(i)
Q

]}{1 − GQ(d,d)e2

[
Q,ω

(i)
Q

]+ GQ(0,d)e2

[
Q,ω

(i)
Q

]
e−Qd

1 − GQ(d,d)e2

[
Q,ω

(i)
Q

]
}2

. (35)

We use the relationship 〈Wscr
Q,ω〉 = 2〈U scr

Q,ω〉 to obtain the time-averaged total energy, and set it equal to the zero-point energy,

i.e., 1
2h̄ω

(i)
Q = 〈Wscr

Q,ω〉, so that

1

2
h̄ω

(i)
Q = A2

QQ
{
ε̄ox

[
ω

(i)
Q

]− εox

[
ω

(i)
Q

]}{1 − GQ(d,d)e2

[
Q,ω

(i)
Q

]+ GQ(0,d)e2

[
Q,ω

(i)
Q

]
e−Qd

1 − GQ(d,d)e2

[
Q,ω

(i)
Q

]
}2

.

Therefore the squared amplitude of the field is

A2
Q = h̄ω

(i)
Q

2Q
{
ε̄ox

[
ω

(i)
Q

]− εox

[
ω

(i)
Q

]}
{

1 − GQ(d,d)e2

[
Q,ω

(i)
Q

]+ GQ(0,d)e2

[
Q,ω

(i)
Q

]
e−Qd

1 − GQ(d,d)e2

[
Q,ω

(i)
Q

]
}−2

.

To determine the strength of the scattering field, say for the TO1 phonon, we take the difference between (i) the squared
amplitude of the field with the TO1 mode frozen and (ii) that of the field with the mode in full response. In (i), we
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set

ε̄TO1,∞
ox (ω) = ε∞

ox

(
ω2

LO2 − ω2

ω2
TO2 − ω2

)

and

ε̄TO1,0
ox (ω) = ε∞

ox

(
ω2

LO2 − ω2

ω2
TO2 − ω2

)
ω2

LO1

ω2
TO1

.

The squared amplitude of the TO1 scattering field for ω = ω
(i)
Q is

ATO1
[
Q,ω

(i)
Q

]2 = h̄ω
(i)
Q

2Q

{
1

ε̄
TO1,∞
ox

[
ω

(i)
Q

]− εox

[
ω

(i)
Q

] − 1

ε̄
TO1,0
ox

[
ω

(i)
Q

]− εox

[
ω

(i)
Q

]
}

�(TO1)
[
ω

(i)
Q

]

×
{

1 − GQ(d,d)e2

[
Q,ω

(i)
Q

]+ GQ(0,d)e2

[
Q,ω

(i)
Q

]
e−Qd

1 − GQ(d,d)e2

[
Q,ω

(i)
Q

]
}−2

. (36)

The expression for the TO2 scattering field can be similarly obtained. Therefore the TO1 effective scattering field can be written
as

φscr
Q,ω(d) = ATO1

[
Q,ω

(i)
Q

] {
e−Qd + GQ(z,d)

e2

[
Q,ω

(i)
Q

]
1 − e2GQ(d,d)


[
Q,ω

(i)
Q

]e−Qd

}
. (37)

The scattering potential is

V (R,z) =
3∑

l=1

2∑
μ=1

eATO1
[
Q,ω

(l)
Q

][
e−Qz + GQ(z,d)P

Q,ω
(l)
Q
e−Qd

]
eiQ·R−iω

(l)
Q t
[
a

(l)
Q + a

(l)†
−Q

]
, (38)

where a
(l)
Q (a(l)†

Q ) is the annihilation (creation) operator for the mode corresponding to Q and ω
(l)
Q . Generally, the graphene field

operator can be written in the spinorial form as

�(R,z) = 1√
2

∑
s=±1

∑
K

[(
1

seiθK

)
csK

K +
(

eiθK

s

)
csK′

K

]
eiK·R√δ(z − d), (39)

where K(K′) denotes the K(K′) valley, and the +(−) sign corresponds to the π (π∗) band; csK
K (csK†

K ) is the annihilation (creation)
operator of the s-band K electron state at the K valley. Therefore the interaction term is

Hint =
∫

dz

∫
dR�†(R,z)V (R,z)�(R,z)

and, if we neglect the intervalley terms, simplifies to

Hint ≈
3∑

l=1

∑
s1,s2

∑
K,Q

M
(l)
Q αs1K+Q,s2K

(
c
s1K†
K+Qc

s2K
K + s1s2c

s1K′†
K+Qc

s2K′
K

)[
a

(l)
Q + a

(l)†
−Q

]
, (40)

where

αs1K1,s2K2 = 1 + s1s2e
−i(θK1 −θK2 )

2
is the overlap integral that comes from the inner product of the spinors, and

M
(l)
Q =

⎛
⎝ 2∑

μ=1

e2h̄ω
(l)
Q

2Q

{
1

ε̄
TOμ,∞
ox

[
ω

(l)
Q

]− εox

[
ω

(l)
Q

] − 1

ε̄
TOμ,0
ox

[
ω

(l)
Q

]− εox

[
ω

(l)
Q

]
}

�(TOμ)
[
ω

(l)
Q

]⎞⎠
1/2

×∣∣1 − GQ(d,d)e2

[
Q,ω

(l)
Q

]+ GQ(0,d)e2

[
Q,ω

(l)
Q

]
e−Qd

∣∣−1
(41)

is the electron-phonon coupling coefficient corresponding to the ω
(l)
Q mode.

D. Landau damping

At sufficiently short wavelengths, plasmons cease to be
proper quasiparticle excitations because of Landau damping.29

To model this phenomenon, albeit approximately, we take that
to be the case when the pure graphene plasmon excitation,
of which the dispersion ω = ωp(Q) is determined by the
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expression 1 − e2GQ(d,d)
(Q,ω) = 0, enters the intraband
single-particle excitation (SPE) continuum.37 This happens
when the plasmon branch crosses the electron dispersion curve,
i.e., when ωp = h̄vF Q, and the wave vector at which this
happens is Qc. A common cutoff Qc is used for all three
IPP branches because we are constrained by the necessity to
maintain the sum rule in Eq. (23). Thus, although the top
IPP branch may undergo Landau damping from interband
transitions, we assume that the IPP branch III modes are still
well defined and do not undergo significant broadening. Se-
lective omission of the top IPP branch while still retaining the
lower two coupled plasmon-phonon branches would violate
the sum rules �(g)[ω(IPP1)

Q ] + �(g)[ω(IPP2)
Q ] + �(g)[ω(IPP3)

Q ] =
�(TOμ)[ω(IPP1)

Q ] + �(TOμ)[ω(IPP2)
Q ] + �(TOμ)[ω(IPP3)

Q ] = 1. If we
set Qc to be the point where the plasmonlike branch III
undergoes interband SPE Landau damping, then the lower
branches would have to be replaced by SPP branches. This
approximation is unreasonable because it assumes that the
modes are broadened when they are not. On the other hand, it
is less severe to assume that interband SPE Landau damping
does not lead to significant broadening of the plasmonlike IPP
modes. Admittedly, this is not a perfect way of handling the
issue of Landau damping and is a limitation of our theory,
which assumes the spectral weight of the modes to be sharp
delta function in frequency space.

When Q < Qc, the electron-phonon coupling coefficient
in Eq. (40) is that of Eq. (41). Although the lower-frequency
IPP branches may undergo Landau damping from intraband
SPE as ω

(l)
Q < vF Q, we still retain them because the sum

rules in Eqs. (23) and (26) require us to maintain charge
conservation.29 On the other hand, when Q > Qc, Landau
damping is assumed to dominate all the IPP modes and the
coupling between the substrate SPP modes and the graphene
plasmons can be ignored. Instead of scattering with three IPP
modes for each given wave vector, we revert to using only two
SPP modes. This allows us to satisfy the sum rules in Eq. (26).
In this case, the electron-phonon coupling coefficient in
Eq. (41) can be rewritten as

M
(l)
Q =

⎛
⎝ 2∑

μ=1

e2h̄ω
(l)
Q

2Q

{
1

ε̄
TOμ,∞
ox

[
ω

(l)
Q

]+ ε0

− 1

ε̄
TOμ,0
ox

[
ω

(l)
Q

]+ ε0

}
�(TOμ)

[
ω

(l)
Q

])1/2

, (42)

where l = SO1,SO2 indexes the SPP branch. The expression
in Eq. (42) can be derived from Eq. (41) obtained in the limit of

 → 0. If there is no polarization charge, the secular equation
is εox[ω(l)

Q ] + ε0 = 0, which gives us εox[ω(l)
Q ] = −ε0. If we

substitute the latter back into Eq. (41), we obtain Eq. (42).

III. RESULTS AND DISCUSSION

A. Numerical evaluation

Having set up the theoretical framework for electron-
IPP interaction, we compute the dispersion of the coupled
interfacial plasmon-phonon modes and study the electrical
transport properties.

1. Interfacial plasmon-phonon dispersion

In this section we compute the scattering rates from the
remote phonons by employing the dispersion relation [ω(l)

Q ]

and the electron-phonon coupling coefficient [M (l)
Q ], which

can be determined by solving Eqs. (20) and (40), respectively.
For simplicity, to solve the latter equations, we use the zero-
temperature, long-wavelength approximation for 
(Q,ω):37,38


(Q,ω) = Q2EF

πh̄2ω2
, (43)

where EF is the Fermi level which can be determined from
the carrier density n via the relation n = E2

F /(πh̄2v2
F ).

In Fig. 2, we show the dispersion relation for an SiO2

substrate with n = 1012 cm−2. The three coupled IPP branches
are drawn with solid lines and labeled I, II, and III, while the
dispersion of the uncoupled modes is drawn in dashed lines in
the figure. The branches labeled “SO1” (61 meV) and “SO2”
(149 meV) have a flat dispersion and are determined from the
equation

ε0 + εox(ω) = 0,

while the branch labeled “Pure plasmon” is determined from
the zeros of the equation

1 − GQ(d,d)e2
(Q,ω), (44)

which gives the dispersion of the pure graphene plasmons
when the frequency dependence of the substrate dielectric
function is neglected and only the effect of the substrate image
charges is taken into account. We observe that in the long
wavelength limit (Q → 0), branches I, II, and III converge
asymptotically to the pure plasmon, SO1, and SO2 branches
respectively. On the other end, as Q → ∞, branches I, II, and
III converge asymptotically to the pure SO1, SO2, and plasmon
branches respectively. At intermediate values of Q, the IPP
branches are a mixture of the pure branches. The coupling
between pure SO phonons and graphene plasmons has often
been ignored in transport studies based on the dispersionless
unscreened, uncoupled SO modes19,20,22–24,30,39 On the other

0 2 4 6 8 10
0

100

200

300

ω
Q

 (
m

eV
)

Q (×108 m−1)

Branch III

Branch II

Branch I

Pure plasmon

SO
1

SO
2

FIG. 2. (Color online) Dispersion relation of coupled interfacial
plasmon-phonon system with n = 1012 cm−2 for the SiO2 substrate.
The three hybrid IPP branches are labeled Branch I, II, and III. The
uncoupled pure SO phonon (1 and 2) and plasmon branches are drawn
with dashed lines. In the limits Q → 0 and Q → ∞, the IPP branches
converge to the pure phonon and plasmon branches. In between, they
are a mix of the pure branches.
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hand, using many-body techniques, Hwang, Sensarma, and
Das Sarma40 studied the remote phonon-plasmon coupling in
supported graphene and were able to reproduce the coupled
plasmon-phonon dispersion observed by Liu and Willis31,32 in
their angle-resolved electron-energy-loss spectroscopy exper-
iments on epitaxial graphene grown on SiC. Similar results
of strongly coupled plasmon-phonon modes were reported by
Koch, Seyller, and Schaefer.34 Fei and coworkers also found
evidence of this plasmon-phonon coupling in the graphene-
SiO2 system in their infrared nanoscopy experiments.33 Given
the increasing experimental support for the hybridization of the
SPPs with the graphene plasmons, it is interesting to investigate
the effect of these coupled modes on carrier transport in
graphene.

2. Electron-phonon coupling

Here, the electron-phonon coupling coefficients M
(l)
Q of the

IPP and the SPP modes are compared at n = 1012 cm−2 for the
SiO2 substrate. Recall that the IPP modes are formed through
the hybridization of the SPP and graphene plasmon modes, and
their coupling to the graphene electrons are different to that
of the SPP modes. It is sometimes assumed19,22 that the SPP
modes are screened by the plasmons, and the IPP-electron
coupling is weaker than the SPP-electron coupling. As we
have discussed above, this assumption does not hold when
the frequency of the IPP mode is higher than the plasmon
frequency. We plot the M

(l)
Q (/A)1/2, where A is the area of

the primitive unit cell in SLG, for the SPP and IPP modes in
Fig. 3(a) . We first notice that at small Q, the coupling terms for
branches I and II are actually larger than those for SO1 and SO2.
This is because at long wavelengths, ωp < ω

(l)
Q for l = I and

II, resulting in antiscreening, which enhances the IPP electric
field. However, at longer wavelengths in the limit Q → 0 [see
Fig. 3(b)], the strength of the antiscreening diminishes, and
the electron-IPP coupling coefficients converge to those of the
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FIG. 3. (Color online) (a) Plot of M
(l)
Q (/A)1/2 for n = 1012 cm−2

in SiO2-supported graphene. The IPP branches are labeled Branch I,
II, and III, and the SPP branches are labeled SO1 and SO2. The cutoff
wave vector Qc is drawn in gray dashed lines. When Q < Qc, we use
the part of the IPP branches shaded in gray, and when Q � Qc, we use
the part of the SPP branches shaded in gray. (b) Plot of M

(l)
Q (/A)1/2

at small Q for l = II, III, SO1, and SO2. Note that limQ→0 M
(II,III)
Q =

M
(SO1,SO2)
Q as expected, since limQ→0 ω

(II,III)
Q = ω

(SO1,SO2)
Q .

electron-SPP coupling coefficients, i.e.,

lim
Q→0

(
M

(II)
Q

M
(III)
Q

)
=
(

M
(SO1)
Q

M
(SO2)
Q

)
.

The electron-IPP coupling coefficients M
(II)
Q and M

(III)
Q scale as

∼1/Q1/2. M (I)
Q scales as ∼1/Q1/4 because M

(I)
Q ∝ [ω(I)

Q /Q]1/2

and limQ→0 ω
(I)
Q ∼ Q1/2 since branch I is plasmonlike. In the

short wavelength limit (Q → ∞), the phononlike branch I and
II electron-IPP coupling coefficients appear to scale as ∼1/Q2.
This can be interpreted as a signature of dynamic screening.
M

(III)
Q scales as ∼1/Q1/4 since branch III is plasmonlike in

the Q → ∞ limit. Also, M
(III)
Q is actually much larger than

M
(SO1)
Q and M

(SO2)
Q over the entire range of Q values. When

we take Landau damping into account, we use the coupling
coefficients [shaded in Fig. 3(a)] of branches I, II, and II for
Q < Qc and of SO1 and SO2 for Q � Qc.

To understand the relationship between the coupling
strength and the phonon content of the IPP modes, we take
the expression for the polarizability in Eq. (43), and plot the
phonon and plasmon contents [see Eqs. (22) and (25)] of the
IPP branches in Figs. 3(a)–3(c). We also plot the dimensionless
Q-dependent quantity

�(l)(Q) = M
(l)
Q

[
e2h̄ω

(l)
Q

2Qε0

]−1/2

, (45)

which serves as a measure of the dipole coupling strength of the
corresponding ω

(l)
Q mode, for l = I, II, and III in Figs. 3(d)–3(f),

respectively.
Figure 4(a) shows the change in the TO1 phonon content

[�(TO1)] of the branch I modes as Q increases from 0 to 2QF
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FIG. 4. (Color online) We plot �(TO1)[ω(l)
Q ], �(TO2)[ω(l)

Q ] and

�(g)[ω(l)
Q ], which we label as “TO1” (dotted line), “TO2” (solid line),

and “Plas” (dash-dot line), for l = (a) IPP1, (b) IPP2, and (c) IPP3.
The corresponding dimensionless dipole coupling strength �(l)(Q)
are drawn in dash-dot lines for l = (d) IPP1, (e) IPP2 and (f) IPP3.
For comparison, �(SO1)(Q) and �(SO2)(Q) are also drawn in solid and
dotted lines, respectively, in each of the subdiagrams (d) to (f).
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where QF = EF /(2h̄vF ). At small Q, the branch I modes are
plasmonlike. Likewise, in Fig. 2, the branch I dispersion is
close to that of the pure graphene plasmons. Since the branch
I modes are plasmonlike, the corresponding �(I)(Q) values
in Fig. 4(d) are also larger than �(SO1)(Q) and �(SO2)(Q).
This is because the plasmon part of the branch I modes is
antiscreened. As Q increases, the branch I dispersion moves
closer to the SO1 branch, and this is reflected in the increase in
the TO1 phonon content in Fig. 4(a). The modes become more
TO1 phononlike. Therefore the corresponding �(I)(Q) values
in Fig. 4(d) undergo a reduction and are smaller than those of
the SO1 and SO2 branches because of increased screening.

A similar trend can be seen in Fig. 4(b). Branch II is
TO1 phononlike initially and becomes more plasmonlike, and
finally TO2 phononlike as Q increases. In Fig. 2, the branch II
dispersion is initially close to the SO1 phonon branch. As Q

increases, it approaches the plasmon branch and also becomes
more plasmonlike. In Fig. 4(e), the associated �(II)(Q) values
also undergo an increase initially. Then, as it converges to
the SO2 phonon branch, it becomes more TO2 phononlike,
and the �(II)(Q) values then start to fall below �(SO1)(Q)
and �(SO2)(Q) because of screening. A similar analysis can
be performed for branch III. The reason for the enhanced
coupling strength of the branch III modes is clear: being
more plasmonlike as Q → ∞, the modes are weakly screened.
Hence, in Fig. 4(f), �(III)(Q) is always greater than �(SO1)(Q)
and �(SO2)(Q).

B. Substrate-limited mobility

The momentum relaxation rate for an electron in band s

with wave vector K can be written as

�RP(s,K) = 2π

h̄

∑
l

∑
s ′

∑
Q

∣∣M (l)
Q αsK+Q,s ′K

∣∣2[1 − ss ′ cos(θK+Q − θK)]
({

1 + NB

[
ω

(l)
Q

]}
[1 − f (Es ′K+Q)]

× δ
(
EsK − Es ′K+Q − h̄ω

(l)
Q

)+ NB

[
ω

(l)
Q

]
[1 − f (Es ′K+Q)]δ

[
EsK − Es ′K+Q + h̄ω

(l)
Q

])
, (46)

where NB(ω) = (eh̄ω/kBT − 1)−1, f (E) = [e(E−EF )/kBT +
1]−1, and EsK = sh̄|K|. In assuming the latter expression,
we use the Dirac-conical approximation. Equation (46) au-
tomatically includes the Fermi-Dirac distribution of the final
states and remains applicable when the doping level is high.
The individual scattering rates for the screened (I, II, and
III) and unscreened (SO1 and SO2) branches at the carrier
concentration of n = 1012 cm−2 in SiO2 and HfO2 are plotted
in Fig. 5. Landau damping is taken into account by setting
the coupling coefficient of the IPP (SPP) modes to zero
when Q < Qc (Q � Qc). We observe that at low energies,
the IPP scattering rates are much higher than the SPP ones.
At higher energies, the SPP scattering rates increase rapidly.
The dominant scattering mechanism around the Fermi level
appears to be due to the plasmonlike branch III in SiO2 and
HfO2. In addition, at the Fermi level in HfO2, the SPP branches
have scattering rates comparable to those of branch III. This
explains why the low density mobility of HfO2 is less than that
of SiO2.

The expression for the IPP/SPP-limited part of the electrical
conductivity is

σRP = gsgve
2

4πh̄2kBT

∫ ∞

0
f (E − EF )

× [1 − f (E − EF )]�tr(E)−1EdE , (47)

where gs = 2 and gv = 2 are the spin and valley degeneracies,
respectively. Only the contribution from the conduction band
is included in Eq. (47). We use Eqs. (46) and (47) to compute
the IPP or SPP-limited electrical conductivity by setting

�tr(E) = �RP(s,K) . (48)

In making this approximation, we ignore the other effects (rip-
ples, charged impurities, acoustic phonons, optical phonons,

etc.). The scattering rates from the acoustic and optical
phonons tend to be significantly smaller and are not the limiting
factor in electrical transport in supported graphene.41 Impurity
scattering tends to be the dominant limiting factor, but its
effects can be reduced by varying fabrication conditions. Thus
the conductivity using Eq. (48) gives us its upper bound. We
calculate the remote phonon-limited mobility as

μRP = σRP

en
, (49)

where n = gsgv

2πh̄2v2
F

∫∞
0 f (E − EF )EdE is the carrier den-

sity. For n = 1012 cm−2 in SiO2, we obtain μRP ≈
40 000 cm2V−1s−1. This is more than the corresponding values
reported in the literature (∼1000–20 000 cm2V−1s−1)1,42

although we have to bear in mind that it is an upper limit.
Nonetheless, it suggests that IPP and SPP scattering imposes
a bound on the electron mobility.

C. Mobility results

Although suspended graphene has an intrinsic mobility
limit of 200 000 cm2V−1s−1 at room temperature,4 typical
numbers for graphene on SiO2 tend to fall in the range
1000–20 000 cm2V−1s−1.15 One significant reason for this
drastic reduction in mobility is believed to be the presence
of charged impurities in the substrate which causes long-range
Coulombic scattering25,26,43 and much effort has been directed
towards the amelioration of the effects of these charged
impurities. For example, it has been suggested that modifying
the dielectric environment of the graphene, either through
immersion in a high-κ liquid or an overlayer of high-κ
dielectric material, can lead to a weakening of the Coulombic
interaction and an increase in electron mobility.43 On the
other hand, actual experimental evidence in favor of this
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FIG. 5. (Color online) Plot of scattering rates at n = 1012 cm−2 for different substrates: (a) SiO2 and (b) HfO2. In SiO2, the plasmonlike
branch III dominates the scattering rate at E = EF . In HfO2, branches III, SO1 and SO2 dominate the scattering rate at E = EF = 117 meV.
The SPP branches (SO1 and SO2) do not contribute much to the Fermi-level scattering rate in SiO2 because of their higher frequencies and
smaller occupation factors.

theory is ambiguous. Electrical conductivity data from Jang
and coworkers43 as well as Ponomarenko and coworkers44

indicate a smaller-than-expected increase in mobility when a
liquid overlayer is used. This suggests that mechanisms other
than long and short-range impurity scattering are at play here.
Here, we turn to the problem of scattering by IPP modes.

1. Comparing different substrates

Having set up the theoretical framework in the earlier
sections, we now apply it to the study of the remote phonon-
limited mobility of four commonly-used substrates: SiO2,
HfO2, h-BN, and Al2O3. Their parameters are given in
Table I. Silicon dioxide is the most common substrate material
while HfO2 and Al2O3 are high-κ dielectrics commonly used
as top gate oxides.39,45 Hexagonal boron nitride shows much
promise as both a substrate and a top gate dielectric material.14

The study of the remote phonon-limited mobility in these
substrates allows us to understand how electronic transport
in supported graphene depends on the frequencies and relative
permittivities of the substrate phonons.

From Eq. (47) with the effects of Landau damping taken
into account, we compute the remote phonon-limited mobil-
ity numerically, using the well-known Gilat-Raubenheimer
method46 to discretize the sum in Eq. (47). We plot μRP

as a function of carrier density (n = 0.3 × 1012 to 5.2 ×
1012 cm−2) at 300 K in Fig. 6. Note that the mobility values

TABLE I. Parameters [see Eq. (1)] used in computing dispersion
relation and scattering rates for SiO2, h-BN, HfO2, and Al2O3. They
are taken from Refs. 9 and 30.

SiO2 h-BN HfO2 Al2O3

ε0
ox (ε0) 3.90 5.09 22.00 12.53

εi
ox (ε0) 3.05 4.57 6.58 7.27

ε∞
ox (ε0) 2.50 4.10 5.03 3.20

ωTO1 (meV) 55.60 97.40 12.40 48.18
ωTO2 (meV) 138.10 187.90 48.35 71.41

of the high-κ substrates (HfO2 and Al2O3) are substantially
lower compared to SiO2 and h-BN in the carrier density
range n < 2.0 × 1012 cm−2. Similar results have been found
in MOS systems.9 Hexagonal BN has the highest mobility at
low carrier densities because of its high phonon frequencies,
which corresponds to low Bose-Einstein occupancy, as well as
its weak dipole coupling to graphene. In general, μRP for all
four substrates increases with n because the dynamic screening
effect becomes stronger at higher carrier densities. At low
carrier densities, the mobility is low for all the substrates
because there is a large proportion of plasmons modes whose
frequencies are lower than the SPP mode frequencies. Thus,
their coupling to the SPP modes results in the formation
of antiscreened IPP modes that couple more strongly to
the carriers, a phenomenon that has been studied for polar
semiconductors.29 However, as n increases, the mobility for
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FIG. 6. (Color online) Calculated conductivity remote phonon-
limited mobility for different values of carrier density and different
substrates (SiO2, HfO2, h-BN, and Al2O3) at room temperature
(300 K). The IPP-limited mobility values are plotted using solid
lines with unfilled symbols while the SPP-limited mobility values are
plotted using dotted lines with solid symbols.
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all four substrates rises because the plasmon frequency scales
as ωp ∝ n1/4, resulting in higher-frequency plasmon modes.
Thus, the plasmon-phonon coupling forms screened IPP
modes that are weakly coupled to the carriers. Furthermore,
at higher carrier densities, Landau damping becomes less
important as a result of the increasing magnitude of the
plasmon wave vector Qc. Contrary to expectation, we find
that the mobility for HfO2 exceeds those of other substrates at
larger densities (n = 5 × 1012 cm−2). At n = 5 × 1012 cm−2,
HfO2 has the highest remote-phonon mobility followed by
h-BN, SiO2, and Al2O3. This is because the proportion of
screened IPP modes increases with increasing carrier density.
Given the small values of ωTO1 and ωTO2 for HfO2, its
coupling coefficients are smaller as a result of stronger
dynamic screening. This weaker coupling compensates in
part the higher occupation factors. In contrast, the larger
values of ωTO1 and ωTO2 for h-BN imply that screening does
not play a significant role at low carrier densities. Hence,
its coupling to the graphene carriers does not diminish as
rapidly as carrier density increases. The computed μRP values
for HfO2 and h-BN highlight the role of low-frequency
excitations in carrier scattering. The low-frequency modes
are highly occupied at room temperature and induce carrier
significant scattering at low n. At higher n when dynamic
screening becomes important, the low-frequency modes are
more strongly screened and their coupling to the carriers
becomes diminished more rapidly than that of high-frequency
modes.

2. Dynamic screening effects

To compute the mobility for the case without any screening
or antiscreening effects, the Landau damping cutoff wave
vector is decreased, i.e., Qc → 0, resulting in the replace-
ment of all the IPP modes with SPP modes. We plot the
SPP-limited mobility as a function of carrier density in
Fig. 6 (solid symbols), and compare these results for the
IPP-limited mobility. The SPP-limited mobility for different
substrates spans a range of values varying over nearly two
orders of magnitude. In the absence of dynamic screening
or antiscreening, the SPP-limited mobility for HfO2 is only
around 1000 cm2V−1s−1 at n = 1012 cm−2, more than an
order of magnitude smaller than the corresponding IPP-limited
mobility, because of its low phonon frequencies. This result
is also clearly inconsistent with experimental observations,
since significantly higher mobility values have been reported
for HfO2-covered graphene.39,47 The drastic reduction of the
computed mobility suggests that screening is very important
for the determination of scattering rates in a coupled plasmon-
phonon system with low frequency modes. In contrast, h-BN
gives an SPP-limited mobility of ∼110 000 cm2V−1s−1 at
n = 0.3 × 1012 cm−2, which is still close to the IPP-limited
mobility, indicating that its high frequency modes are relatively
unaffected by screening. The maximum SPP-limited mobility
for Al2O3 is around 8400 cm2V−1s−1 at n = 0.3 × 1012 cm−2,
which is much smaller than the 19 000 cm2V−1s−1 extracted
by Jandhyala and coworkers48 who used Al2O3 for their top
gate dielectric. This disagreement reinforces the necessity of
including dynamic screening effects. Furthermore, the carrier
density dependence of SPP-limited mobility is different from

that of IPP-limited mobility. The IPP-limited μRP increases
rapidly with carrier density because dynamic screening be-
comes stronger at higher n, an effect that is not found in
SPP-limited mobility. In contrast, SPP-limited μRP decreases
monotonically with increasing n.

Our results suggest that HfO2 remains a promising candi-
date material for integration with graphene since its high static
permittivity can reduce the effect of charged impurities22 while
its IPP scattering rates are relatively low when the carrier den-
sity is high. Although its surface excitations are low-frequency,
which results in high Bose-Einstein occupation, this is offset
by its relatively strong dynamic screening at higher carrier
densities. Thus IPP scattering does not represent a problem
for its integration with graphene field-effect transistors. As
expected, h-BN is also a good dielectric material since its high
phonon frequencies imply a low Bose-Einstein occupation
factor. Furthermore, its smooth interface results in a smaller
interface charge density and is less likely to induce mobility-
limiting ripples in graphene.

3. Temperature dependence

Remote phonon scattering exhibits a strong temperature
dependence—stronger than for ionized impurity scattering—
because the Bose-Einstein occupation of the remote phonons
decreases with lower temperature. This change in the distribu-
tion of the remote phonons (IPP or SPP) necessarily implies
that the electronic transport character of the SLG must change
with temperature. At lower temperatures, scattering with
the remote phonons decreases, resulting in a higher remote
phonon-limited carrier mobility. The dependence of the change
in mobility with temperature is related to the dispersion of the
remote phonons and their coupling to the graphene electrons.
By measuring the dependence of the mobility or conductivity
with respect to temperature, it is possible to determine the
dominant scattering mechanisms in the supported graphene.
Given that our model of electron-IPP scattering differs from
the more common electron-SPP scattering model, comparing
the temperature dependence of the substrate-limited mobility
can enable us to distinguish between the two models.

The mobility of supported graphene over the temperature
range of 100 to 500 K for the different substrates is computed
at carrier densities of n = 1012 and 1013 cm−2. For the
purpose of comparison, we perform the calculation for the case
with screening (IPP) and without screening (SPP). The results
(1/μRP versus T ) are shown in Figs. 7(a) and 7(b). In
Fig. 7(a), we plot the IPP- and SPP-limited inverse mobility
at n = 1012 cm−2. As expected, the substrate-limited mobility
decreases with rising temperatures for both the screened and
unscreened cases. From the plots, we observe that there
exists an “activation” temperature for each substrate at which
the inverse mobility increases precipitously. For SiO2, that
temperature is around 200 K in the screened case and around
120 K in the unscreened case. This difference is striking and
may be used to distinguish the IPP model from the SPP model
at low carrier densities. In all four substrates, the slope of
1/μRP with respect to T is also steeper in the IPP-limited case
than in the SPP-limited case. In Fig. 7(b), we plot again the IPP-
and SPP-limited inverse mobility but at a much higher carrier
density of n = 1013 cm−2. The IPP-limited 1/μRP is about
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FIG. 7. (Color online) Inverse SPP and IPP-limited mobility
versus temperature at (a) n = 1012 cm−2 and (b) n = 1013 cm−2

for SiO2, HfO2, h-BN, and Al2O3. 1/μRP is strongly temperature
dependent at low carrier densities only.

three orders of magnitude smaller than the SPP-limited 1/μRP

from 100 to 500 K. At high carrier densities, IPP scattering is
insignificant and any changes in total mobility with respect to
temperature cannot be attributed to IPP scattering.

The results in Fig. 7 suggest that if IPP modes are
the surface excitations that limit carrier transport in SiO2-
supported graphene at room temperature, then the mobility
would have a significant increase at around 200 K for
n = 1012 cm−2. However, this IPP temperature dependence
disappears at much higher carrier densities (approximately
n = 1013 cm−2) because the IPP coupling to electrons becomes
so weak that it no longer contributes significantly to carrier
scattering. The results in Fig. 7 also shows that the μRP

increases monotonically with n. This should be contrasted
with the result of Fratini and Guinea19 who found that μRP

decreases as ∼1/
√

n at room temperature. This is because
the coupling coefficient limQ→∞ MQ, which is proportional to
the matrix element, scales as 1/

√
Q in the SPP model with

static screening. In Fig. 3(a), limQ→∞ MQ of branches I and
II scales as Qα , where α ∼ −2. In other words, the coupling
coefficient vanishes more rapidly with Q in the IPP model
than the SPP model. Our μRP results parallel those in Ref. 49
in which the remote phonon-limited mobility increases with

the carrier density in a two-dimensional electron gas system
in the Si inversion layer with high-κ insulators.

This strong density dependence is the result of dielectric
screening and we should emphasize once more the strong
effect of screening in graphene as compared, for example,
to the case of semiconductors. As we have already mentioned,
this is due to the absence of a gap and to the fact that free
carrier have no inertia—they do not have to be accelerated to
reach high velocities—so that they can respond efficiently to
high-frequency perturbations and so the effect of screening
is much stronger. The presence of Kohn anomalies in the
phonon dispersion27,28 and the breakdown of the Born-
Oppenheimer approximation28 are spectacular manifestations
of this fact, as we have mentioned before. For these reasons,
dynamic screening, known to be less effective than static
screening in semiconductors,50 is significantly more effective
in graphene. A simple argument can explain, for example,
the dramatic difference shown in Fig. 6 between the vastly
different values of the screened and unscreened mobility,
3 000 versus 106 cm2V−1s−1, in SiO2-supported graphene
at a sheet density of 5 × 1012 cm−2. The ratio r between
the screened and unscreened values can be estimated from
Ref. 9 as r = (εgr + ε0)(εgr + εox)/[1 + ε0(1 + εox)], where
εgr = 1 + e2GQ(d,d)
(Q,ω) is the dielectric “constant” of
graphene evaluated at the frequency ω of the dominant mode
and at the magnitude Q of the wave vector transfer for those
collisions involving carriers which contribute mostly to the
mobility (that is, those near the Fermi surface). Estimating
Q as the Fermi wave vector QF = EF /(h̄vF ), evaluating the
Fermi energy EF and the polarizability 
(Q,ω) from Eq. (43)
at n = 5 × 1012 cm−2 for the low-frequency “bare” optical
mode SO1, ω = 59 meV, we obtain εgr ≈ 80 and so r ≈ 680.
Thus an unscreened mobility of 3000 cm2V−1s−1 is boosted
by screening to a value of about of 2 × 106 cm2V−1s−1.
The calculated screened value shown in Fig. 6, μRP ≈
106 cm2V−1s−1, is indeed very close to this simple estimate
which ignores the effect of the high-energy mode SO2.

In supported SLG, the carrier mobility is limited by three
scattering mechanisms: long-range charged impurity, short-
range defect, and remote phonon scattering.51 The intrinsic
phonon scattering processes in graphene can be effectively
neglected. Of the three scattering mechanisms, only remote
phonon scattering is strongly temperature dependent. The
IPP model suggests that remote phonon scattering diminishes
with increasing carrier density. Thus the experimental conse-
quence is that the temperature dependence of the mobility in
supported-SLG should weaken at higher carrier densities. On
the other hand, the SPP model predicts that the temperature
dependence of the mobility should increase at higher carrier
densities.19 This difference in the temperature dependence of
the total mobility between the two models should be easily
discriminable in experiments.

4. Disordered graphene

We discuss qualitatively the interfacial plasmon-phonon
phenomenon in disordered graphene. It is well known that
graphene grown by chemical vapor deposition (CVD)52 is gen-
erally polycrystalline and contains a high density of defects.
In supported graphene, charged impurities from the substrate

165422-13



ZHUN-YONG ONG AND MASSIMO V. FISCHETTI PHYSICAL REVIEW B 86, 165422 (2012)

0 1 2 3 4 5
10

3

10
4

10
5

10
6

10
7

Carrier density n (×1012 cm−2)

M
ob

ili
ty

μ R
P
 (

cm
2 V

−
1 s−

1 )

(Mono) (Poly)

SiO
2

HfO
2

h−BN
Al

2
O

3

FIG. 8. (Color online) Remote phonon-limited mobility in per-
fect monocrystalline (clear symbols) and defective polycrystalline
graphene (solid symbols) for SiO2, HfO2, h-BN, and Al2O3. As carrier
density increases, μRP also increases. The use of long-wavelength
SPP modes leads to a significant decrease in μRP in polycrystalline
graphene.

and other defects scatter graphene carriers. These defects can
affect the dynamics of plasmons in graphene, which may in
turn affect the hybridization between the plasmon and the SPP
modes. At short wavelengths, the plasmon lifetime rapidly
decreases as a result of Landau damping which results in the
decay of the plasmons into single-particle excitations. At long
wavelengths, the plasmon lifetime can be affected by defects in
the graphene. As far as we know, there is no theory of graphene
plasmon damping from defects. However, it has been pointed
out that long-wavelength plasmons in polycrystalline metal
undergo anomalously large damping due to scattering with
structural defects.53 If this is also true in polycrystalline or
defective graphene, then it implies that the long-wavelength
surface excitation in supported graphene are SPP, not IPP,
modes.

To model phenomenologically this damping of long-
wavelength plasmon modes in polycrystalline graphene with
defects, we set another cutoff wave vector Qd below which
the surface excitations are SPP and not IPP modes. Qd is
possibly related to the length scale λ of the inhomogeneities
or defects in graphene. As a guess, we choose λ = 6 nm,
which is a typical autocorrelation length of “puddles” in neutral
supported graphene,54 and set Qd = 1/λ. Hence, in our model,
for Q � Qc and Q � Qd , the surface excitations are SPP
modes, while for Qd < Q < Qc, they are IPP modes. We
compute the remote phonon-limited mobility at 300 K and
plot the results in Fig. 8. We find that the long-wavelength
SPP dramatically alters the carrier dependence of μRP in
SiO2, HfO2, and Al2O3. In perfect monocrystalline graphene,
μRP reaches ∼2 × 106 cm2V−1s−1 in HfO2 and SiO2 at
n = 5 × 1012 cm−2. On the other hand, in polycrystalline
graphene with defects, it drops to the range of 104 to
105 cm2V−1s−1. For h-BN, μRP is quite relatively unaffected
by the long-wavelength SPP modes except at low carrier
densities (n < 0.5 × 106 cm−2).

This change in remote phonon-limited mobility highlights
the possible role of defects in the surface excitations of

supported graphene. We emphasize that our treatment is purely
phenomenological and a more rigorous treatment of plasmon
damping is needed in order to obtain a more quantitatively
accurate model. Nevertheless, it highlights the relationship
between dynamic screening and plasmons. In highly defective
graphene, the surface excitations may be unscreened SPPs
rather than IPPs because of plasmon damping. This should
be taken into account when interpreting electronic transport
experimental data of exfoliated and CVD-grown graphene.
Our results also suggest that the h-BN-supported graphene
is significantly less sensitive than HfO2 and SiO2-supported
graphene to the increase in remote phonon scattering induced
by defects in the graphene.

IV. CONCLUSION

We have studied coupled interfacial plasmon-phonon exci-
tations in supported graphene. The coupling between the pure
graphene plasmon and the surface polar phonon modes of the
substrates results in the formation of the IPP modes, and this
coupling is responsible for the screening and antiscreening
of the IPP modes. Accounting for these modes, we calculate
the room temperature scattering rates and substate-limited
mobility for SiO2, HfO2, h-BN, and Al2O3 at different carrier
densities. The results suggest that, despite being a high-κ oxide
with low frequency modes, HfO2 exhibits a substrate-limited
mobility comparable to that of h-BN at high carrier densities.
We attribute this to the dynamic screening of the HfO2

low-frequency modes. The disadvantage of the higher Bose-
Einstein occupation of these low-frequency modes is offset by
the stronger dynamic screening which suppresses the electron-
IPP coupling. Our study also indicates that the contribution to
scattering by high-frequency substrate phonon modes cannot
be neglected because of they are less weakly screened by
the graphene plasmons. The temperature dependence of the
remote phonon-limited mobility is also calculated within out
theory. Its change with temperature is different at low and high
carrier densities. We find that in the IPP model, the temperature
dependence of the mobility diminishes with increasing carrier
density only, in direct contrast to the predictions of the more
commonly used SPP models. The implications of the damping
of long-wavelength plasmons have also been studied. We
find that the it leads to a substantial reduction in the remote
phonon-limited mobility in SiO2, HfO2, and Al2O3. Our results
also suggest that the h-BN-supported graphene is less sensitive
than HfO2 and SiO2-supported graphene to the quality of the
graphene.
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