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Directed-polymer systems explored via their quantum analogs: Topological constraints
and their consequences
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The equilibrium statistical mechanics of classical directed polymers in two dimensions is well known to be
equivalent to the imaginary-time quantum dynamics of a 1 + 1-dimensional many-particle system, with polymer
configurations corresponding to particle world-lines. This equivalence motivates the application of techniques
originally designed for one-dimensional many-particle quantum systems to the exploration of many-polymer
systems, as first recognized and exploited by de Gennes [J. Chem. Phys. 48, 2257 (1968)]. In this low-dimensional
setting interactions give rise to an emergent polymer fluid, and we examine how topological constraints on this
polymer fluid (e.g., due to uncrossable pins or barriers) and their geometry give rise to strong, entropy-driven
forces. In the limit of large polymer densities, in which a type of mean-field theory is accurate, we find that a
pointlike pin causes a divergent pileup of polymer density on the high-density side of the pin and a zero-density
region (or gap) of finite area on the low-density side. In addition, we find that the force acting on a pin that
is only mildly displaced from its equilibrium position is sub-Hookean, growing less than linearly with the
displacement, and that the gap created by the pin also grows sublinearly with the displacement. By contrast, the
forces acting between multiple pins separated along the direction preferred by the polymers are super-Hookean.
These nonlinear responses result from effective long-ranged interactions between polymer segments, which
emerge via short-ranged interactions between distant segments of long polymer strands. In the present paper,
we focus on the case of an infinitely strong, repulsive contact interaction, which ensures that the polymers
completely avoid one another. In a companion paper, we consider the effects of a wider set of interpolymer
interactions.
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I. INTRODUCTION

The ensemble of configurations of a set of directed,
one-dimensional objects embedded in (D + 1)-dimensional
space can be envisioned as the ensemble of world-lines of
a corresponding set of quantum-mechanical point particles
evolving in time in D spatial dimensions. In particular, a
standard mapping relates the classical canonical-ensemble
equilibrium statistical mechanics of the set of directed one-
dimensional objects to the imaginary-time evolution of the
state of the corresponding set of point particles. This mapping
was introduced and exploited by de Gennes1 in order to shed
light on the equilibrium structure of directed fibrous polymers
that are confined to two dimensions, thus providing a scheme
for accounting, nonperturbatively, for strong local polymer-
polymer interactions that serve to prohibit configurations in
which polymers cross. For de Gennes, this prohibition is
accomplished by asserting that the quantum particles are
identical fermions (in his case free, noninteracting, and subject
to periodic spatial boundary conditions), and are therefore
subject to the Pauli exclusion principle.

In a parallel development, a suite of powerful techniques—
specifically, Bethe’s ansatz, bosonization, and quantum
hydrodynamics—have been developed to address the quantum
mechanics of one-dimensional systems of many interacting
particles or spins. The aim of the present paper and a
companion2 one is to employ these advances in quantum many-
body (QMB) physics, together with the de Gennes analogy
between the quantum-fluctuating, many-particle system and
the classical, thermally fluctuating directed-polymer system,
to uncover new information about the equilibrium structure of

systems comprising polymers that are either rigorously pro-
hibited from passing through one another (i.e., noncrossing)
or subject to other interactions, such as energetic penalizations
of crossings, or systems that allow for the presence of distinct
species of polymers. In addition, we apply these advances
in technique to determine the equilibrium forces acting on
particles included in interacting polymer systems that serve
to exclude the polymers from certain spatial regions, as well
as the effective forces that act between such particles as a
result of their exclusion of polymers. A global theme of
the present work is that, due to the reduced dimensionality
of the polymer system, interactions dramatically influence
the structure and correlations that characterize the polymer
system, and do so both, as we shall see, in topologically—and
also geometrically—rich settings. This is a lesson already well
known in the quantum-particle domain. Although we focus
in this paper on polymer systems, our treatment applies to
other two-dimensional statistical systems involving linelike
degrees of freedom, such as wandering steps edges on crystal
surfaces,3 dynamically growing interfaces in the Kardar-
Parisi-Zhang universality class,4 and vortex lines in planar
type-II superconductors.5

The present paper is organized as follows. In Sec. II we
introduce the two-dimensional interacting directed polymer
system. We also describe its mapping to a one-dimensional
quantum analog, and address the statistical observables that
may be derived via this mapping. In Sec. III we describe
how to impose and analyze topological constraints on the
polymer system, and we discuss in detail the resulting effects
on the free energy and structure of the polymer system. In
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FIG. 1. The paths {xn(τ )} describe a possible configuration of the
directed polymer system. Thermal fluctuations permit the system to
adopt energetically disfavored configurations. When polymers appear
to intersect in the (x,τ ) plane, in reality one crosses over the other by
exploiting the presence of a third dimension.

Sec. IV we discuss the longitudinal impact of the topological
constraints on the polymer system. In Sec. V we summarize our
results and provide some conclusions. In a companion paper,2

we consider more general classes of polymer interactions.
For such systems, we analyze the resulting interpolymer
correlations as well as the response of the polymer system
to impurities such as free or fixed lines or particles, which
are not topological in character. In addition, we discuss the
application of the technique of bosonization, familiar from
quantum many-body physics, as a tool for characterizing the
universal behavior of directed polymer systems.

II. DIRECTED 2D CLASSICAL EQUILIBRIUM POLYMERS
AND EVOLVING 1D QUANTUM PARTICLES

A. Directed 2D classical polymers in thermal equilibrium

We consider a system of N two-dimensional (2D) directed
polymers, indexed by n = 1, . . . ,N , that are noncrossing.6 The
configuration of the nth polymer is described by xn(τ ), where
τ is the coordinate along the directed axis of the system (which
we call the longitudinal direction), and xn gives the location of
the nth polymer in the perpendicular direction (which we call
the lateral direction); see Fig. 1. We take the energy cost of the
deflections of the polymers from the longitudinal direction to
be

A

2

N∑
n=1

∫ L

0
dτ (∂τ xn)2, (2.1)

where L is the extent of system in the longitudinal direc-
tion, and A is the bending energy per unit length, which
penalizes configurations for straying from the preferred (i.e.,
longitudinal) direction. The polymers must be stiff in a way
which we will define later to permit us to neglect higher-
order terms in this expression. In addition to the bending
energy, we include an interaction V between the polymers,
which we take to be translationally and parity invariant, and
sufficiently short-ranged that it may be taken to operate only
between monomers (i.e., polymer segments) having common
τ coordinates. In fact, we shall often take the interaction
to be purely local, in which case it would take the form
V (xn(τ ) − xn′ (τ )) = c δ(xn(τ ) − xn′ (τ )), where δ(x) is the
one-dimensional Dirac delta function. Thus, we arrive at the

following energy functional U of a configuration {xn(·)}Nn=1 of
the polymer system:

U [{xn(·)}] = A

2

N∑
n=1

∫ L

0
dτ (∂τ xn(τ ))2

+ 1

L

N∑
n=1

∫ L

0
dτ �(xn(τ ))

+ 1

L

∑
1�n<n′�N

∫ L

0
dτ V (xn(τ ) − xn′(τ )), (2.2)

in which we have also included an external (or one-body)
potential term �. According to this model, in the absence
of polymer-polymer interactions or external potentials the
polymer configurations have a thermal distribution that is
Gaussian, in the sense that increments in their deflections
[i.e., xn(τ + δτ ) − xn(τ )] are independent Gaussian random
variables having mean zero and variance δτkBT /A, where T

is the system temperature and kB is Boltzmann’s constant,
which we generally set to unity via a suitable choice of
units. We note that we shall not be considering the dynamics
of the polymer system, so we do not need to take note of
the kinetic energy of the polymer system. Additionally, we
characterize the system via conditions on the configurations of
the polymers at their ends, via the distributions P i({xn}) and
P f ({xn}), which respectively give the probability densities
for the configurations {xn} of the polymer ends at τ = 0 and
τ = L.

We take the polymer system to be at thermal equilibrium
at inverse temperature β. Thus, we have for the canonical
ensemble partition function7

Z[P f ,P i] =
∫

d
{
Xf

n

}
P f

({
Xf

n

})
d
{
Xi

n

}
P i
({

Xi
n

})
×

∫ {xn(L)=X
f
n }

{xn(0)=Xi
n}

D [{xn(·)}] e−βU [{xn(·)}], (2.3)

which depends functionally on P i and P f . Here, the mea-
sures are defined via d{Xf

n } d{Xi
n} ≡ ∏N

n=1 dX
f
n dXi

n and
D[{xn(·)}] ≡ ∏N

n=1 D[xn(·)]. To complete the definition of this
multiple path integral we also need to impose some form of
lateral boundary conditions on the polymer configurations. We
return to this point in Sec. II D.

As for the thermal expectation value 〈O[{xn(·)}]〉 of a
generic observable (i.e., a functional of the polymer config-
uration) O [{xn(·)}], this is given by

〈O〉 = Z[P f ,P i]−1
∫

d
{
Xf

n

}
P f

({
Xf

n

})
d
{
Xi

n

}
P i
({

Xi
n

})
×

∫ {xn(L)=X
f
n }

{xn(0)=Xi
n}

D[{xn(·)}] e−βU [{xi (·)}] O[{xn(τ )}].

(2.4)

As we have noted above and shall see below, owing to the low
dimensionality of this thermally fluctuating polymer system,
even short-ranged interactions produce qualitative alterations
of the structure and correlations that it exhibits, relative to those
exhibited by its noninteracting counterpart. Moreover, even
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interactions that are weak, microscopically, are fundamentally
nonperturbative, in that they induce correlations that are long-
ranged.

B. Mapping to 1D quantum particles

Let us turn now to the consideration of a one-dimensional
quantum system of N nonrelativistic particles each of mass m

and having coordinates {qn}Nn=1, subject to a one-body interac-
tion �(qn(t)) and to a (translationally and parity invariant) two-
body interaction V (qn − qn′ ). For this system, and introducing
the (unsymmetrized) simultaneous particle-position eigenkets
|{qi

n}), a matrix element of the imaginary-time propagator
({Xf

n }|e−HT /h̄|{Xi
n}) can be expressed as the following Feyn-

man integral over paths {qn(t)} (see, e.g., Ref. 8):({
Xf

n

}|e−HT /h̄|{Xi
n

})
=
∫ {qn(T )=X

f
n }

{qn(0)=Xi
n}

D[{qn(·)}] e−SE [{qn(·)}]/h̄, (2.5)

where the Euclidean action SE is given by

SE =
∫ T

0
dt

{
N∑

n=1

m

2
(∂tqn)2 +

N∑
n=1

�(qn)

+
∑

1�n<n′�N

V (qn(t) − qn′ (t))

}
. (2.6)

The “non-Lagrangian” sign of the interaction term in Eq. (2.6)
and the terminology of the Euclidean action reflect the
fact that we are considering imaginary-time propagation, in
which the paths of the Feynman integral are referred to as
imaginary-time world-lines. As usual, the propagator can be
used to construct the transition amplitude between generic
initial and final quantum states |�i〉 and |�f 〉:

〈�f |e−HT /h̄|�i〉 =
∫

d
{
Xf

n

}
d
{
Xi

n

} 〈�f |{Xf
n

})
× ({

Xf
n

}|e−HT /h̄|{Xi
n

})({
Xi

n

}|�i〉.
(2.7)

In order to relate this quantum-mechanical system to the
classical polymer systems, we make the following identifi-
cations. We match the wave functions with the probability
distributions, i.e., we choose

({Xn}|�i〉 = P i({Xn}), (2.8a)

({Xn}|�f 〉∗ = P f ({Xn}). (2.8b)

Note that the identification is not between classical and
quantal probability distributions but, rather, between classical
probability distributions and quantal wave functions. Thus, to
be appropriate, the wave functions should be restricted to being
real, non-negative, and integrating to unity. The equivalence
between the quantal and classical problems is completed by
adding the following identifications:

T = h̄β, (2.9a)

t = T τ/L, (2.9b)

qn(t) = xn(τ ), (2.9c)

m = h̄2β2A/L. (2.9d)

In order to maintain the analogy to the polymer system, we
refer to the 1D quantum system as having a width rather than a
length, and denote the widths of both systems by w. Then we
have the result that is central to this paper, viz., that the quantal
matrix element of the imaginary-time evolution operator is
equal to the classical partition function of the polymer system:

〈�f |e−HT /h̄|�i〉 = Z[P f ,P i]. (2.10)

In particular, the imaginary-time world-lines of the quantum
particles correspond to the configurations of the directed
polymers, and the quantum fluctuations of the particle system
(the strength of which is governed by h̄) correspond to the
thermal fluctuations of the polymer system (the strength of
which is governed by 1/β). Strictly speaking, the path integral
is defined only up to a constant factor that depends on a
short-distance cutoff. This factor does not affect the physics of
the system at lengthscales above the scale of the cutoff.

In order to apply many of the techniques of QMB physics
it is useful to impose a choice of quantum statistics upon
the initial and final quantum states |�i〉 and |�f 〉. The
condition that the initial and final wave functions ({Xn}|�i〉
and ({Xn}|�f 〉 be non-negative, so that they may match the
polymer end distributions, Eqs. (2.8), precludes the direct
choice of fermionic statistics (although, as we shall see, such
statistics can be applied indirectly, following a Jordan-Wigner–
type transformation). Thus, we choose to consider situations
in which the polymer endpoint distributions P i and P f are
each symmetric functions—respectively under the exchange
of initial endpoints amongst themselves and final endpoints
amongst themselves—from which it follows that the initial and
final quantum end states be symmetric under particle exchange,
and hence that they describe identical bosons.9 The quantum
Hamiltonian that corresponds to the Euclidean action (2.6)
is invariant under particle exchange (i.e., PHP † = H for all
pairwise particle exchange operators P ), and therefore under
the imaginary-time evolution described by e−Hτ/h̄ bosonic
many-body states remain bosonic.

One valuable notion made accessible and sharpened via the
tools of one-dimensional quantum many-body systems (such
as bosonization, quantum hydrodynamics, and Bethe-ansatz-
rooted methods) is that of the emergent directed-polymer
liquid (cf. Kafri et al.5). This state is a classical analog
of the Luttinger-Tomonaga liquid, which can be exhibited
by interacting QMB systems in one dimension, and is
qualitatively distinct from, e.g., the Landau liquid state of
many-fermion systems, i.e., a state that can be exhibited by
such systems in higher dimensions. Thus, we shall see, e.g.,
that the manner in which density correlations decay spatially in
the emergent directed-polymer liquid resembles the space-time
decay of superfluid fluctuation correlations in one-dimensional
interacting QMB systems.

C. Eigenfunction expansion of the imaginary-time propagator

Due to the association of polymer configurations with
particle paths, discussed in the previous subsection, it is the
path-integral (i.e., covariant) formulation of the quantization
of the system that is the one most clearly associated with
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the physical degrees of freedom of the fluctuating polymer
system. However, the quantum mechanics of the same particle
system can also be formulated in terms of the time-dependent
Schrödinger equation (i.e., via canonical quantization). Thus,
it is straightforward to ascertain that the propagator can be
expressed in terms of the expansion({

xf
n

}|e−Ht/h̄|{xi
n

})
=
∑

k

e−Ekt/h̄ ψk

({
xf

n

})
ψ∗

k

({
xi

n

})
(2.11)

over the exact normalized eigenfunctions {ψk} and corre-
sponding energy eigenvalues {Ek}, with many-body quantum
numbers k, of the associated many-body quantum Hamiltonian

H =
N∑

n=1

p2
n

2m
+

N∑
n=1

�(xn(τ )) (2.12)

+
∑

1�n<n′�N

V (xn − xn′ ). (2.13)

An important special case is made evident via this expan-
sion. Suppose one is concerned with a statistical-mechanical
expectation value involving polymer observables all taken
at a single value of the longitudinal coordinate τ and,
moreover, obeying (t,T − t) � h̄/	E, where 	E is the
spacing between the ground many-body state |ψgs〉 of the
QMB system and its first excited state. In this case, it can be
adequate to retain only the ground state in the eigenfunction
expansion, i.e., to take

e−Ht/h̄ =
∑

k

|ψk〉 e−Ekt/h̄ 〈ψk|

≈ |ψgs〉 e−Egs t/h̄ 〈ψgs |, (2.14)

a situation referred to as ground-state dominance. In particular,
within the ground-state dominance approximation and far from
the system ends, the equilibrium expectation value of the
polymer density 〈∑

n

δ(x − xn(τ ))

〉
(2.15)

is given, as a function of lateral position x, by the quantum-
mechanical ground-state expectation value of the density
operator

∑
n δ(x − q̂n), a result that holds regardless of the

longitudinal boundary conditions on the polymer configura-
tions. Thus, properties deep in the longitudinal interior of a
long system (i.e., one for which T � h̄/	E) are associated
with the ground-state properties of the quantum system.

D. Noncrossing polymers

Our focus is on systems comprising strictly noncrossing
polymers. Such systems do not adopt configurations in which
any polymer crosses any other but, beyond this important
element, they are not subject to any polymer-polymer inter-
actions; see Fig. 2. As we shall see in a companion paper,2

QMB physics techniques enable the study of polymer systems
having a wide range of interactions; we shall show there that in
the presence of such interactions many of the results obtained
in the present paper will continue to hold, at least qualitatively.
To enforce noncrossing, the polymers are taken to feature an

FIG. 2. Snapshot of a configuration for the case of noncrossing
polymers. Such polymers are not permitted to cross one another, but
are otherwise noninteracting.

infinitely strong excluded-volume effect, so that the partition
function contains only those paths for which xn(τ ) 	= xn′ (τ )
for all n 	= n′. This restriction can be enforced for the polymer
system via the inclusion of the interaction term

V (xn(τ ) − xn′ (τ )) = c δ(xn(τ ) − xn′ (τ )), (2.16)

with c/LA → ∞. The corresponding quantum system can
therefore be taken to comprise many identical particles,
bosonic in their quantum statistics and subject to an interparti-
cle interaction having the same form, Eq. (2.16). This system
is known as the hard-core (or impenetrable) pointlike boson
model. (A finitely strong interpolymer repulsion corresponds
to a quantum Lieb-Liniger system.10) We mention that,
despite its short range, this interaction is strong, and we
may therefore expect the qualitative behavior of noncrossing
polymer systems to be replicated in systems having more
general interactions.

1. From bosons to fermions

It was demonstrated by Girardeau11 that any system of
interacting, one-dimensional, bosonic particles for which the
wave functions vanish when pairs of particles coincide in space
can be mapped to an equivalent system of fermionic particles,
subject to the same interaction V (xi − xj ) whenever xi 	= xj .
Girardeau’s mapping is particularly useful in the case of
hard-core boson systems, as these can be mapped to systems of
free fermions. Thus, as first noted and exploited by de Gennes,1

the noncrossing condition on polymers can be accounted
for entirely by the quantum statistics of fermions, without
the need to include any interaction term. We mention that
Girardeau’s mapping preserves the modulus of the quantum
wave function in the position basis; however, the forms of
the bosonic and fermionic momentum-space wave functions
are not preserved. This means that the local density of
polymers is correctly described under the mapping but, e.g.,
quantities involving the slopes of polymer configurations—the
analogs of the momenta of the quantum particles—are not. De
Gennes applied this free fermion picture of two-dimensional
noncrossing fibrous polymers to describe the structure of such
systems. In particular, he showed that there is a logarithmic
divergence in the “x-ray form factor” (i.e., the longitudinally-
averaged correlator between lateral Fourier components of the
density fluctuations of the polymer system), at a length scale
associated with the Fermi momentum of the quantum system
(or, equivalently, the mean lateral interpolymer spacing).
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2. Ground state and ground-state dominance

As noted in Sec. II C, the ground state of the quantum
Hamiltonian plays a key role in the behavior of the polymer
system over long distances. In order to make use of this idea, we
now obtain the ground-state wave function for the many-hard-
core boson system, subject to hard-wall boundary conditions,
in a form that is convenient for the subsequent analysis. To do
this, we begin with the ground-state wave function ψ

p
gs({xn}) of

a system of N hard-core bosons on a ring of circumference w,
subject to periodic (rather than hard-wall) boundary conditions
(see, e.g., Ref. 11); this is given by

ψp
gs({xn}) = 2N(N−1)/2

wN/2
√

N !

×
∏

1�n<n′�N

∣∣∣∣ sin
π

w
(xn − xn′ )

∣∣∣∣. (2.17)

Such boundary conditions are appropriate for a system of
polymers that lie on a cylindrical surface and are directed along
the cylinder axis. Our aim, however, is to consider a system of
polymers that are confined to a strip with hard-wall boundary
conditions, and this system corresponds to a quantum system
also subject to hard-wall boundary conditions. To that end, we
give the ground-state wave function of a system of N bosons
subject to vanishing boundary condtions at xn = ±w/2 (see
Appendix B):

ψgs({xn}) = 2N2/2

wN/2
√

N !

(
N∏

n=1

cos
πxn

w

)

×
⎛⎝ ∏

1�n<n′�N

∣∣∣∣ sin
πxn

w
− sin

πxn′

w

∣∣∣∣
⎞⎠ .

(2.18)

The wave function ψgs reflects the interpolymer repulsion.
Although the corresponding polymers are forbidden energet-
ically only from actually intersecting one another, continuity
and thermal fluctuations have the combined effect of “carving
out” a spatial region around the polymers so that the probability
of finding one polymer very near another (compared with the
mean interpolymer spacing w/N) vanishes as the square of the
separation. A similar effect occurs near the hard boundaries,
i.e., at x = ±w/2. The preceding results pertain to infinitely
strong contact interactions. However, as is known from the
work of Lieb and Liniger,10 the physical properties of a system
of bosons subject even to weak contact interactions differ
nonperturbatively from those of a system of free bosons.

Whereas the lateral correlations amongst the polymer
segments depend additionally on the quantum-mechanical
energy eigenfunctions, the thermodynamic properties of the
polymer system are determined solely by the spectrum of
energy eigenvalues. The ground-state energy and energy
spacing to the first excited state of the quantum system are,
respectively, given by

Egs = π2

6

h̄2

mw2
N3 = π2

6

L

w2β2A
N3, (2.19a)

	E = π2 h̄2

mw2
N = π2 L

w2β2A
N (2.19b)

for N � 1. The partition function of a long system is
dominated by the term exp(−EgsT /h̄).

Thus, the free energy density of a long system of noncross-
ing polymers is given, to leading order, by

F
wL

= π2

6

(
N

w

)3 1

β2A
. (2.20)

It is straightforward to show that, in contrast, the free energy
density of a system of noninteracting polymers would be
smaller by a factor of 3/N2. The noncrossing conditions
essentially restricts each polymer to a region of width of order
w/N , leading to a strong reduction in entropy and therefore
increase in free energy. Even a weak interpolymer repulsion
would suffice to generate a free energy proportional to N3

rather than N .
The ground-state energy is proportionate to the mean square

polymer slope 〈(∂τ xn)2〉. This term must be small in order
to justify our expression for the deflection energy which
necessitates

A

T
� N

w
. (2.21)

We conclude this section on ground state dominance by
remarking that the length scale over which the ground-state
dominance approximation holds is τ � L/β	E, or

τ � w2βA

N
. (2.22)

III. TOPOLOGICALLY CONSTRAINED SYSTEMS
OF POLYMERS

A. Effects of a single pin on noncrossing polymers

1. Constraints on the partition function due to a single pin

So far, we have been considering systems of polymers that
are, from the geometrical and topological standpoints, trivial.
We now turn our attention to systems that are subject to a pin;
as we shall see, this renders them nontrivial, topologically.
By a pin we mean a region of the polymer system, sharply
localized near the point (x,τ ) = (xp,τp), at which the one-
body potential experienced by any polymer segment is taken
to be so large and repulsive that the polymers never cross it
during the course of an experiment. Thus, the pin serves as a
topological constraint and, because the polymers are directed,
it partitions the configuration space of the polymer system
into sectors labeled by the number NL of polymers that have
the property that as they pass through the line τ = τp they
obey −w/2 < x(τp) < xp; see Fig. 3. Then, the corresponding
number of polymers that pass the pin on its other side [i.e.,
obey xp < x(τp) < w/2] is given by NR ≡ N − NL. We note
that on the line τ = τp the mean polymer densities to the left
and right of the pin are, respectively, ρL = NL/((w/2) + xp)
and ρR = NR/((w/2) − xp). Evidently, the constraint created
by the pin eliminates polymer configurations from the thermal
ensemble, and thereby reduces the entropy of the system. For
a generically located pin, the only configurations remaining in
the ensemble correspond to large fluctuations of the original
system. The pin therefore raises the free energy of the system
and, as a result, there is generically an equilibrium force on
the pin.
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FIG. 3. A topological obstruction (a pin), located at (x,τ ) =
(xp,τp). Thermal fluctuations cannot carry a polymer across this pin,
so a fixed number of polymers NL pass to one side of the pin, and the
remainder NR ≡ N − NL pass to the other side.

To determine the increase in the free energy due to the
presence of the pin, it is convenient to analyze the partition
function of the polymer system, restricted to having NL

polymers constrained to pass on one side of the pin (as
described more precisely in the previous paragraph), normal-
ized by the unrestricted partition function. This amounts to
computing Eq. (2.4) with the observable O[{xn(·)}] given by
δ(NL,

∑N
n=1 θ (xp − xn(τp)), where δ(N,N ′) is the Kronecker

delta function (i.e., 1 for N = N ′ and 0 for N 	= N ′) and θ (·)
is the usual Heaviside step function, which takes the value 0
and 1, respectively, for negative and positive arguments. We
now set about computing this free energy increase, as well as
the impact of the pin on the spatial variation of the polymer
density.

2. How the constraint is reflected in the quantum propagator

To compute various consequences of the presence of the
pin we employ the mapping from the polymers to quantum-
mechanical particles. This necessitates that we focus on
the propagator, interrupted at imaginary time tp at which
time we require that there be precisely NL particles in the
range −w/2 < x < xp but with their exact locations left

otherwise unspecified, i.e.,∫
C
d{xn} 〈�f |e−H (T −tp)/h̄|{xn}〉〈{xn}|e−Htp/h̄|�i〉. (3.1)

Here, the symbol C indicates the following constraints on the
range of integration:

−w/2 < x1, . . . ,xNL
< xp < xNL+1, . . . ,xN < w/2. (3.2)

In quantum-mechanical language, we are therefore to compute
two factors: the amplitude to have precisely NL particles at
specific positions to the left of the pin (and the complement
of particles at specific positions to the right of the pin) at
imaginary time tp, given that the system was in the state |�i〉
at imaginary time 0; and the amplitude to have the state |�f 〉 at
imaginary time T − tp, given that precisely NL particles were
at specific positions to the left of the pin (and the complement
of particles at specific positions to the right of the pin) at
imaginary time 0.

Next, we invoke ground-state dominance, discussed in
Sec. II C, which is justified by the restriction to values of
the time tp that are far from the initial and final times (i.e.,
0 and T ). Thus, the amplitude of Eq. (3.1), now normalized
so as to yield the quotient of partition functions discussed in
Sec. II, becomes∫

C
d{xn} 〈�gs |{xn}〉 〈{xn}|�gs〉

=
∫
C
d{xn}|〈{xn}|�gs〉|2; (3.3)

the exponential factor exp(−EgsT /h̄) has canceled between
the numerator and denominator, and |�gs〉 is the normalized
ground state of the quantum system, the normalization being
given by 〈�gs |�gs〉 = 1.

3. Transformation to the density profile

To perform the constrained integration we invoke the form
of the ground-state wave function, Eq. (2.18), and thus rewrite
Eq. (3.3) as (choosing now units so that w = π )

∫
C
d{xn} |〈{xn}|�gs〉|2 = 2N2

πNN !

∫
C
d{xn} exp

⎛⎝ N∑
n=1

ln cos2 xn +
∑

1�n<n′�N

ln[(sin xn − sin xn′ )2]

⎞⎠ . (3.4)

This (generically high-dimensional) integral is conveniently analyzed by exchanging the discrete particle coordinates {xn} for
the continuum density function ρ, via

ρ({xn}) = 1

N

N∑
n=1

δ(x − xn), (3.5)

and replacing the multiple integration over polymer coordinates by functional integration over the configurations of the polymer
density,12 via which we obtain

∫
C
d{xn} |〈{xn}|�gs〉|2 = 2N2

πNN !

∫
C̃
Dρ exp

(
N

∫ π/2

−π/2
dx ρ(x) ln cos2 x + N2

2

∫ π/2

−π/2
dx dx ′ρ(x)ρ(x ′) ln[(sin x − sin x ′)2]

)
.

(3.6)
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Here, the symbol C̃ indicates the condition on ρ that
corresponds to the pin constraint C, viz.,∫ xp

−π/2
dx ρ(x) = NL/N, (3.7a)

but also the normalization and positivity conditions, which are
respectively given by∫ π/2

−π/2
dx ρ(x) = 1; (3.7b)

ρ(x) � 0, for − π/2 < x < π/2; (3.7c)

both of which follow from the definition of ρ as a density,
Eq. (3.5). Thus, in Eq. (3.6) we have arrived at a convenient
formulation of the partition function in the presence of the
pin constraint. The convenience results from the replacement
of particle coordinates by the collective density field, which
enables us to employ the techniques of the calculus of varia-
tions, and thus to determine the value of the density that yields
the dominant (in the sense of Laplace’s method) contribution
to the functional integral. A more rigorous transition from
individual polymer coordinates to a density function via the
method of collective coordinates13 would yield an additional
O(N ln N ) term in the exponential in Eq. (3.6). Our current
level of accuracy suffices when all length scales, such as the
displacement of the pin from its equilibrium position, are long
compared to the average interpolymer spacing.

It should be noted that in Eq. (3.6) we have an effective long-
ranged (logarithmic) repulsion between polymer segments,
which replaces the original, local interaction. A polymer
that is laterally separated from other polymers at τ = τp

will nevertheless interact indirectly with them. Because of
the noncrossing condition, any configuration that polymer
assumes will restrict what configurations other polymers
around it may assume. Thus, as we are effectively integrating
out all polymer degrees of freedom that do not lie on the line
τ = τp, we are generating an additional interpolymer repulsion
owing to this entropic effect. We have thus mapped our
two-dimensional system with its short-ranged interactions on
to a one-dimensional system having long-ranged interactions.
Such a description is adequate for addressing large fluctuation
phenomena on the line τ = τp that arise from a pin or other
constraints.

4. Obtaining the density profile

The factors of N in the exponent of Eq. (3.6) suggest that we
may treat this functional integral via the functional version of
Laplace’s method, and therefore via finding the maximum of
the leading term of the exponent. To this end, we approximate
the partition function as

Z ∼ max
C̃

exp

(
−	F [ρ]

T

)
(3.8)

where the free energy functional describing the effect of the pin
	F [ρ] is defined via collecting the leading terms in Eq. (3.6),

	F[ρ] ≡ −N2T ln 2

− N2T

2

∫ π/2

−π/2
dx dx̄ ρ(x)ρ(x̄) ln[(sin x−sin x̄)2].

(3.9)

We note that this expression for the free energy scales with
N as N2. As they do for the overall free energy of the system,
the interpolymer interactions qualitatively change the response
of the polymers to the pin.

Our next task is determine the approximate value of the
mean density profile ρ̄(x) that minimizes the free energy,
subject to the constraints discussed in Sec. III A3. Upon
implementing the constraints (3.7a) and (3.7b) via Lagrange’s
method of undetermined multipliers, we arrive at the following
first-order stationarity condition:∫ π/2

−π/2
dx ρ̄(x) ln | sin x − sin x̄| + λ1 + λ2 θ (xp − x̄) = 0.

(3.10)

It is important to note that this first-order condition is only
required to hold at values of x for which ρ̄(x) is greater than
zero, owing to the positivity condition (3.7c) that ρ is required
to obey. In the absence of the pin constraint, the λ2 term would
be absent, and the condition would be trivially satisfied via a
uniform polymer density profile. This uniform density profile
is also the correct mean density profile in the presence of a
pin for the exceptional case in which the pin demands that the
average polymer densities on the two sides of it be equal to
one another (i.e., for the case in which ρL = ρR = N/w. We
refer to such a constraint as an equilibrium pin. Generically,
however, the pin has a profound effect on the mean density
profile.

To analyze the stationarity condition, Eq. (3.10), it is
convenient to make the following transformations of the
dependent and independent variables:

ρ̄(x) → Q(s) ≡ ρ̄(x)/ cos x, (3.11a)

x → s ≡ sin x, (3.11b)

so that dx = ds/
√

1 − s2, and similarly for x̄. In terms of
these new variables the stationarity condition becomes∫ 1

−1
ds Q(s) ln |s − s̄| + λ1 + λ2 θ (sp − s̄) = 0, (3.12)

where sp ≡ sin xp. This form of the stationarity condition must
be met at values of s for which Q(s) > 0.

If we were to ignore the positivity condition that a
physically acceptable density profile Q must satisfy then it
would be straightforward to solve the integral equation (3.12)
for all s (by following a technique that we shall, in fact,
eventually adopt; see, e.g., Ref. 14). However, the result we
would obtain for Q would be invalid, as it would diverge to
negative infinity near the pin. Thus, we search for a solution
that violates the first-order conditions over one or more
segments of −1 < s < 1; within these segments Q(s) = 0 and
we refer to any such a segment as a gap.

Nonequilibrium pins necessarily cause compression of the
the polymers either on one side of the pin or on the other.
Without loss of generality, we may take the compressed
region to correspond to −1 < s < sp; then the rarified region
corresponds to sp < s < 1. For the profile that minimizes
the free-energy functional (3.9), it is physically reasonable
to assert that any gap would form on the rarified side and,
furthermore, that it would lie directly adjacent to the pin and
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extend over a region that more strongly disfavors the presence
of polymers, as a result of its proximity to the dense region of
polymers that is created by the pin on the other side of the pin.
(These assertions will be verified as we proceed.) Thus, we
look for non-negative profiles for which we require Q(s) = 0
for s lying within the range sp < s < sg . If a gap were to
be present anywhere else, the system free energy could be
lowered by moving polymer density into that gap. Thus, any
solution found that (i) has this gap and (ii) elsewhere satisfies
the constraints on ρ̄(x) is the unique minimizer of our effective
free energy.

As we shall see, the formation of a single gap yields a
suitable profile (i.e., one that satisfies the positivity constraint
automatically). What remains, then, for the case of a single
pin, is to determine the value of the density profile and, in
particular, the width of the gap (sg − sp) that together ensure
that the necessary conditions on the profile are obeyed by it.
Following the approach reviewed in Ref. 14, we have that the
family of solutions to this integral equation is given in terms
of parameters A0 and A1 by

Q(s) =
⎧⎨⎩ (A0+A1s) sgn(s−sg )√

(1−s2)(s−sp)(s−sg )
,

for − 1 < s < sp

or sg < s < 1;
0, for sp < s < sg.

Transforming back to polymer coordinates, using Eq. (3.11),
we thus have ρ̄(x) given by⎧⎨⎩ (A0+A1 sin x) sgn(sin x−sin xg )√

(sin x−sin xp)(sin x−sin xg )
,

for −π/2 < x < xp

or xg < x < π/2;
0, for xp < x < xg.

The next step in determining ρ̄(x) is to adjust A0 and A1 to
ensure that there is no divergence at x = xg; this requires that
A0 + A1 sin xg = 0. Physically, this choice is motivated by the
expectation that the equilibrium density does not diverge on
the rarified side of the pin. Next, we invoke the normalization
condition (3.7b) and thus determine that A1 = 1/π ; and,
finally, we adjust xg to ensure that the pin constraint (3.7a)
is met. Thus, we arrive at the profile that dominates the
constrained partition function:

ρ̄(x) =
⎧⎨⎩ 1

π

√
sin x−sin xg

sin x−sin xp
,

for − π/2 < x < xp

or xg < x < π/2;
0, for xp < x < xg.

Restoring the physical lengths, this becomes

ρ̄(x) =
⎧⎨⎩ 1

w

√
sin(πx/w)−sin(πxg/w)
sin(πx/w)−sin(πxp/w) ,

for − w/2 < x < xp

or xg < x < w/2;
0, for xp < x < xg.

Note the essential features of this solution for the polymer
density along the line τ = τp, as shown in Fig. 4: throughout
the width of the system (i.e., for −w/2 < x < w/2) the density
is non-negative; at the system edges (i.e., x = ±w/2) the
density is finite; at the pin (i.e., for x = xp) the density has a
square-root divergence approaching xp from the compressed
side and a square root vanishing approaching xg from the
rarified side; and within the segment xp < x < xg the density
is zero. It is striking that merely as a result of interpolymer
interactions that are local in the two-dimensional plane the
topological restriction presented by the pin causes the opening

w 2 w 4 0 w 4 w 2

Lateral
position

0.2

0.4

0.6

0.8

1.0
Dimensionless polymer density

FIG. 4. Transverse variation of the equilibrium directed polymer
density along the line τ = τp for a system subject to a pinning
constraint located at (x,τ ) = (−w/4,τp), the location of which is
marked by a black dot. The physical polymer density is the plotted
quantity scaled by Nπ/w. Within the present approximation scheme,
a finite gap (i.e., an area of zero polymer density) extends from the
pin. The dashed line represents the equilibrium polymer density in
the absence of a pin.

up of a finite gap in the polymer density and, in particular,
that the reach of its impact extends over many times the
intrinsic interpolymer separation, at least at the level of the
present mean-field type of approximation. The mechanism
responsible for this is that—over a longitudinal distance that
is nonzero—the polymers are energetically disfavored from
entirely filling in the gap by the cost in bending energy
they would have to incur to depart from their long-distance
equilibrium positions. Note that while the mean density ρ̄(x),
as calculated within our approach, is zero within the gap,
fluctuations can only increase it, leading to there being a small
positive polymer density within this region.15

A closed-form expression for the gap edge xg associated
with a partitioning may be found in terms of elliptic integrals,
as in Eq. (B1a). For a pin near its equilibrium position xe, the
pin displacement xp − xe ≡ δ and the gap xp − xg ≡ γ are
both small. Then the gap size is related to pin displacement to
leading order by

δ ≈ γ

2
ln

(
2w

π |γ | cos2 πxp

w

)
+ O(γ ). (3.13)

Thus for a pin near its equilibrium position the gap size is
sublinear in the pin displacement.

In Fig. 5 we show the gap size more generally as a function
of the pin position and the parameter ν ≡ (ρL − ρR)/(ρL +
ρR), which we introduce to characterize the imbalance between
the densities on either side of the pin. When all the polymers
are on one side of the pin (in which case ν = ±1) then the
gap size is simply the pin displacement. More generally, the
polymers on the rarefied side expand towards the pin so that
the gap is smaller than the pin displacement.
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FIG. 5. (Color online) Dependence of the width of the gap that
opens in the polymer density adjacent to a pin on the pin location and
polymer density imbalance. Note that the gap width increases from
zero as the pin position is varied, parametrically, from its equilibrium
position. At the equilibrium position (ρL = ρR), the gap vanishes and
the polymer density is spatially uniform, as it is for a system in the
absence of a pin.

B. Force on a pin

1. Calculation of the force

Having determined the mean density profile on the lateral
line through the pin, viz. ρ(x,τ )|τ=τp

, we now return to
our formulation of the dominant contribution to the parti-
tion function, and hence the free energy, to determine the
increase in the free energy due to the pin, viz. 	F . To
do this, we begin with the free energy functional Eq. (3.6)
and seek to compute its value at the mean density profile.
To simplify this computation, we employ the first-order
stationarity condition (3.10) to eliminate the combination
− ∫ w/2

−w/2 dx ′ ρ(x ′) ln |sin(πx/w) − sin(πx ′/w)| in favor of
λ1 + λ2 θ (xp − x). We also use the stationarity condition
evaluated at x = ±w/2 to obtain the Lagrange multipliers
λ1 and λ2 in terms of the (known) mean profile. Then, in the
resulting expression for 	F , we use the normalization of ρ,
Eq. (3.7b), and the constraint on it that the pin introduces,
Eq. (3.7a), and thus arrive at the result

	F(xp,NL,N,T ,w)

= −N2T

∫ w/2

−w/2
dx ρ̄(x,xp,xg)

× ((NL/N) ln 2(1 + sin(πx/w))

+ (NR/N ) ln 2(1 − sin(πx/w))). (3.14)

We remind the reader that the gap edge location xg is not
an independent variable but is determined in terms of the
independent variables, via the pin constraint, Eq. (3.7a).

As a special case, we first consider the situation in which
all polymers lie to one side of the pin, i.e. NL = N , so that the
pin can in effect be taken to be a septum emerging normally
from one wall of the system. In this case, the formula for the
free energy increase, Eq. (3.14), simplifies to the explicit form

	F = −N2T

w

∫ xp

−w/2
dx

√
sin(πx/w) − 1

sin(πx/w) − sin(πxp/w)

× ln 2(1 + sin(πx/w))

= −N2T ln([1 + sin(πxp/w)]/2). (3.15)

Remaining with the case NL = N , we note that for mild
compressions [i.e, those obeying (w/2) − xp � w] the force
exerted on the pin is Hookean in nature:

	F = π2

4
N2T

(
(w/2) − xp

w

)2

, (3.16)

as established by making a Taylor expansion of Eq. (3.15)
about x = w/2. On the other hand, for strong compressions
[for which (w/2) + xp � w], so that the polymers are forced
through an opening the width of which is only a small fraction
of the full width of the system, we have the form

	F = 2N2T ln

[
2

π

(
w

(w/2) + xp

)]
. (3.17)

Residing, as it does, beyond the linear-response regime, it is
not surprising that this form is non-Hookean. Indeed, a similar
term, with N2

L replacing N2, dominates the free energy for
highly compressed systems with polymers on both sides of the
pin.

In the more general case, in which NR > 0 polymers pass to
the right of the pin, the force on the pin obeys (see Appendix B)

− dF
dxp

= −πN2T

w

(
sin(πxp/w) − sin(πxg/w)

cos(πxp/w)

)
. (3.18)

For a pin near its equilibrium position this force is simply
proportionate to the gap size xp − xg , and the above expression
may be integrated to obtain the leading term in the free energy,

F ≈ N2T

4

(
πγ

w

)2

ln

[
2w

π |γ | cos2 πxp

w

]
. (3.19)

Note that, although the free energy of the pin near its
equilibrium position grows faster than quadratically in the
gap size γ , it is sub-Hookean in (i.e., grows slower than
quadratically with) the pin displacement xp − xe. In contrast,
in the limit in which the pin position approaches the boundary
of the system and highly compresses the polymers, the
free energy diverges logarithmically. Fig. 6 shows the free
energy as a function of pin position for polymer partitionings
corresponding to various equilibrium positions of the pin.

C. Effects of a barrier on noncrossing polymers

The approach we have developed so far addresses the case
of a topological constraint created by an infinitesimally wide
pin. We now generalize the approach to allow consideration of
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FIG. 6. (Color online) Increase in free energy as a function of pin
position, for various values of the number of directed polymers NL

passing to one side of the pin. The physical free energy is the plotted
quantity scaled by N2T . The free energy cost due to the pin is less
than harmonic for a generic pin that is near its equilibrium position,
and it diverges logarithmically as the pin nears an edge of the system.
The curves plotted here are for pins having equilibrium (and free-
energy-minimizing) positions −0.4w, −0.3w, −0.2w, . . . , 0.4w.

the case in which the constraint is a barrier of finite width, so
that polymers are prohibited from passing through an extended
line segment (x,τ )|τ=τp

(with −w/2 � xL
p < x < xR

p � w/2),
as shown in Fig. 7. We note that the effect of single barrier is,
from the standpoint of directed-polymer statistical mechanics,
entirely equivalent to the effect of a pair of pins, provided that
polymers are forbidden from passing between the pins.

To analyze the situation of a barrier and, in particular, to
compute the change in free energy arising from the presence of
this barrier, we return to the task of minimizing the free energy
(3.9), but we replace the pin constraints (3.7a) and (3.7b), by
the following ones, appropriate for a barrier in which precisely
NL polymers pass to the left of the barrier and NR pass to its
right: ∫ xL

p

−π/2
dx ρ(x) = NL/N, (3.20a)∫ π/2

xR
p

dx ρ(x) = NR/N. (3.20b)

These constraints along with normalization and positivity

imply the barrier condition
∫ xL

p

xR
p

dx ρ(x) = 0.

FIG. 7. A barrier (i.e., a laterally oriented topological obstruction
of nonzero width) that constrains the number of directed polymers
that pass on either side. By using the techniques developed in the
present paper one can readily analyze the effects of such barriers.

Physically, it is evident that there are two distinct situations.
Consider a barrier of given width, and with a partitioning
specified by NL and NR . Relative to the situation without the
barrier, the polymers are compressed on at least one side of the
barrier, and possibly both. Let us focus on a compressed side,
at which the polymer density diverges, and imagine shrinking
the barrier into a pin located at xL

P . On the other side of the
pin, there would now be a gap in the polymer density, the
width of which is determined, as before, by the pin constraints.
Now, imagine widening the pin into a barrier. As long as the
barrier width does not exceed the gap width, the polymer
density profile would not change, remaining at the density
profile associated with a single pin at xL

P . In effect, the barrier
resides in the gap created by the pin, so the fact that the barrier
width is finite has no impact.

The second situation follows when the barrier width does
exceed the width of the gap created by the pin. Now, both
ends of the barrier are in contact with polymers. Repeating the
integral-equation analysis of Sec. III A4, we find the resulting
density profile (choosing units as before so that w = π ) to be
given by

ρ̄(x) =
⎧⎨⎩

(A0+A1 sin x) sgn(sin x−sin xR
p )√

(sin x−sin xL
p )(sin x−sin xR

p )
,

for −π/2<x <xL
p

or xR
p < x < π/2;

0, for xL
p < x < xR

p .

The two constants are now set by the numbers of polymers
passing on either side of the barrier. The area of the “gap” is
now precisely the area excluded by the barrier, and the polymer
density diverges on either side of it, as shown in Fig. 8.

Although, in general, the effect of the barrier on the free
energy is more complicated than the effect of a single pin,
there is one case that may be addressed analytically. Consider
an extended barrier of width b � w, the mid-point of which
would be an equilibrium pin if b were set to 0. In this case,
the equilibrium polymer density on either side of the barrier
resembles the polymer density around a single pin that has
been displaced a distance b/2 from an equilibrium position

w 2 w 4 0 w 4 w 2

Lateral
position

0.5

1.0

1.5

2.0
Dimensionless polymer density

FIG. 8. Equilibrium directed-polymer density along the line
containing a barrier. The physical polymer density is the plotted
quantity scaled by Nπ/w. The spatial extent of the barrier is indicated
by the thick line. Note that for the chosen value of the polymer
partitioning, the polymer density diverges on both sides of the barrier.
The dashed line represents the density of the polymer system in the
absence of the barrier.
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x = w/2. The free energy cost of such a small barrier is then
given by

	F = π2

8
T

(
N

w

)2

b2. (3.21)

D. Effects of multiple pins and/or barriers
on noncrossing polymers

We now have all the tools we need to address multiple pins
and even multiple finitely-wide barriers, as long as we continue
to restrict these obstacles to lying on a common line τ = τp.
Consider, then, M pins at the ordered locations −(w/2) <

x1 < x2 < · · · < xM < (w/2), such that N� polymers are
constrained to pass between pin � (located at x�) and the
nearest pin (or wall) to its left (i.e., at smaller x). N1 and
NM+1 respectively denote the number of polymers passing to
the left of the leftmost pin and the right of the rightmost pin.
(We remind the reader that any barrier of finite width may be
treated as an adjacent pair of pins with no polymers passing
between them.) For such situations, the cost in free energy
is determined, as usual, by maximizing the logarithm of the
appropriate partition functionZ , given by (choosing here units
so that w = π )

lnZ ∼
∫
C
dx

∫
C
dx̄ ρ(x) ρ(x̄) ln[(sin x − sin x̄)2], (3.22)

over the density profile ρ(·), subject to the constraints imposed
by the pins and/or barriers. The symbol C now indicates the
following collection of constraints for all �:∫

C�

dx ρ(x) = N�/N, (3.23)

ρ(x) � 0, for −(π/2) < x < (π/2), (3.24)

where C� indicates that the integration range runs to the �th
obstacle from the obstacle or wall that precedes it (or, in the
rightmost case, from the rightmost obstacle to the right wall).
The barrier constraints are implemented via a collection of La-
grange multiplier terms, which augment lnZ and are given by

M+1∑
�=1

λ�

{∫
C�

dx ρ(x) − N�

N

}
. (3.25)

As with the cases already treated in Sec. III A4, functional
differentiation—of the free energy functional augmented by
the Lagrange multiplier terms—yields an integral equation
that is solvable for a non-negative, and therefore physically
acceptable, ρ(·), provided we (i) allow for the possibility of
gaps in the polymer density profile, and (ii) determine their
necessity and location by implementing the constraints on the
numbers of polymers passing between the various obstacles.
In general, some pins will lie within the interior of gaps; other
pins will have a gap form on one side.

For cases involving more than one or two pins, the process
of determining the gap structure that permits all constraints
to be satisfied becomes quite tedious, but it should always
yield a unique result for the density profile that minimizes the
free energy. Moreover, denoting by {pj } the sets of points at
which the polymer density diverges and by {gk} the set where
it increases gradually from zero density, we may continue as

before and thus obtain the mean polymer density in regions
outside the gaps as

ρ̄(x) = 1

w

√∏
k[sin(πx/w) − sin(πgk/w)]∏
j [sin(πx/w) − sin(πpj/w)]

. (3.26)

IV. LONGITUDINAL IMPACT OF TOPOLOGICAL
CONSTRAINTS

A. Classical hydrostatic approach

In describing the effects of a single pin, we have focused
specifically on the equilibrium structure of the polymer system
along the line τ = τp which passes through the pin. To extend
our understanding of the effect of topological constraints away
from this line and into the longitudinal direction, it is useful
to develop a treatment that is analogous to hydrodynamics,
which we call a classical hydrostatic approach. This enables
us to describe the large fluctuations that are present around
topological obstructions.

Consider an area of the x-τ plane of width w′ much
greater than the interpolymer spacing and length L′ sufficient
for ground-state dominance to be valid. Let this area be
bounded by x(τ ) ∈ [vτ − w′/2,vτ + w′/2] (i.e., the polymers
are confined to a parallelogram such that their average slope
is v). We can again map this onto a quantum problem with a
time-independent Hamiltonian, provided we first make the tilt
mapping x(τ ) → x(τ ) + vτ . To lowest order in v, the effect
of this tilt is to increase the free energy per polymer per unit
length by Av2/2. Thus, the free energy density within the
region is given by

F
w′L′ = Aρ

v2

2
+ π2

6

1

β2A
ρ3. (4.1)

We may interpret this quantity as the local free energy density,
expressed in terms of the local polymer density ρ(x,τ ) and the
local polymer slope v(x,τ ) fields, provided we also require
polymer line-length conservation, via the continuity equation

∂τρ(x,τ ) + ∂x(ρ(x,τ )v(x,τ )) = 0. (4.2)

Now, around a topological constraint the polymer density
and slope fields are dominated by configurations that minimize
the free energy subject to the constraints. This minimization
leads to the following nonlinear partial differential equation,
obeyed by ρ(x,τ ) and v(x,τ ), which supplements the continu-
ity equation:

∂τ v + v∂xv = π2

β2A2
ρ∂xρ. (4.3)

These equations may be combined into a single Hopf
equation for the single complex field w(x,τ ):

∂τw − iw∂xw = 0, (4.4)

w(x,τ ) ≡ π

βA
ρ(x,τ ) + iv(x,τ ). (4.5)

Solutions of the Hopf equation take the form

w(x,τ ) = F (x + i(τ − τp)w(x,τ )), (4.6)

where F (·) is an analytic function determined by the boundary
conditions.
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FIG. 9. (Color online) Variation of the equilibrium directed-
polymer density over the (x,τ ) plane in the vicinity of a pin constraint.
The physical polymer density is the plotted quantity scaled by Nπ/w.
Note that the gap (i.e., the region in which the present approximation
scheme gives zero for the polymer density) is roughly triangular in
shape, as shown by the unshaded area of the inset. The divergence in
the polymer density occurs only at precisely the location of the pin,
depicted by a black dot in the inset.

We have already obtained the dominant density profile
ρ(x,τp). This profile serves as a boundary condition on the
Hopf equation for the τ > τp region of the plane (or for the
τ < τp region). By symmetry, it is clear that ρ(x,τp + τ ′) =
ρ(x,τp − τ ′) and v(x,τp + τ ′) = −v(x,τp − τ ′). In particular,
we have that v(x,τp) = 0, serving as our second boundary
condition at τ = τp. Provided that the pin is far from the
boundaries of the system, the boundary conditions there are
simply that the polymder density field is uniform and the
slope field vanishes. Thus, the analytic function F (·) is fully
determined, and w(x,τ ) may be obtained throughout the plane,
at least numerically. The polymer density resulting from a pin
at x = −0.06w with the partitioning NL = 0.74N is shown
in Fig. 9. We note that the divergence in the polymer density
at the pin immediately subsides but the gap persists over a
finite range in the longitudinal direction. At large longitudinal
distances, however, the polymer density profile returns to the
uniform distribution of the pinless system.

As the free energy expression [Eq. (4.1)] is obtained by
ignoring contributions associated with certain higher-gradient
terms, the density profile thus obtained is expected to be quan-
titatively incorrect in the vicinity of any pins, because there the
polymer density diverges (according to the mean-field type of
approach that constitutes the bulk of the present paper), and it is
higher-order terms that dominate and control such divergences.
Indeed, for a broad class of systems, nonlinearities can lead to
shock-wave behavior even for initially fairly smooth density
profiles,16 and even more readily for the divergent behavior
around a pin.

B. Connection to quantum hydrodynamics

In the previous subsection we have used a hydrostatic
description of the polymer system to describe the polymer
density away from the line τ = τp. One may also address
polymer density for τ 	= τp in the quantum particle system

language. This corresponds to determining the imaginary-time
evolution of the quantum system away from the time τ = τp in
a manner consistent with the initial density profile ρ̄(x) at τ =
τp. As this profile differs substantially from the equilibrium
density profile for the pinless case (i.e., a uniform density
profile) the equivalent quantum system can be regarded as
having undergone a large quantum fluctuation.

Systems of nonlinear equations analogous to hydrodynam-
ical equations have been used to describe the evolution of
one-dimensional systems of interacting particles around large
fluctuations.17 In terms of the particle density and velocity
fields, ρ(x,t) and v(x,t), these equations read

∂tρ + ∂x (ρv) = 0, (4.7a)

∂tv + v∂xv = m−1∂x ∂ρ(ρE(ρ)), (4.7b)

where E(ρ) is the ground-state energy per particle, expressed
as a function of the density ρ. In the quantum case, these
equations come from minimizing the instantonic action whose
dominant terms are the local internal energy density [ρE(ρ)]
and the kinetic energy (v2ρ/2) associated with the large
average local velocity. For the polymers, the competing
physical quantities are the internal energy density and the local
energy cost of large average polymer slopes.

For a system of free fermions E(ρ) = (h̄2π2/6m)ρ2. In
this case, the quantum hydrodynamical equations are identical
to the classical hydrostatic ones for noncrossing polymers,
Eqs. (4.2) and (4.3), provided we make the familiar parameter
identifications of Eq. (2.9). Indeed, we were led to the direct,
classical hydrostatic approach of Sec. IV A after doing the
mapping to the quantum particle system and following the
quantum hydrodynamical approach to such systems developed
by Abanov and co-workers; see, e.g., Refs. 16 and 17.

The analogy to quantum hydrodynamics also illustrates
how the response to a topological obstruction depends on
the length of the polymer system. A qualitative analysis of
large quantum fluctuations indicates that the probability P (R)
of a large fluctuation over a length scale R has the form
P (R) ∼ exp(−αR2); see Ref. 17. This corresponds to our
finding in the present paper that when the pin displacement is
small (compared to the overall system size) and all polymers
lie on one side of the pin the free-energy cost is quadratic
in the displacement. However, when the finite temperature of
such a quantum system is taken into account, the probability
of a fluctuation becomes P (R) ∼ exp(−γR). The analog of a
finite temperature in the quantum system is a finite length in the
polymer system. For a system in which the pin coordinate τp is
located near enough to another system feature, such as another
pin or an end of the system, the ground-state dominance
approximation fails, and one instead finds that the free-energy
cost of the pin would increase linearly with the displacement
of the pin from its equilibrium position. Thus, a longitudinally
short system, or one having longitudinally distributed pins, can
display a super-Hookean response when a pin is displaced a
small amount from its equilibrium position.

We remark that although the polymer system we have been
exploring is formally equivalent to its quantum analog, the
polymer system is more readily controllable. Large quantum
fluctuations are, due to their rarity, difficult to observe. In
contrast, the probability of occurrence of the equivalent large
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thermal fluctuations of the polymer system can be measured
indirectly, via the entropic force on a pin, which has the useful
effect of forcing the system to assume what would otherwise
be rare configurations.

V. CONCLUDING REMARKS

Our central aim with this paper has been to develop
a statistical-mechanical treatment of macroscopic systems
of directed, two-dimensional, classical polymers in thermal
equilibrium in the limit of infinitely strong repulsion between
the polymers. More specifically, our focus has been on the
consequences of topological constraints—either pointlike pins
or spatially extended lines—that place limitations on the
microscopic configurations accessible to the polymer systems.
These constraints have the effect of altering the equilibrium
value of the spatial profile of the local polymer density and
reducing the entropy (and, perforce, increase the free energy)
of directed polymer systems and, when generically located,
they give rise to forces that act on the constraints (and between
them, if there are several of them).

The main technique that we employ to compute these effects
is a mapping between two-dimensional systems of classical
directed polymers in thermal equilibrium and the imaginary-
time evolution of one-dimensional systems of quantal pointlike
particles in the ground state. (The particles can be taken to be
either non-interacting identical fermions or identical bosons
subject to infinitely repulsive short-ranged interactions.) The
determination of the alteration of statistical weight resulting
from the presence of constraints for the polymer system
is then ascertained via consideration of a rather unusual
quantal amplitude: the matrix element of the imaginary-time
evolution operator between the many-particle ground state
and an appropriately partitioned configuration of the particle
system. This technique readily yields18 results for situations in
which the constraints are located collinearly on a line that runs
perpendicular to the direction preferred by the polymers. By
supplementing this technique with a quantum hydrodynamic
approach we are able to establish the form of the polymer
density not only along the aforementioned line on which the
constraints lie but also at points away from this line.

Strikingly, in the limit of large polymer densities, in
which fluctuations are small and a type of mean-field theory
is accurate, we find that the effect of a pointlike pin is
to cause a divergent pileup of the polymer density on the
high-density side of the pin and a zero-density region (or gap)
on the low-density side of the pin, the latter giving way to a
continuously rising density beyond the gap. In addition, via the
quantum hydrodynamic approach we find that the gap opened
by the pin has a nonzero extent in the preferred direction, only
gradually narrowing and closing. (Fluctuation corrections to
this mean-field theory are expected to replace the zero-density
region by a region of very small polymer density.) We also
find, for pins that are only mildly displaced from a zero-force
(i.e., equilibrium) position, the force acting on them is sub-
Hookean, growing less than linearly with the displacement via
a factor logarithmic in the displacement, and the gap created
by them similarly grows sub-linearly with the displacement.
By contrast, for multiple pins that are separated from one
another along the direction preferred by the polymers, we

find free energy costs that are super-Hookean, growing more
than quadratically with the displacement. One can regard these
nonlinear responses as resulting from the effectively long-
ranged interactions between polymer segments that emerge
via short-ranged interactions between long polymer strands in
regions that reach far from the segments in question.

In a forthcoming companion paper2 we shall discuss
developments arising from the present work that encompass,
inter alia, the impact of external potentials of various forms,
the consequences of interpolymer interactions that are finitely
(as opposed to infinitely) strong or extended in range, the
behavior of distinct polymer species within host polymer
systems, and and the application of powerful techniques from
quantum many-body physics, including bosonization and the
Bethe ansatz.
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APPENDIX A: N-FERMION GROUND-STATE
WAVE FUNCTION

Consider a system of N noninteracting fermions moving
freely one dimension on the line segment 0 < x < π and
subject to homogeneous (i.e., homogeneous Dirichlet) bound-
ary conditions at x = 0 and x = π . The normalized wave
functions associated with the single-particle energy eigenstates
of such a system are given by

φj (x) =
√

2/π sin(jx), j = 1,2, . . . . (A1)

In terms of these, the normalized N -particle ground-state wave
function of the N -fermion system may be expressed in terms
of a Slater determinant, as follows:

ψ(x1, . . . ,xN ) = 1√
N !

det
N×N

[φj (xk)], (A2)

where [φj (xk)] is the N × N matrix having (jk) element
φj (xk). Omitting N factors of

√
2/π , the matrix [φj (xk)] takes

the form ⎛⎜⎜⎝
sin x1 sin x2 · · · sin xN

sin 2x1 sin 2x2 · · · sin 2xN

...
...

. . .
...

sin Nx1 sin Nx2 · · · sin NxN

⎞⎟⎟⎠ . (A3)

To simplify the evaluation of the determinant of this matrix,
we add linear combinations of the rows of the matrix to other
rows, a procedure that leaves its value unchanged. Specifically,
we make the replacements

φj (xk) → φj (xk) + φj−2(xk) − 2 cos xN φj−1(xk),
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where we make the definition φj (xk) = 0 for j < 1. The
resulting matrix is then given by⎛⎜⎜⎝

sin x1 · · · sin xN−1 sin xN

2(cos xk − cos xN )
× sin[(j − 1)xk]

0
...
0

⎞⎟⎟⎠ . (A4)

Note, specifically, the vanishing of the elements in the lower
N − 1 rows in the N th column. In evaluating the determinant
of this matrix, we may extract N − 1 factors of the form
2(cos xk − cos xN ) from the rows in the lower left block of
the matrix. Thus, we obtain the recursive result, linking Slater
determinants for N -particle and (N − 1)-particle systems:

det
N×N

[φj (xk)] = (−1)N−1 sin xN

N−1∏
k=1

(2 cos xk − 2 cos xN )

× det
(N−1)
×(N−1)

[φj (xk)]. (A5)

Next, we apply this relation recursively, and this arrive at the
following, desired form for the N -particle ground-state wave
function:

ψ(x1,x2, . . . ,xN ) = 2N2/2

πN/2
√

N !

⎛⎝ N∏
j=1

sin xj

⎞⎠
×

∏
1�j<k�N

(cos xj − cos xk). (A6)

Note that for a system of hard-core bosons the corresponding
ground-state wave function is simply the absolute value of this
fermionic wave function.

APPENDIX B: ELLIPTIC INTEGRAL REPRESENTATIONS
OF THE PIN CONSTRAINT AND FREE ENERGY

Given the form of the polymer density found in Sec. III A4
the pin constraint Eq. (3.7a) may be constructed in terms of
the elliptic integral of the third kind as

NR

N
= 2(sg − sp)

π
√

(1 − sp)(1 + sg)

×�

(
1 + sp

1 + sg

,
(1 + sp)(1 − sg)

(1 − sp)(1 + sg)

)
, (B1a)

�(n,m) ≡
∫ 1

0

ds

1 − ns2

1√
(1 − ms2)(1 − s2)

. (B1b)

We may describe how sg varies with sp for a given partitioning
by requiring that the partitioning given by NR is constant with
respect to variations of sp, so that

dNR

dsp

= ∂NR

∂sp

+ ∂NR

∂sg

∂sg

∂sp

= 0. (B2)

By using Eq. (B1a), we thus find the result

∂sg

∂sp

= 1 + sg

1 + sp

⎛⎝1 −
E
( (1+sp)(1−sg )

(1−sp)(1+sg )

)
K
( (1+sp)(1−sg )

(1−sp)(1+sg )

)
⎞⎠ , (B3)

where K and E are elliptic integrals of the first and second
kind, respectively:

K(k) ≡
∫ 1

0

ds√
(1 − k2s2)(1 − s2)

, (B4a)

E(k) ≡
∫ 1

0
ds

√
1 − k2s2

√
1 − s2

. (B4b)

For a pin infinitesimally displaced from its equilibrium po-
sition, so that sp − sg ≈ γ cos xp with γ � 1, the right-hand
side version of the pin constraint (3.7a), may similarly be
asymptotically expanded in γ to obtain the condition

π
NR

N
≈
∫ 1

sg

ds√
1 − s2

[
1 + γ cos xp

2

1

s − sp

]

≈ π

2
− xg + γ

2
ln

[
2 cos2 xp

|γ |
]

. (B5)

This equation yields the asymptotic relation between gap size
and displacement given in Eq. (3.13).

We turn our attention now to the free energy cost of the
pin, Eq. (3.14), which can be written in terms of the scaled
effective potentials φL and φR experienced by polymers on the
left and right side of the pin, respectively, as

	F
N2T

= NL

N
φL + NR

N
φR, (B6a)

φL ≡
∫ 1

−1
ds ln[2(1 + s)]Q(s), (B6b)

φR ≡
∫ 1

−1
ds ln[2(1 − s)]Q(s), (B6c)

with the transformed coordinate s and polymer density Q(s)
defined in the main text; see Eq. (3.11). As we shall see, it is
useful to represent φR as an elliptic integral, and to do this it
is necessary to obtain a form without the logarithm. To this
end, we extend s into the complex plane, and make use of the
residue theory result∮

�

ds ln(1 − s)Q(s) = 0, (B7)

where the keyhole contour � comprises the segments
�1, . . . ,�4 as shown in Fig. 10. Now, the integrand has the
form

ln(1 − s) Q(s) = 1

π
(ln |1 − s| + i arg(1 − s))

×
√∣∣∣∣ s − sg

(1 − s2)(s − sp)

∣∣∣∣ eiφ(s), (B8a)

φ(s) ≡ (arg(s − sg) − arg(1 − s)

− arg(1 + s) − arg(s − sp))/2, (B8b)

which is analytic in the complex plane except on the branch
cuts. Note that although the physical polymer density is zero
in the gap, we are allowing Q(s) to be nonzero but imaginary
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R

1

3

2

4

1 sp sg 1

FIG. 10. The contour � used in Eq. (B7). Branch cuts run from
s = −1 to s = min(sp,sg) and from s = max(sp,sg) to s = +∞. The
arc �4 has a radius ε which will be taken to zero, and the arc �2 has
a radius R which will be taken to infinity.

in the gap, and complex in the complex s plane. We choose the
branch cuts to run from s = −1 to s = min(sp,sg) and from
s = max(sp,sg) to s = +∞, as shown in Fig. 10.

Whereas the integral along the inner contour �4 vanishes
as its radius ε goes to zero, the integral along the outer contour
�2 (i.e., along |s| = R), does not vanish. In the limit R � 1
this contour integral becomes∫

�2

ds ln(1 − s)Q(s)

≈
∫ 2π

0
(iReiθdθ )[ln R + i(θ − π )]

i

πReiθ

= −2 ln R. (B9)

Thus, the contour integral of Eq. (B7) yields

2 ln R ≈
∫ 1

−1
dsln|1 − s| Q(s + iε)

+
∫ R

1
ds[ln|1 − s| − πi] Q(s + iε)

+
∫ 1

R

ds[ln|1 − s| + πi] Q(s − iε)

+
∫ −1

1
dsln|1 − s| Q(s − iε). (B10)

Elementary cancellations among parts of these integrals occur,
so that upon taking the limit R → ∞, Eq. (B10) (which is exact
in this limit) yields

φR =
∫ ∞

1
ds

[
1

s
−
√

s − sg

(s2 − 1)(s − sp)

]
, (B11a)

φL =
∫ ∞

1
ds

[
1

s
−
√

s + sg

(s2 − 1)(s + sp)

]
. (B11b)

Using these representations of φL and φR , the free energy
may be expressed in terms of elliptic integrals, although
the complete expression is rather complicated. Strikingly,
however, a simple result follows for the force on the pin,
−dF/dxp. In particular, by differentiating Eq. (B6a) we find

1

N2T

dF
dsp

= NL

N

dφL

dsp

+ NR

N

dφR

dsp

, (B12)

where
dφL/R

dsp

= ∂φL/R

∂sp

+ ∂sg

∂sp

∂φL/R

∂sg

. (B13)

Thus, by consideration of the elliptic integral representation,
it can be shown that

1

N2T

dF
dsp

= sp − sg

1 − s2
p

, (B14)

and from this result follows the force on the pin given in
Eq. (3.18).
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