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Valley-based field-effect transistors in graphene
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An analog of the Datta-Das spin field-effect transistor (FET) is investigated, which is all graphene and based
on the valley degree of freedom of electrons/holes. The “valley FET” envisioned consists of a quantum wire of
gapped graphene (channel) sandwiched between two armchair graphene nanoribbons (source and drain), with
the following correspondence to the spin FET: valley (K and K ′) ↔ spin (up and down), armchair graphene
nanoribbons ↔ ferromagnetic leads, graphene quantum wire ↔ semiconductor quantum wire, valley-orbit
interaction ↔ Rashba spin-orbit interaction. The device works as follows. The source (drain) injects (detects)
carriers in a specific valley polarization. A side gate electric field is applied to the channel and modulates the
valley polarization of carriers due to the valley-orbit interaction, thus controlling the amount of current collected
at the drain. The valley FET is characterized by (i) smooth interfaces between leads and the channel, (ii) strong
valley-orbit interaction for electrical control of drain current, and (iii) vanishing interband valley-flip scattering.
By its analogy to the spin FET, the valley FET provides a potential framework to develop low-power FETs for
graphene-based nanoelectronics.
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I. INTRODUCTION

The pioneering work of Datta and Das in semiconductor
spin field-effect transistors (FETs)1 has opened a door to the
utilization of spin degree of freedom (d.o.f.) for the control
of electrical transport in semiconductors, and has inspired
many important research ideas, in addition to those based
on giant magnetoresistance or tunnel magnetoresistance, for
spintronic applications.2 The realization of such FETs will
not only permit the spin to be used as a logic variable, but
also make it possible to further downscale the semiconductor
transistor size due to the low power consumption required for
spin FETs.

The prototype FET considered by Datta and Das is a simple
structure, consisting of a ballistic, quasi-one-dimensional
(Q1D) channel made of a semiconductor with large Rashba
spin-orbit interaction (SOI), and ferromagnetic (FM) leads
as the source and drain. FM leads inject and detect spin-
polarized electrons with the spin orientation determined by
the magnetization in the leads. For current control, a (top)
gate electric field is applied to the channel and generates an
effective magnetic field due to the Rashba SOI,

Hso = α σ · (k × ē),

where α = Rashba constant, σ = Pauli matrix, k = electron
wave vector, and ē = directional vector of the electric field. Hso

induces a spin precession, thus controlling the spin orientation
of channel electrons and hence the current collected at the
drain. Detection of the Rashba effect has been demonstrated
recently in the case of a two-dimensional electron gas.3

The Datta-Das spin FET permits the modulation of con-
ductance via electrical manipulation of spins. However, its
realization has met major challenges. Among the important
issues studied for spin FETs are (i) low injection/detection
efficiency for diffusion-based current injection, due to the
conductivity mismatch between the FM leads and the channel
semiconductor;4 and (ii) random conductance oscillations
resulting from the SOI-induced ballistic interband spin-flip

scattering.5 Various solutions have been attempted; for exam-
ple, the insertion of a tunnel junction between the electrode
and the semiconductor is proposed6 to resolve (i), and using
stray electric fields for obtaining a reasonable spin control to
resolve (ii).7

On the other hand, the recent rise of the wonder material,
graphene,8–10 provides a novel road to the future FETs.
Being a two-dimensional sheet of carbon atoms with excellent
carrier mobility, graphene offers the thinnest possible channel,
and the possibility to scale to shorter channels and higher
speeds for metal-oxide-semiconductor field-effect transistors
(MOSFETs).11 More importantly, it also provides an unprece-
dented flexibility to the design of nanoelectronic devices,
due to the expanded family of electron d.o.f.s introduced.
Because graphene has two degenerate and inequivalent energy
valleys (K and K ′), carriers in it are endowed with the extra
character—valley, besides spin and charge, for information
processing. This leads to the emergence of a new category of
electronics known as “valleytronics” which manipulates the
valley d.o.f. for control of electronic properties.12 Implemen-
tation of prototype devices such as valley filters12 or valley-
based qubits for quantum computing13/communications14

have recently been demonstrated theoretically.
In this work, we discuss a feasible valleytronic implementa-

tion of the Datta-Das idea, for graphene-based electronics. The
proposed “valley FET” (VFET) consists of a Q1D channel of
gapped graphene sandwiched between two armchair graphene
nanoribbons (AGNR) (source and drain). Being all graphene,
the VFET is free from the problem of interface scattering
and energy band mismatch [i.e., issue (i) above]. Moreover,
it employs the physical mechanism, the so-called valley-orbit
interaction (VOI), for the electrical control of drain current.
The mechanism exists uniquely in gapped graphene and is
similar to the Rashba SOI, with a significant difference,
though. As derived previously, it is given by13–15

Hvo = τ
h̄

4m∗�
(∇V × �p) · ẑ,
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which is valley conserving (τ = ± being the valley index for
K/K ′, 2� = energy gap, m∗ = electron effective mass =
�/v2

F , vF = Fermi velocity, V = potential energy, p =
momentum operator, ẑ = unit vector normal to the graphene
plane). Therefore, the VOI does not induce the flip-type
scattering which causes complications such as issue (ii).
Without issues (i) and (ii), the VFET provides a promising
implementation of the Datta-Das idea.

The presentation is organized as follows. In Sec. II, the
structure of VFETs is proposed, and the theory underlying
VFETs is discussed. In Sec. III, a summary of this work is
given and directions for future studies are suggested.

II. VALLEY FETs

A. Structure

The structure of a valley FET is shown in Fig. 1. The source
and drain are made of AGNRs. The channel section is aligned
with the armchair direction, with the zigzag edges of the region
being passivated for stabilization.16 The channel is subject to
an electric potential (due to, for example, a back gate bias)
for lateral electron confinement as well as a (side gate) electric
field for conductivity modulation. A h-BN (Refs. 17 and 18) or

(a)

(b)

FIG. 1. (a) The VFET shown as a three-terminal device. The
source and drain are AGNRs, which inject and detect electrons in a
specific polarization. The Q1D channel is a quantum wire of gapped
graphene, subject to the (side) gate bias. When an electron moves
down the channel, the valley polarization vector of the electron
precesses due to the VOI. (b) The corresponding graphene crystal
structure of the device, with the channel region being subject to a
lateral confinement potential in order to form a Q1D channel, and the
zigzag edges of this section being passivated for stabilization.

SiC (Ref. 19) substrate may be used to grow the structure and
open an energy gap (2�) in the structure. In the case of h-BN-
grown graphene, the slight lattice constant mismatch (∼1.8%)
between graphene and BN results in the formation of a Moiré
pattern18 and a corresponding periodic variation in space in
the gap parameter �. In order to avoid this complication, we
assume that a biaxial strain is applied upon either graphene
or BN to ensure lattice match, giving a uniform � throughout
the structure. With the choice of Cartesian coordinates shown
in the figure, the gap occurs at the points K = (0,4π/3a0)
and K′ = (0, −4π/3a0) of the Brillouin zone (a0 = graphene
lattice constant).

Table I shows the close correspondence between spin
and valley FETs, in their structures as well as principles of
operation. In a VFET, the source and drain AGNRs polarize
electrons in a specific valley state for injection/detection, and
the (side) gate field is applied to the channel and induces
“valley precession” of channel electrons for the control of
drain current, due to the VOI. We discuss the lead state, channel
state, and valley precession in the following.

B. Lead states

Firstly, we consider the valley polarization of electrons
in the source and drain. As shown previously,20 K and K ′
valleys are mixed in an AGNR cut out of gapless graphene
(� = 0). This is also true in the case with � �= 0. Let W = the
ribbon width and ψD,τ = [ψA,τ (r), ψB,τ (r)]T be the τ valley,
two-component Dirac wave function describing the electron
probability amplitudes on A and B sites of the graphene
crystal, respectively. ψD,τ satisfies the following Dirac-type
equation:10

[
� vF (ip̂x + τ p̂y)

vF (−ip̂x + τ p̂y) −�

] (
ψA,τ

ψB,τ

)

= (E + �)

(
ψA,τ

ψB,τ

)
. (1)

The electron energy E here is measured with respect to the
conduction band edge. We take E > 0 (i.e., the electron case)
throughout this work. The hole case can be similarly treated
due to the electron-hole symmetry in Eq. (1).

For an electron traveling down the nanoribbon with wave
vector k, the real space wave function is a linear combination,(

�A

�B

)
= ei �K·�rψD,+ + ei �K ′ ·�rψD,−,

subject to the boundary conditions �A(r) = �B(r) = 0 at the
edges of the ribbon (located at y = ±W/2). The solution is
given by(

�A

�B

)
∝

[
(eikxei �K·�rSK ′/Keikxei �K ′ ·�r )

(
eikyy

e−ikyy

)]

×
(

1
h̄vF (ky−ik)

2�+E

)
, (2)

which is laterally quantized, with SK ′/K = (−1)n+1 and
the quantized values E = En and ky = kn, where (En +
�)2 = �2 + h̄2(k2 + k2

n)/2m∗ and kn = (nπ/W ) − (4π/3a0),
respectively. Here, SK ′/K is the amplitude of the K ′ com-
ponent relative to that of the K component. Therefore, the
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TABLE I. Correspondence between spin and valley FETs.

FET d.o.f. Lead Q1D channel Electrical control Physical mechanism

Valley FET Valley K, K ′ AGNR Graphene Side gate Valley-orbit interaction (VOI)
Spin FET Spin ↑ , ↓ FM Semiconductor Top gate Rashba SOI

source/drain state in Eq. (2) is valley mixed in a 50:50 ratio.
This specific “valley-polarized state” is utilized for valley
injection/detection, in parallel to its spin counterpart in the
Datta-Das case, where the spin injected/detected is specifically
aligned in the channel direction (e.g., “→”) to have even
amounts of “↑” and “↓” components.

C. Channel states

Next, we consider the state of electrons in the Q1D channel
of gapped graphene. The Dirac equation in the region is given
by Eq. (1), with the following potential energy,

V (y) = m∗w2
0y

2

2
− Dy4 + eεyy (D > 0),

added to the diagonal elements of the equation. V (y) consists
of three terms and describes both the lateral confinement
and the (side) gate potential for the Q1D channel—the
first (parabolic) and the second (quartic) terms combined to
represent the confinement potential which is parabolic near
y ∼ 0 but flattens out for |y| ∼ O[(m∗/D)1/2w0], and the
third (linear) term being the gate-induced electric potential
energy (εy = side gate electric field). Note that the inclusion
of negative Dy4 in V (y) is realistic and describes the case of
a finite confinement potential, which eventually flattens out at
large y.

We focus on the low-energy regime where the Fermi
energy (or E) is located near the conduction band edge.
In the absence of V (y), solving the Dirac equation yields
(E + �)2 = �2 + v2

Fh̄2(k2 + k2
y)/2�, where (k, ky) = wave

vector of the particle. This is the standard dispersion of a
free massive Dirac particle in two dimensions, with � =
“rest mass energy” and vF = “light speed.”10 In the presence
of V (y), the Dirac equation is difficult to use for analytical
treatment. However, for E 
 �, the quantum mechanics of
electrons belongs to the “nonrelativistic regime” and is well
described in the framework of “Schrödinger description,” an
excellent approximation to the Dirac description as shown
previously.13,14 We follow this framework below, and employ
the simple, one-component “Schrödinger wave function” for
the discussion of channel electrons. The wave function satisfies

Hφn,τ ≈ En,τφn,τ ,

H = H (0) + H (1), (3)

H (0) = �p2

2m∗ + V, H (1) = − �p4

8m∗2�
− �p2V

8m∗�
+ Hvo,

where H is the Schrödinger Hamiltonian, with H (0) being
the “nonrelativistic part” and H (1) the “first-order relativistic
correction (RC)”. En,τ is the energy level with lateral quantum
index n, for τ -valley electrons. φn,τ is the corresponding
Schrödinger wave function and derives from the component

ψA,τ of Dirac wave function by the linear transformation,
φn,τ = (1 + p2/8m∗�)ψA,τ . Specifically, φn,τ is interpreted
as a probability amplitude, with |φn,τ |2 ≈ |ψA,τ |2 + |ψB,τ |2
(i.e., the probability distribution of an electron over unit cells).
The close analogy between the present description and the
standard Schrödinger quantum mechanics (with relativistic
effects included) is obvious in Eq. (3). Apart from the usual
RC “−p4/8m∗2�” to the kinetic energy and the Darwin term
“−p2V/8m∗�”, Hvo appears in H (1) as well, in the same way
as Hso does as a part of RC to the standard Schrödinger theory.
Hvo couples valley and orbit, making it possible to manipulate
the valley d.o.f. by electric means.

Equation (3) can be solved analytically within the pertur-
bation theory, in the limit of V (y) being dominantly parabolic,
where the simple harmonic oscillator (SHO) states may be used
for the calculation. In the following, we state the conditions for
the analysis to be valid. First, two energy scales are involved
in the problem, namely, h̄w0 (SHO energy) and �, for which
we require

(a) h̄w0 
 � (nonrelativistic regime). We further impose
the following conditions on various energies:

(b) ‖p2
x/2m∗‖ < h̄w0;

(c) ‖Dy4‖ 
 h̄w0 and ‖eεyy‖ 
 h̄w0 (weak linear and
quartic potentials).

To facilitate the perturbation-theoretical calculation, the
Hamiltonian is organized into the following form:

H = H0 + H ′,

H0 = �p2

2m∗ + 1

2
m∗w2

0y
2,

H ′ = −Dy4 + eεyy − �p4

8m∗2�
− �p2V

8m∗�
+ Hvo,

where H0 is the Hamiltonian of the unperturbed system and H ′
is the total perturbation. Given conditions (a)–(c) above, it can
be shown that ‖H ′‖ 
 ‖H0‖. The eigenstates and eigenvalues
of H0 are given by

φ(0)
n,τ (x,y; kτ ) = eikτ x〈y|n〉,

E(0)
n,τ (kτ ) =

(
n + 1

2

)
h̄w0 + h̄2k2

τ

2m∗ ,

where φ(0)
n,τ = wave function, E(0)

n,τ = energy, kτ = the electron
wave vector (for valley index τ ) along the channel, and |n〉 =
the SHO eigenstate with quantum index n.

Now, we carry out the perturbation-theoretical calculation.
To keep the discussion simple, we focus on the one-channel
case, where only the lowest subband (n = 0) is occupied and
utilized for transport.21 Let δE = valley-dependent energy
correction due to H ′.22 The leading-order contribution to δE

is given by the following second-order perturbation-theoretical
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expression,

δE ≈−
∑
m

′ 〈0|eεyy|m〉〈m|Hvo(due to the quartic potential)|0〉
mh̄w0

+ c.c.,

Hvo(due to the quartic potential) = τ
h̄2

m∗�
kτDy3.

The above expression for δE is evaluated analytically,
giving

δE = −αvoτkτ , αvo = 3eh̄3

2m∗3w3
0�

Dεy. (4)

For an electron with wave vector kτ , we summarize the
perturbation-theoretical results for E0,τ and (un-normalized)
φ0,τ in the following:

E0,τ (kτ ) ≈ 1

2
h̄w0 + h̄2k2

τ

2m∗ − αvoτkτ ,

(5)
φ0,τ ≈ eikτ x exp(−βy2).

The Gaussian function with the parameter β = m∗w0/2h̄
is the (un-normalized) SHO ground state. Notice the presence
of a “Rashba term,” i.e., “αvoτkτ ” in the subband dispersion
E0,τ (kτ ), with αvo being the corresponding “Rashba constant.”
In the case where D = 0, the Rashba term vanishes. This can
be understood since the linear (electric) potential term in V (y)
can be made to disappear by making a y-coordinate shift:
y → y ′ = y + yε, where yε = eεy/m∗w2

0, giving V (y) ≈
1
2m∗w2

0y
′2 [correct to O(yε)]. Equations (4) and (5) constitute

the main result of this work.
E0,τ (kτ ) is plotted in Fig. 2. We see that the subbands for

K and K ′ are horizontally split due to the Rashba term. For a
given energy E, the splitting is given by

k+ − k− = 2m∗αvo

h̄2 , (6)

independent of the energy.
The magnitude of αvo reflects the strength of the VOI. αvo is

estimated as follows. We take vF = 106 m/s,10 � = 0.026 eV
(for graphene grown on h-BN)17 and εy = 2.5 μV/Å. For
the parabolic potential parameter w0, we take h̄w0/� = 0.4.

FIG. 2. E0,τ (kτ ) is plotted. For a given energy E, the subbands
for K and K ′ are horizontally split due to the Rashba term in Eq. (5).

With this choice, the effective Q1D channel width (defined
as 2β−1/2) = 1100 Å. We take the quartic potential parameter
D = mw2

0β/2. At this value, the confinement potential flattens
out near x = ±β−1/2, i.e., the edges of the Q1D channel. With
these parametric values, Eq. (4) yields23

αvo ≈ 6.4 × 10−12 eV m,

which is comparable to the Rashba constant in semiconductors
with large SOI, e.g., InAs.24

D. Valley precession

The channel state of an injected electron is a linear
combination of K and K ′ components, with the following
real space wave function:

�0 ≈ (eik+xei �K·�r CK ′/Keik−x ei �K ′ ·�r )

[
exp(−βy2)
exp(−βy2)

]
. (7)

The parameter CK ′/k here is the amplitude of the K ′ compo-
nent relative to that of the K component, and is chosen to match
the valley polarization of the channel state to that of the source
state [as specified in Eq. (2)] at the channel/source interface
(located at x = 0). This gives CK ′/K = SK ′/K . Therefore, K

and K ′ valleys are again mixed in the 50:50 ratio, as in the case
of lead states. But there is an important difference. In contrast
to the lead case, where the phases of K and K ′ components
evolve with the same wave vector [i.e., k in Eq. (2)], now
they evolve separately with different wave vectors (k+ and
k−), due to the Rashba effect discussed earlier. This leads to
the valley precession of channel electrons in the valley space.
Specifically, after the electron travels for a distance L (L =
channel length), the phase difference between the two valley
components is given by

δϕ = 2m∗αvo

h̄2 L. (8)

δϕ determines the orientation of valley polarization before the
electron enters the drain, relative to that of the drain state.
For δϕ = 2mπ , the two polarizations are aligned, leading
to a conductance maximum. On the other hand, for δϕ =
(2m + 1)π , they are orthogonal to each other, leading to a
conductance minimum. Since δϕ scales linearly with the gate
electric field εx (via the dependence of αvo on εx), it gives a
VFET the on-off switch capability through gate control. Note
also that since δϕ as given by Eq. (8) is independent of electron
energy (within the accuracy of our analysis), a VFET shares
the nice characteristics of a spin FET, in that the on-off swing
is insensitive to the spread in electron energy distribution, an
important requirement for a good on-off ratio.1

E. Effects of short-range impurity potentials

Last, we briefly discuss impurity effects on the performance
of a VFET. In general, in a nanoscale FET, impurities in
the channel block the carrier transport and cause detrimental
effects on the device performance. In the case of a VFET,
the impurities with short-range potentials are of particular
concern, because they provide the large wave vector difference
needed in the valley-flip scattering K ↔ K ′ and thus may
damage the valley precession. In the following, we consider
such impurities and compare the valley-flip time (Tflip) to
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the transit time (Ttransit), for an electron moving through the
channel.

Substituting in Eq. (8) δϕ = π and the values of vF , �

(for m∗), and αvo given earlier, we estimate L ∼ O(μm) as
the channel length required (for the on-off switch function,
in the VFET where the gate field εy is specifically taken to
be 2.5 μV/Å). We further take the electron kinetic energy
along the channel to be O(h̄w0). This gives the ballistic transit
time

Ttransit = O

(
L√

2h̄w0/m∗

)
= O(10−12 s).

For the estimate of Tflip, we take the total impurity potential
to be

Vim(x,y) = a2
imV0,im

Nim∑
n=1

δ(�r − �Rn),

where aim = O(Å) being the range of each impurity potential,
V0,im = O(eV) being the potential strength, “Rn” = impurity
position vector, and Nim = total number of impurities in
the channel. Application of Fermi’s golden rule yields the
following valley-flip rate due to the impurities:

1

Tflip
= O

(
Nim

2π

h̄
V 2

0,im
a4

im

L2W 2
c

D1d

)
= O(Nim × 106 s−1),

where D1d is the electron density of states in one dimension,
given by D1d = O( L

πh̄

√
m∗
h̄w0

), and Wc = 2β−1/2 = 1100 Å
being the channel width.

Overall, we obtain the ratio

Ttransit/Tflip = O(Nim × 10−6),

which is generally very small. The ratio becomes O(1) only
if we extrapolate the result to the extremely dirty limit where
Nim = O(106). (In the specific VFET considered here where
the channel size is characterized by L = O(μm) and Wc =
1100 Å, it means all or a substantial fraction of channel atoms
are impurities.) Therefore, as far as the valley precession is

concerned, the above estimate indicates that the precession is
completed long before the valley flips. As such, the scattering
by short-range impurity potentials does not pose any serious
problem.

III. SUMMARY AND FUTURE WORK

In summary, we have investigated the feasibility of a
valleytronic implementation of the Datta-Das idea. The device
envisioned is all graphene, with AGNRs as electrodes and a
graphene quantum wire as the channel. Moreover, the VFET is
free of the issues concerning injection/detection efficiency or
interband valley-flip scattering, and by its analogy to the spin
FET, provides a potential framework to develop low-power
FETs for graphene-based nanoelectronics.

Throughout the work, we have ignored the spin d.o.f. of
electrons and the effect of Rashba SOI on electron transport,
which is known to be extremely weak in graphene compared to
that in a typical semiconductor.25 Instead, we have proposed
to employ the VOI for electrical control of graphene FETs,
which operates on the valley d.o.f. and has the characteristic of
being valley conserving. With the large magnitude of Rashba
constant—αvo—shown in this work, the VOI is established
as the dominant mechanism for electrical control of valley
FETs.

Finally, the present work has analyzed the VFET within
the simple formalism of perturbation theory. As such, only a
limited scope of VFET physics has been covered. Various
important issues, such as varied implementations, defect
scattering, multichannel transport, the field effect at large gate
bias or in the relativistic regime, or the wave interference
due to the presence of lead/channel interfaces, are worth
further investigation, in order to provide extensive insights
into VFETs.
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