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Quantum Hall transitions: An exact theory based on conformal restriction
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We revisit the problem of the plateau transition in the integer quantum Hall effect. Here we develop an
analytical approach for this transition, and for other two-dimensional disordered systems, based on the theory
of “conformal restriction.” This is a mathematical theory that was recently developed within the context of the
Schramm-Loewner evolution which describes the “stochastic geometry” of fractal curves and other stochastic
geometrical fractal objects in two-dimensional space. Observables elucidating the connection with the plateau
transition include the so-called point-contact conductances (PCCs) between points on the boundary of the sample,
described within the language of the Chalker-Coddington network model for the transition. We show that the
disorder-averaged PCCs are characterized by a classical probability distribution for certain geometric objects in
the plane (which we call pictures), occurring with positive statistical weights, that satisfy the crucial so-called
restriction property with respect to changes in the shape of the sample with absorbing boundaries; physically,
these are boundaries connected to ideal leads. At the transition point, these geometrical objects (pictures) become
fractals. Upon combining this restriction property with the expected conformal invariance at the transition point,
we employ the mathematical theory of “conformal restriction measures” to relate the disorder-averaged PCCs
to correlation functions of (Virasoro) primary operators in a conformal field theory (of central charge c = 0).
We show how this can be used to calculate these functions in a number of geometries with various boundary
conditions. Since our results employ only the conformal restriction property, they are equally applicable to a
number of other critical disordered electronic systems in two spatial dimensions, including for example the spin
quantum Hall effect, the thermal metal phase in symmetry class D, and classical diffusion in two dimensions
in a perpendicular magnetic field. For most of these systems, we also predict exact values of critical exponents
related to the spatial behavior of various disorder-averaged PCCs.
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I. INTRODUCTION

Effects of static, randomly placed impurities (disorder)
are central to our understanding of transport properties of
electronic solids. Indeed, building on Anderson’s seminal
work,1 an immense amount of research activity has emerged
over the past few decades on models of disordered electronic
solids, in particular of noninteracting electronic systems, the
subject now generically known as the Anderson localization.2

About a decade and a half ago, the field of Anderson
localization has received a tremendous boost through the
work of Zirnbauer,3 and Altland and Zirnbauer4 (AZ), which
provided a very general classification scheme of the behavior
of noninteracting fermions subject to static disorder potentials.
Their work showed that universal behavior emerging on length
scales much longer than the mean free path must be in one of
only 10 possible symmetry classes, which depend solely on the
behavior of the Hamiltonian under generic symmetries (time
reversal, particle hole, chiral).5 These 10 symmetry classes are
in one-to-one correspondence with the 10 types of symmetric
(constant curvature) Riemannian spaces in the classification
scheme of the mathematician Cartan.

Electronic disordered systems exhibit, in a variety of sym-
metry classes and spatial dimensions, second order quantum
phase transitions between insulating and conducting phases,

which are examples of Anderson (localization) transitions.
(For a recent review of Anderson transitions, see e.g. Ref. 7).
Other examples of Anderson (localization) transitions are
quantum Hall plateau transitions between insulating phases
with different topological order and different quantized values
of a Hall conductance. A famous example is the integer
quantum Hall (IQH) plateau transition observed in two-
dimensional (2D) semiconductor devices subject to strong
magnetic fields. The nature of the critical state at and the
critical phenomena near the IQH transition are at the focus of
intense experimental8–13 and theoretical research.14–23

In spite of much effort over several decades, an analyt-
ical treatment of most of the critical conducting states in
disordered electronic systems, including in particular that of
the mentioned IQH transition, has been elusive (although
some proposals14–16 have been put forward, see Refs. 18
and 19). A notable exception is the so-called spin quantum
Hall (SQH) plateau transition,24,25 which is similar to the
IQH transition, but in a different symmetry class (class C
in the AZ classification). In this case an exact mapping
to the classical problem of bond percolation is available.26

Through (variants of) this mapping, exact expressions for
various disorder-averaged observables and critical exponents
for the SQH transition were obtained.26–31
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The universal (critical) properties of Anderson transitions
can be formulated in terms of so-called network models. The
prime example of a network model is the celebrated Chalker-
Coddington network model32 describing IQH transition. A
similar network for the SQH transition24 was the starting point
for the mapping to percolation26 mentioned above. While
a network model formulation exists for systems in all 10
(AZ) symmetry classes, a particularly rich behavior is seen
in symmetry class D in two dimensions,33–36 comprising, for
example, a fermionic representation of the two-dimensional
short-range Ising spin glass (Ising exchange couplings with
random signs). The phase diagram of a generic network model
in symmetry class D contains three phases: an insulator,
the so-called thermal quantum Hall state, and a metal with
continuously varying (thermal) Hall conductivity.

Conventional critical statistical mechanics models are
known to possess conformal invariance.37 Implications of this
invariance are most powerful in two dimensions, where it
allows us to apply methods of 2D conformal field theory38,39

(in short, CFT) to study critical phenomena in such models. As
in any field theory description, basic objects of study in CFT
are correlation functions of local observables. One of the more
important characteristics in any CFT is the so-called central
charge c. This parameter is related to the way a critical system
responds to changes in its geometry.

It is widely believed that Anderson transitions in two
dimensions also possess conformal symmetry (and there is
numerical evidence to support this belief in certain cases).41–43

However, in this case one is usually interested in correlation
functions (density of states, conductivities, etc.) averaged over
all disorder realizations. Taking such averages is complicated
since the partition function of a disordered system undergoes
statistical fluctuations from one realization of disorder to
another.40 One way to handle this difficulty is to apply the
supersymmetry method where two types of fields (bosonic
and fermionic) are introduced in the theory. The outcome is a
theory whose partition function is unity, Z = 1, independent
of the particular disorder realization, as well as of the shape
and the size of the system. This implies the vanishing of the
central charge for a CFT describing an Anderson transition in
two dimensions (see e.g. Ref. 44 for a recent review).

Recently, another approach to the study of two-dimensional
critical systems has appeared. The approach uses methods of
probability theory and conformal maps, and can be called
the “stochastic conformal geometry approach.” The focus
of stochastic geometry is to directly describe randomly
fluctuating geometric objects in scale-invariant (i.e., critical)
systems: regions in space of fractal dimension (often referred
to as “clusters”) and their boundaries (often referred to as
‘cluster boundaries’) which form fractal curves. In a seminal
paper,45 Schramm has introduced a one-parameter family of
random processes, since then called the Schramm-Loewner
evolutions (SLE), which describe growth processes of random
fractal conformally invariant curves. Conformal invariance
in this case is understood precisely as a statement about
probability measures on curves. Since their original discovery,
the SLE processes have been studied in depth, have been
related to traditional CFT, and generalized in several ways.
Many reviews of this beautiful theory exist by now, and we
recommend Refs. 46–52 for more details.

The curves described by SLE are unique candidates for
(scaling limits of) cluster boundaries in 2D critical statistical
mechanics systems. A one-parameter family of SLE processes
conventionally denoted by SLEκ , which was discovered by
Schramm, fully exhausts all possible ensembles of SLE curves.
The real parameter κ of the SLEκ family is related to the central
charge of the CFT describing the critical system by

c = (3κ − 8)(6 − κ)

2κ
. (1)

Since we are interested in theories with c = 0, the values
κ = 8/3 and 6 play a special role for us. The SLE8/3 process
describes the scaling limit of 2D self-avoiding random walks
(SAW) or polymers, and the SLE6 process describes the
percolation hulls. These two types of critical curves possess
special properties called locality (for κ = 6) and restriction
(for κ = 8/3). It is the restriction property that is intimately
related to CFTs with c = 0. It turns out that the notion of
“conformal restriction” (i.e., the presence of the restriction
property in a conformally invariant 2D system) can be extended
to certain two-dimensional sets (clusters). In fact, there is
a one-parameter family of conformal restriction measures,
supported on such sets, which are fully characterized by a
real number h called the restriction exponent. In terms of CFT,
this exponent is the scaling dimension of a certain boundary
primary operator. The sets (clusters) that are described by
conformal restriction all have boundaries (cluster boundaries)
which are fractal curves that happen to be variants of SLE8/3,
called SLE(8/3,ρ). Here the parameter ρ is related to the
exponent h mentioned above by

h(ρ) = (3ρ + 10)(2 + ρ)

32
, ρ(h) = 2

3

√
24h + 1 − 8

3
. (2)

The theory of conformal restriction, the related theory of
(multiple) SLE(κ,ρ) processes, and their connections with
CFT are the subject of Refs. 47 and 53–63, and we will review
relevant results later in the paper.

In this paper we propose to make use of the theory of
conformal restriction to study quantum Hall transitions and
other 2D disordered electronic systems. A connection between
a 2D disordered electron system and the theory of conformal
restriction can be established by studying the so-called point-
contact conductance (PCC), that is the conductance between
two infinitely narrow leads introduced and studied in Ref. 64.
Loosely speaking, in a given microscopic model the disorder-
averaged PCC is represented as a sum of contributions from
paths that the current follows between the point contacts, in
the sense of the Feynman path integral (or sum) for a quantum
mechanical amplitude. When the contacts are placed at the
boundary of a disordered conductor, we obtain the so-called
boundary PCC. As we will explicitly show, the current paths,
when studied in the presence of absorbing boundaries,65

satisfy the restriction property on the lattice (i.e., at the discrete
as opposed to the continuum level). Assuming that the discrete
(lattice) model has a continuum limit at its critical point,
we expect the continuum analogs of the current paths to
satisfy the (continuum) restriction property. Furthermore, upon
making the assumption of conformal invariance, we conclude
that scaling limits of the current paths can be described by
conformal restriction measures. In the following, we will keep
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these assumptions in mind without stressing the difference
between discrete and continuous settings.

The fact that the continuum limits of current paths satisfy
the restriction property turns out to imply immediately that, in
the language of CFT, the point contacts are points of insertions
of (Virasoro) primary conformal boundary operators. The
connection between current paths and restriction measures
opens up the possibility to obtain analytical results for
disorder-averaged PCC’s at the IQH critical point with a variety
of boundary conditions. In addition, we show how our results
naturally apply to the SQH transition, where the current paths
are percolation hulls which, in the continuum limit, are known
to be described by SLE and are rigorously known to satisfy
the restriction property.

Problems of classical diffusion and transport in two dimen-
sions in a strong perpendicular magnetic field67–70 also admit a
description in terms of conformal restriction. This is especially
clear in the classical limit of the Chalker-Coddington model
considered in Ref. 70, where it was shown that in the
continuum limit conductances of various kinds can be obtained
by solving Laplace’s equation with tilted (oblique) boundary
conditions. The tilt angle is the Hall angle. This setting is
naturally related to Brownian motions reflected at an angle
(related to the Hall angle) upon hitting a reflecting boundary.
Such reflected Brownian motions in fact underlie microscopic
constructions of arbitrary restriction measures.55 A field theory
formulation of classical high-field transport was given in the
form of a Gaussian model which is the linearized version of
Pruisken’s (replica) sigma model for the IQH effect.70

The same Gaussian model field theory results from lin-
earization of a different nonlinear sigma model that describes
thermal transport of quasiparticles in disordered superconduc-
tors in class D in 2D.71–73 The perturbative renormalization
group flow in this model is towards weak coupling, and in
a finite system of size L one can linearize the nonlinear
sigma model to obtain the Gaussian model with a coupling
constant of order (ln L)−1. In this limit, quasiparticle transport
is essentially classical with thermal conductivities (divided
by temperature, and in the corresponding units) growing
logarithmically with length scale σxx ∼ ln L, while σxy is
arbitrary. Thus, our results obtained from the general theory
of conformal restriction apply to this system as well.

Before we proceed with a detailed derivation of our results,
we briefly summarize them here. The main results that apply
to all systems that we have mentioned above are as follows:

(1) Disorder-averaged PCCs within microscopic models
are mapped to classical statistical mechanics problems with
positive, albeit in some cases nonlocal, weights.

(2) The so-obtained weights are intrinsic, which means that
they are specific to certain geometric objects, and depend only
on the shape and the structure of these objects, while they are
independent of the shape of the rest of the system and of the
boundary conditions. These weights also satisfy the crucial
restriction property with respect to deformations of absorbing
boundaries. More details regarding the meaning of intrinsic
weights and the significance of the boundary conditions will
become clearer in the sequel.

(3) Upon assuming conformal invariance we find that
current insertions through point contacts on a boundary are
(Virasoro) primary CFT operators. The dimensions of these

operators are known exactly in some cases, and numerically
in others. Other operators related to changes in boundary
conditions are also shown to be primary. This immediately
allows us to use global conformal invariance to determine
disorder-averaged PCCs that reduce to two- and three-point
functions of primary operators [see Eqs. (109), (113), (115),
(117), and (125)]. This also sets the stage for future work
addressing the computation of PCCs that reduce to the more
complex four-point functions.

The rest of the paper is organized as follows. In Sec. II, we
explain the conformal restriction property. We also explain in
general terms how the graphical representation of boundary
PCCs in terms of Feynman paths satisfies restriction with
respect to absorbing boundaries. In Sec. III, for each of the
models mentioned above (IQH, SQH, diffusion in strong
magnetic field, and the metal in class D), we provide a
detailed derivation of the relation between the disorder-
averaged PCCs and classical weights satisfying the restriction
property. Specifically, in Sec. III A we will explicitly show
how the construction outlined in Sec. II works for the
disorder-averaged PCCs in the Chalker-Coddington model
for the integer quantum Hall plateau transition.32 We do the
same for the network model for the SQH transition24 through
the mapping to classical percolation26 in Sec. III B, then for
the classical limit of the Chalker-Coddington (CC) model in
Sec. III C, and for the metal in class D in Sec. III D. Section IV
is devoted to a presentation of the theory of conformal
restriction and multiple SLEs. Section V sets up some useful
notation and explains the relation of conformal restriction and
SLEs to CFT in the so-called Coulomb gas formalism. In
Sec. VI, we make use of the conformal restriction theory
to obtain certain information on the transport behavior of
the systems of interest. We establish the functional forms
of disorder-averaged PCCs in several geometries. We also
compute the conformal weights (scaling dimensions) of some
of the relevant primary operators. Some of these weights
turn out to be superuniversal in the sense that they are fully
determined by conformal restriction alone, and do not depend
on the particular symmetry class of the model (see Table I for a
summary). In Sec. VII, we discuss our results with the view on
possible extensions and generalizations. Appendices provide
some relevant background information from graph theory, and
details of some calculations.

II. CONFORMAL RESTRICTION AND MODELS
WITH c = 0

We begin this section by describing the conformal restric-
tion property. Then we explain how current paths contributing
to boundary PCCs at Anderson critical points naturally satisfy
this property with respect to absorbing boundaries (which, we
recall, describe ideal leads attached to the boundaries).

A. Conformal restriction property

Consider a statistical ensemble of curves defined in a simply
connected domain D of the complex plane. All these curves
start at a fixed point a on the boundary of D and end at
another fixed boundary point b (see Fig. 1). The ensemble
is specified by a finite measure on the curves. The measure
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FIG. 1. Restriction property for curves. A curve γ in D is
restricted not to enter the sets A. The portions of the boundary where
the set A can be attached are shown by dashed lines. They correspond
to absorbing boundaries in the physical models we consider. Left:
one-sided restriction. Right: two-sided restriction.

can be normalized to be a probability measure, but it is more
natural and convenient to think about unnormalized weights
associated with curves in the ensemble, similar to Boltzmann
weights of configurations in statistical mechanics.

Next, consider a set A such that the topology of the
subdomain D \ A is the same as that of D. This means that
A is “attached” to the boundary of D, so that D\A is simply
connected, and that the points a and b belong to the parts of
the boundary that are common between D and D\A. Notice
that we allow for sets A that have more than one connected
component.

The original ensemble of random curves can be used to
define two new ensembles of curves in the subdomain D\A.
The first one is obtained by restriction: it is the ensemble of
curves in D conditioned not to intersect A. In other words, of
all the curves in the original ensemble we keep only those that
do not enter A. To a curve γ ∈ D\A this definition assigns
the same weight in the new ensemble that this curve has in the
original ensemble. The second way to define a new ensemble
in the sub-domain is to choose a conformal map � from D\A

to D that fixes the points a and b [�(a) = a, �(b) = b], and
to any curve γ ∈ D\A assign the weight of its image �(γ ) in
the original ensemble. This is called the conformal transport
of the probability measure.

Now the original ensemble is said to satisfy the conformal
restriction property if both ways of defining a new ensemble in
the subdomain D\A lead to the same probability measure on
curves for any set A of the type described above. Note that the
equivalence is at the level of probabilities and not statistical
weights.

If in this construction we use sets A that can only border
the boundary of D on one arc from a to b, say, the one that
goes counterclockwise, then we have the so-called one-sided
restriction (see the left panel in Fig. 1). If different connected
components of A can be attached to either of the arcs of the
boundary, we have the two-sided restriction (see the right panel
in Fig. 1). Notice that this is a stronger property since any two-
sided restriction measure automatically satisfies the one-sided
restriction, but the opposite is not necessarily true.

a

b

A

K

A

a

b

A

K

FIG. 2. Restriction property for sets. A compact set K in D is
restricted not to enter the set A. The portions of the boundary where
the sets A can be attached are shown by dashed lines. They correspond
to absorbing boundaries in the physical models we consider. Left:
one-sided restriction. Right: two-sided restriction.

It is known55 that the only ensemble of simple curves that
satisfies the two-sided conformal restriction property is the
SLE8/3. However, we can consider more general sets K ⊂ D

that “touch” the boundary of D only at the two fixed points a

and b (see the right panel in Fig. 2).74 In this case we get a one-
parameter family of two-sided restriction measures (that is,
statistical ensembles of such sets, or clusters, K) characterized
by the restriction exponent h. If the sets K are allowed to touch
the boundary only along, say, the clockwise arc from a to b,
then we get more general one-sided restriction measures (see
the left panel in Fig. 2). All restriction measures are fully
classified and, moreover, there is an explicit construction of all
of them.55

The restriction property defined by the condition of avoid-
ance of sets A attached to the boundary immediately implies
the following. Consider the right panel in Fig. 2. It is clear
that a set K intersects A if and only if its boundary (shown
by thick curves) intersects A. Thus, the restriction property
does not care about the internal structure of the set K , and it
is sufficient to “fill it in” and consider the boundaries of the
filled-in sets. This means that two different ensembles of sets
that only differ by their internal structure, but have the same
fillings and boundaries, lead to the same restriction measure.
An example of this is provided by ensembles of Brownian
excursions and percolation hulls conditioned to avoid the
boundary (see Sec. III for details).

We note in passing that for a certain range of the restriction
exponent h (h < 35/24), samples of two-sided conformal
restriction measures (the filled-in sets K) have so-called cut
points.57 These are points with the property that if one of the
them is removed, the filled-in set K becomes disconnected.
These points are shown on the right panel in Fig. 2 as
intersections of the “left” and “right” boundaries of K . These
points are similar to the so-called “cutting bonds,”75 which are
important components in the structure of percolation clusters.
In fact, in the mapping to percolation for the SQH transition,
the cut points are exactly the cutting bonds of the critical
percolation clusters.

For a one-sided restriction measure (see the left panel in
Fig. 2), its sample may touch the portion of the boundary where
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we are not attaching sets A. Then all statistical information
related to the restriction property is encoded in the “left”
filling of the set K or, equivalently, in its “right” boundary.
In either case, as we have mentioned in the Introduction,
the boundaries of restriction measures are variants of SLE8/3

known as SLE(8/3,ρ). We shall give more details on SLE(κ,ρ)
in Sec. IV.

As we have already mentioned, it is more natural to think
of unnormalized restriction measures. In this case the total
weight of a restriction measure can be thought of as a partition
function ZD(a,b), which is the sum of weights of all sets
K in the ensemble. We point out that ZD(a,b) is somewhat
arbitrary since it depends on an arbitrary normalization. This
is especially subtle when we imagine obtaining ZD(a,b) from
a partition function in a discrete microscopic model (as in the
examples in Sec. III). Such a derivation will typically involve
an infinite normalization in the continuum limit. However,
once a particular normalization is chosen for each microscopic
model of interest, the partition functions ZD(a,b) become well
defined in the continuum, and contain meaningful information
through their dependence on the domain D, the marked points
a and b on the boundary ∂D where the random sets K intersect
the boundary, and on the type of the restriction measure that
we consider. [See Sec. IV A for a more in depth discussion
of this point, which is based on the definition of the partition
function ZD(a,b) in terms of a physical quantity, namely, the
disorder-averaged PCC g(a,b) [see Eq. (3)], and the notion of
current conservation.]

B. Critical curves at c = 0 and disordered systems

Consider now a finite 2D disordered conductor occupying
a domain D. We can place small contacts at points a and
b on the boundary of D and measure the boundary PCC
g(a,b) between the contacts. In this paper, we will focus
specifically on systems described by network models of
Chalker-Coddington (CC) type (see Fig. 3). Then, in general,
a diagrammatic approach can be developed for computing the
disorder-averaged conductance 〈g(a,b)〉 (more details will be
presented below for specific models). In particular, “Feynman”
paths drawn on a network for a system defined in the domain
D determine contributions to 〈g(a,b)〉. All these paths begin at

1
1

12’
1’

1’2

2’A

B
2

a

b

FIG. 3. The Chalker-Coddington network model. The fluxes
propagate on the links in the directions shown by the arrows. The
bold line connecting the links a and b on the boundary represents
a Feynman path or a picture (see main text) contributing to the
point-contact conductance g(a,b) between these two contacts.

the point a and end at the point b and are connected, which is
a crucial feature of a disordered system. Indeed, for a system
with quenched disorder, we must average not the partition
function, but the free energy. While the partition function
generates all paths, the free energy generates connected paths
only.

Let us examine under what conditions the Feynman paths
satisfy restriction. In order to do so, we consider two sets of
Feynman paths:

(1) The Feynman paths for 〈g(a,b)〉 for the system defined
in the domain D\A.

(2) The Feynman paths for 〈g(a,b)〉 in D which do not
enter A.
It is easily seen that paths from the two sets will have the same
weight after disorder averaging if the rules for generating the
paths do not depend explicitly on the domain in which they are
defined. The only dependence on the domain is that the paths
are drawn in that domain. In other words, the crucial condition
for a set of curves to satisfy restriction is that the weights of
the curves are intrinsic, namely, the weight of a curve may be
determined by examining its shape, without reference to the
shape of the system (domain) it is in. A simple example of
an intrinsic weight is the probability of a random walk on a
square lattice, which is 4−N , where N is the total number of
steps in the walk. This weight is intrinsic since it depends only
on the length of the walk, but not on the domain in which the
walk happens.

An important caveat has to be added to this statement:
special boundary conditions must be chosen in order to allow
us to identify the weights of the paths described in items 1
and 2 above. These boundary conditions may be described
as the “absorbing boundary conditions” and often come up
naturally in the study of disordered systems: they describe, as
already mentioned, the presence of ideal leads attached to the
boundary. Indeed, a given path may approach the boundary,
and then a certain weight will be associated with the path
turning back into the bulk or escaping the system through the
boundary. For network models, these weights are determined
by parameters ascribed to a particular node that is on the
boundary of the network. For the weights to be intrinsic, they
must not depend on whether a particular node lies on the
boundary or in the bulk of the system. Therefore, a boundary
node should be such as to allow a path going through that node
to escape the system. A boundary with such nodes is called
absorbing, and in physical terms it is realized by attaching ideal
leads to the disordered system. A microscopic picture of the
absorbing boundary for the CC network is shown in Fig. 4. The

FIG. 4. CC network with absorbing boundary.
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role and the importance of the absorbing boundary conditions
will be described in more detail in Sec. III, where we shall also
describe in more detail the assignment of classical statistical
weights to sets of Feynman paths, after disorder averaging.

As in the formal definition of the restriction property
above, it is sufficient to consider not the Feynman paths
themselves with all their internal structure (multiple loops
and crossings), but their fillings and boundaries. This will be
implicitly assumed in the following. In particular, in the case
of the CC model considered in Sec. III A, we will introduce
the “pictures” that emerge as important geometric objects
determining contributions to conductances. They will derive
from disorder-averaged pairs of Feynman paths on the links of
the network model, and will have loops. However, as for any
sets satisfying restriction, it will be sufficient to consider the
filled pictures (i.e., the geometrical objects that result when all
internal “holes” of a picture are filled) and the boundaries of
these filled pictures, especially in the continuum limit. In the
presentation given in the following, we sometimes will refer
to both filled and unfilled objects as pictures to simplify the
discussion. However, when we need to distinguish a picture
and its filling, we will make the distinction explicit.

In order to establish conformal restriction, we must assume
that an alternative way of obtaining the paths in the first set (in
item 1 above) is to conformally map the paths from domain
D onto domain D\A. But, this assumption is the standard
assumption of conformal invariance of critical systems in two
dimensions. So we expect conformal restriction to hold for
the set of disorder-averaged Feynman paths for a disordered
system at criticality.

In order to connect this conformal restriction property
to probability theory, we must also show that the weights
obtained for configurations of paths after disorder averaging
are positive, such that they can be considered as classical
statistical weights. This will hold in the systems of interest
to us, as discussed in Sec. III. We expect that a similar
formulation, utilizing Feynman paths, is possible for a large
class of network models describing other disordered systems.

In all cases that we consider, the relevant classical geometric
objects describing disorder-averaged PCCs at critical points
become samples of conformal restriction measures in the
continuum limit. This immediately leads to the following
consequences. First, this means that the disorder-averaged
PCCs are equal (up to some normalization factor) to the
partition functions that we have introduced above:

〈g(a,b)〉 = ZD(a,b). (3)

The normalization factor that is involved in this relation
reflects the freedom of normalization of the partition function
ZD(a,b) that we have mentioned above at the end of Sec. II A.
Once this normalization is fixed for a given system, the
meaningful dependence on D,a,b is the same for the PCC
and the partition function.

The relation (3) alone has very strong implications. We will
see in Sec. IV that the partition functions ZD(a,b) transform
under conformal maps as two-point functions of (Virasoro)
primary operators located at positions a and b. This turns out to
imply that the current insertions at the absorbing boundary (for
a two-sided restriction) or at a juxtaposition of the absorbing
and a reflecting boundary (for a one-sided restriction) are

n

τ

n

τ

FIG. 5. CC networks with two types of boundary condition
changes. Top (bottom): right (left) boundary juxtaposed with the
absorbing boundary.

primary CFT operators, and one can use tools from CFT to
study their correlation functions.

Second, the boundaries of the relevant classical objects
(i.e., of the pictures) are described by SLE(8/3,ρ). Based on
the specific physical situations that we consider, the parameter
ρ in this description can take three possible values that we will
call ρA, ρRA, and ρLA. The first of these, ρA, corresponds to
the two-sided restriction measure, which is relevant for a point
contact placed at the absorbing boundary. The other two values
correspond to one-sided restriction measures that appear when
we place a point contact at a juxtaposition of the absorbing
boundary with one of two possible reflecting boundaries (as,
e.g., depicted at point point b in Fig. 15). These two possible
reflecting boundaries appear due to the fact that we consider
network models with a directionality (an “arrow”) on the links
(designed to capture the physics of conductors with broken
time-reversal invariance). Thus, we can have right and left
reflecting boundaries that would, away from the critical point,
support “edge states” propagating towards the point contact or
away from it, correspondingly (see Fig. 5). More precisely,
to distinguish the two types of reflecting boundaries, we
introduce the following notation. Let n̂ be the inward normal
unit vector, ẑ be the unit vector along the z axis normal to the
plane of the network, and τ̂ = n̂ × ẑ a unit vector tangential
to the boundary. The triple τ̂ ,n̂,ẑ is a right-hand triad. The
vector τ̂ can be in the direction of the current flow along the
boundary, or can be opposite to it, and this is the distinction
between the two types of reflecting boundaries. We will call
a reflecting boundary right if the direction of the current flow
at the boundary is along τ̂ . Similarly, on a left boundary, the
current flows opposite to τ̂ . If we introduce x and y coordinates
in Fig. 5 in the usual way, then τ̂ ,n̂ will be the unit vectors
in the x and y directions, respectively. The reflecting lower
boundaries in the top (bottom) panel of Fig. 5 are examples of
right (left) boundaries.

We will argue in Sec. VI that in all models considered in
this paper one obtains the value ρA = 2/3, which turns out
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to give a scaling dimension hA = 1 for the conserved current
operator. At the same time, the values of ρRA and ρLA (hRA and
hLA) are known analytically only for the SQH critical point,
as well as for the classical limit of the CC model. For the IQH
transition, these values are known from numerical simulations
of the CC model.76

III. RESTRICTION IN SPECIFIC MODELS
OF DISORDERED ELECTRONIC SYSTEMS

In this section, we present a detailed analysis of boundary
PCCs in four models of disordered electronic systems: the
Chalker-Coddington model for the IQH transition, the SU(2)
network model for the SQH transition, the classical limit of
the CC model for diffusion in strong magnetic fields, and a
weakly coupled nonlinear sigma model for a metal in class D.

A. Feynman paths and restriction in the
Chalker-Coddington model

In Ref. 32, Chalker and Coddington proposed the following
network model to describe the IQH plateau transition. The
network consists of links and nodes as shown in Fig. 3.
The links carry complex fluxes zi , and the nodes represent
(unitary) scattering matrices S connecting incoming (z1,z2)
and outgoing (z1′ ,z2′) fluxes:(

z1′

z2′

)
= S

(
z1

z2

)
=
(

α β

γ δ

)(
z1

z2

)
. (4)

For the time being, the scattering amplitudes α, . . . ,δ are
assumed to be complex numbers constrained only by the
unitarity of S, different for different nodes, which allows
us to formulate our model for disordered samples with
any realization of disorder. A particular distribution for the
scattering amplitudes will be specified later.

There are two types of nodes in the network, the A and the
B nodes, which live on one (A) or the other (B) sublattices
of nodes, as indicated on Fig. 3. Unitary scattering matrices
always admit the so-called polar decomposition, which for the
sublattice S (A or B) is written as follows:

SS =
(

eiφ1 0

0 eiφ2

)⎛⎝
√

1 − t2
S tS

−tS

√
1 − t2

S

⎞
⎠(eiφ3 0

0 eiφ4

)
.

(5)

Such parametrization is redundant, but when the scattering
matrices are multiplied together, the elements of the diagonal
unitary matrices are combined in such a way that the resulting
phase factors are associated with links rather than with
nodes. In the CC model these link phases are assumed to be
independent random numbers uniformly distributed between
0 and 2π . Note also that the only negative entry in the nodal
scattering matrix [the middle factor in Eq. (5)] corresponds to
the scattering from the lower incoming channel (labeled 1) to
the lower outgoing channel (labeled 2′) in the usual pictorial
representation of the CC network (see Fig. 3).

Parameters tA,tB have a simple probabilistic meaning: t2
A is

the probability to turn right upon reaching an A node, and t2
B is

the probability to turn left upon reaching a B node. The model

is isotropic when the possible values of the nodal parameters
tS are related by

t2
A + t2

B = 1. (6)

When this equality is satisfied, the probabilities for turning
left (or right) at a node are the same for the two sublattices of
nodes. Then, depending on whether tA < tB , at large scales the
system flows either to the insulating state with zero two-probe
conductance g, where all the states are localized, or to the
quantum Hall state, where only the bulk states are localized,
but there are edge states giving a quantized value of the
conductance. The transition between these regimes happens
(by symmetry) when tA = tB = 2−1/2. This determines the
critical point in the isotropic CC model.

Let us label the links of the network by integers j . We
define an (open) Feynman path f to be an ordered sequence
j1 = a,j2, . . . ,jN(f )+1 = b of oriented links on the network
that form a continuous path from link a to link b, where a and
b are distinct. Here N (f ) + 1 is the total number of links in
the path f . Then N (f ) is the number of turns along the path
f , which is the same as the number of times the path goes
through a node. A given link j can be traversed a multiple
number of times nj (f ) in a given path f , except for the first
and the last links, where na(f ) = nb(f ) = 1. [The numbering
is such that jk 	= a,b for k = 2,3, . . . ,N(f ).]

For the CC model away from the critical point we need to
separately keep track of the number of left (L) and right (R)
turns on each sublattice of nodes. Denoting these numbers for a
given path f by NA,R(f ), NA,L(f ), NB,R(f ), and NB,L(f ), we
obviously have NA,R(f ) + NA,L(f ) + NB,R(f ) + NB,L(f ) =
N (f ).

If we “forget” the order of the links traversed by a path f ,
but retain the multiplicity nj (f ) of each link, we get what we
will call a picture. More generally, a picture p is a map from a
subset of all links to the set of positive integers p : j → nj . In
other words, a picture p can be represented by positive integers
nj associated with some links on the network. It is actually
more convenient to associate nj = 0 with the links that do
not belong to a picture. This convention will allow us to write
unrestricted summations over the links of the network.

It is clear that every path f gives rise to a picture p(f ).
However, two or more paths that traverse the same set of
links in different order will correspond to the same picture.
The simplest example is given by the figure “eight” shown
in Fig. 6. Moreover, there are pictures that do not come from
any legitimate path. For example, if the sum of the integers
nj on the two incoming links is not equal to the sum of the

FIG. 6. Two paths that correspond to the same picture. Dots mark
the turns that contribute with the minus sign, so that for the path on
the left N−(f ) = 1, and for the one on the right N−(f ) = 3.
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integers on the two outgoing links at a given node, the picture
with such integers can not come from a legitimate path. We
denote by F (p) the set of all paths that give rise to a given
picture p. Thus, for all f ∈ F (p) we have p(f ) = p, and
for some pictures p the set F (p) is empty. In fact, there is a
precise relation between pictures and Feynman paths outlined
in Appendix A, where, in particular, we show how may distinct
paths correspond to a given picture.

In what follows we will only encounter pictures that come
from Feynman paths. Note that for all f ∈ F (p) the number
of turns N (f ) is the same:

N (f ) =
∑
j∈f

nj − 1 = N (p), f ∈ F (p). (7)

Thus, this number [as well as the individual link numbers
nj (f ) = nj (p)] characterizes a picture rather than a single
path f , and we will emphasize this by denoting this number
by N (p) whenever appropriate.

Now we consider the quantum mechanical amplitude
Af (a,b) for a path f that goes from a link a to a link b

on the network. The amplitude is given by the product of the
phase factors einj φj for each link j ∈ f , and matrix elements
of the scattering matrices of the nodes encountered by the path
f . Let N−(f ) be the number of turns that contribute a negative
factor −tS to the amplitude. Then we have

Af (a,b) = (−1)N−(f )t
NA,R(f )
A

(
1 − t2

A

)NA,L(f )/2

× t
NB,L(f )
B

(
1 − t2

B

)NB,R(f )/2
ei
∑

j nj (f )φj . (8)

The total amplitude A(a,b) for getting from link a to link b

is given by the sum of Af (a,b) over all the paths that go from
a to b (we denote this set by Fab):

A(a,b) =
∑

f ∈Fab

Af (a,b). (9)

We can rewrite this sum by breaking it into the sum over all
pictures that come from any of the paths in Fab [we denote
this set of pictures by P (Fab)], and the subsequent sum over
all the paths giving rise to a specific picture:

A(a,b) =
∑

p∈P (Fab)

ei
∑

j nj (p)φj S(p), (10)

where

S(p) =
∑

f ∈F (p)

(−1)N−(f )t
NA,R(f )
A

(
1 − t2

A

)NA,L(f )/2

× t
NB,L(f )
B

(
1 − t2

B

)NB,R(f )/2
. (11)

For the isotropic model (for which tA = tB), this simplifies to

S(p) =
∑

f ∈F (p)

(−1)N−(f )t
NR(f )
A

(
1 − t2

A

)NL(f )/2
, (12)

where NR(f ) and NL(f ) are the total numbers of right and
left turns along the path f . At the critical point of the isotropic
model, this further simplifies to

S(p) = 2−N(p)/2
∑

f ∈F (p)

(−1)N−(f ). (13)

A physically relevant observable is the point-contact
conductance g(a,b) between the links a and b given by

g(a,b) = |A(a,b)|2. It is worth pointing out that the amplitude
A(a,b) determining the PCC is different from the Green’s
function G(a,b) (the propagator) between the two points. The
PCC in the CC model is defined64 by cutting the two links a

and b of the network and using the resulting open half-links
as sources and drains for the current. Thus, the PCC, as any
other conductance, is a property of an open system, while
the Green’s function is a property of a closed system. The
difference is also manifest in the graphical representation of
the two quantities: while the PCC gets contributions only from
open Feynman paths that go through the initial and the final
links only once, the Green’s function would include all paths
between the links.

The conductance g(a,b) is a random quantity that depends
on all the phases φj . In the following, we will only be
concerned with the disorder averages of PCC’s over the
distribution of the phases. We will denote such averages
by angular brackets. Using the representation (10) of the
propagator as a sum over pictures, we can write

g(a,b) =
∑

p1,p2∈P (Fab)

ei
∑

j [nj (p1)−nj (p2)]φj S(p1)S(p2). (14)

Averaging66 this expression over the random phases φj forces
the numbers on each link to be the same for the pictures p1

and p2. This can be written as〈
ei
∑

j [nj (p1)−nj (p2)]φj
〉 =∏

j

δnj (p1),nj (p2) = δp1,p2 , (15)

which implies that different pictures do not interfere when we
compute their contributions to 〈g(a,b)〉. Therefore, we obtain
the following expression for the PCC:

〈g(a,b)〉 =
∑

p∈P (Fab)

S2(p) =
∑

p∈P (Fab)

W (p). (16)

The significance of this formula is that the disorder-averaged
PCC 〈g(a,b)〉 is represented as a sum of positive quantities
W (p) = S2(p) which can be interpreted as classical positive
probability weights associated with pictures p.

We note here in passing that the quantity S(p) is the sum of
the amplitudes for the paths f ∈ F (p) in the CC model where
all the link phases are set to zero. It is known that this (non-
random) model without phases on the links belongs to class D
in the AZ classification, and is equivalent to the nonrandom
2D (doubled) Ising model,77 equivalent to free Dirac fermions.
Therefore, the sum A0(a,b) =∑p∈p(Fab) S(p) can possibly be
computed explicitly by diagonalizing the transfer matrix for
this nonrandom network model. The sum is real, and its square
A2

0(a,b) = g0(a,b) (the point-contact conductance of the CC
model without link phases) is straightforward to compute:

g0(a,b) =
(∑

p

S(p)

)2

=
∑

p

S2(p) +
∑

p1 	=p2

S(p1)S(p2),

(17)

which differs from the average conductance of the actual CC
model [Eq. (16)], where the second summand is absent.

The pictures arising from Feynman paths of the Chalker-
Coddington model, as defined above, can be seen to satisfy
restriction. Consider the average 〈g(a,b)〉, where a and b

165324-8



QUANTUM HALL TRANSITIONS: AN EXACT THEORY . . . PHYSICAL REVIEW B 86, 165324 (2012)

are on the boundary of the sample; the sample is defined
in the domain D as in Fig. 2. Assume that the boundary
conditions are absorbing on that part of the boundary which
goes counterclockwise from a to b (see the left panel in Figs. 2
and 4). The choice of absorbing boundary conditions is crucial.
Electrons approaching a node on the absorbing boundary can
continue their path to the outside of the boundary thus “leaking
out.” As a consequence, the scattering matrix on the boundary
remains to be given by the middle factor in Eq. (5), just as
in the bulk. The fact that the scattering matrix is the same
both at the boundary and in the bulk, and the fact that the
statistical weights are intrinsic to the pictures, together ensure
the restriction property. Indeed, let A be a set appropriate for
the definition of one-sided restriction, as depicted in the left
panel in Fig. 2. Then the pictures contributing to 〈g(a,b)〉 for
the system occupying the domain D\A are the same as the
pictures contributing to 〈g(a,b)〉 for the system occupying the
domain D which do not enter A, with the same weights.

We note that the restriction property is satisfied in the
CC model at the discrete level [i.e., at the level of the (CC)
lattice model], and even away from criticality. At the critical
point in the continuum we can, in addition, assume conformal
invariance. Consequently, we obtain one-sided conformal
restriction for (the continuum limit of) the pictures. This
property immediately implies the following important result:
The contacts where we inject and extract currents in the
CFT description in the continuum become insertions of
(Virasoro) primary operators with certain dimensions hLA or
hRA (depending on the type or the reflecting boundary) next
to the contact. This also means that the right boundary of a
picture is described by SLE(8/3,ρLA) or SLE(8/3,ρRA) for
some values of ρLA,ρRA related to hLA,hRA by Eq. (2).

Note that in order to establish one-sided conformal restric-
tion, apart from the assumption of conformal invariance, little
had to be known about the actual weights of the Feynman
paths or the quantum nature of this problem. However, a few
properties were essential:

(i) The weights of pictures are intrinsic, they do not depend
on the shape of the domain, and are determined by the same
rules on the boundary and in the bulk of the system,

(ii) The weight of each picture is a positive quantity,
(iii) The pictures are connected: loops, or “vacuum to

vacuum” diagrams, are absent. This is related to the vanishing
of the central charge.
We will see shortly that the same properties hold for paths in
other network models.

The above arguments also hold when the whole boundary
of the system is absorbing. In this case, the pictures are seen
to satisfy two-sided restriction, and in the continuum they are
created by insertions of certain primary boundary operators of
dimension hA. Their boundaries (both left and right) are then
described by SLE(8/3,ρA). We will argue in Sec. VI that ρA =
2/3 and hA = 1. As we have mentioned above, the parameter
ρ for one-sided restriction can take two possible values ρRA

and ρLA, depending on the two types of reflecting boundary
conditions on that part of the boundary which goes clockwise
from a to b (see Fig. 5 above). In the CC model, we can not at
present analytically determine the values of ρRA and ρLA from
microscopic considerations. They can be found numerically,76

and then various critical exponents and correlation functions

will be determined by these values and the theory of conformal
restriction. At the same time, in the other three models
described below, these values are known exactly, and the theory
that we present for those models is complete.

We have already mentioned that the restriction property
can be completely formulated in terms of the boundaries of
filled-in pictures. Therefore, one can further rearrange the sum
over pictures in Eq. (16) by grouping together pictures which
have the same fillings. Labeling such fillings by K [similar to
the notation for samples of restriction measures used above
(see Fig. 2)] and denoting the set of pictures with the same
filling K as P(K), we can write

〈g(a,b)〉 =
∑
K

W (K), W (K) =
∑

p∈P(K)

W (p). (18)

Notice that while the sum over pictures in Eq. (16) is infinite
even for a finite network, the corresponding sum over fillings
is in this case finite.

Let us mention here that at the microscopic level the cut
points discussed in Sec. II A correspond to particular links in a
filling K . Namely, these are links j that have multiplicity one
(i.e., nj = 1) in each picture p ∈ P(K). It is easy to see that a
filling can be broken into “irreducible” parts by removing the
“cut links,” and that the probability weight of a filling is given
by the product of the weights of its irreducible components.

We finish this section with a comment about a recent paper
by Ikhlef, Fendley, and Cardy (Ref. 78). In this paper, the
authors consider a certain truncation of the CC model and its
integrable deformations. We notice here that this truncation has
a natural interpretation in our language of pictures. Namely,
it is equivalent to keeping only those pictures where all link
multiplicities nj (p) � 1. In this case, it is actually easy to show
that the sign factors (−1)N−(f ) are the same for all the paths f ∈
F (p) contributing to a given picture p. [The numbers N−(f )
do depend on a particular path, but their parity is the same for
all the paths f ∈ F (p).] However, the truncated model with
tA = tB = 1/

√
2 appears to be noncritical. To make it critical,

one has to introduce an additional weight z for every visited
link, and tune z to a particular value zc. As a consequence, at
the critical point of the isotropic truncated model, the weight
of a picture is given by

W (p) = S2(p) =
(

zc

2

)N(p)

|F (p)|2, (19)

where in this case N (p) + 1 is simply the number of links in
the picture, and |F (p)| is given by the first factor in Eq. (A4)
from Appendix A, |F (p)| = det Lk . (In the second factor, the
outdegrees of all the vertices are either 1 or 2, and all the edge
numbers mij = 1.) One can also consider “higher” truncations,
where only the pictures with nj (p) � k are kept. It is easy
to see that all such truncated models, including the one in
Ref. 78, satisfy the restriction property on the lattice and,
therefore, should be described by conformal restriction theory
(with exponents depending on the truncation level k) at their
conformally invariant critical points (possibly obtained again
by some fine tuning of the link weights).
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B. Network model for the spin quantum Hall effect

The spin quantum Hall (SQH) transition was studied,
numerically, in Ref. 24, and a simple physical picture of the
SQH effect was given in Ref. 25. Average conductances within
the network model employed in Ref. 24 can be obtained exactly
through a mapping to bond percolation on a square lattice.26–31

An example of a percolation configuration that appears in the
mapping is shown in Fig. 7. Within this approach, average
point contact conductances that we focus on in this paper are
explicitly given in terms of probabilities in the percolation
problem. These probabilities are intrinsic probabilities of
percolation hulls that join the two point contacts. As such,
they satisfy restriction property with respect to absorbing
boundaries, similar to the weights of the pictures in our
treatment of the CC model above.

Specifically, consider the average PCC 〈g(a,b)〉 between
the links a and b, at the critical point of the SQH network
model. As is shown in Ref. 30, this is equal to

〈g(a,b)〉 ∝ P (a,b) =
∑

p

P (p; a,b), (20)

where P (a,b) is the probability that the links a and b are
connected by a percolation hull. Every hull p that joins these
links contributes to the last expression above with its own
probability P (p; a,b).

We see that the geometric objects that satisfy restriction
with respect to absorbing boundaries for the network model of
the SQH transition are percolation hulls. At the critical point
and in the continuum limit, these hulls become SLE6 lines
(this is rigorously known for the site percolation on triangular
lattice and its variants,79–81 and is believed to be true for
other percolation models). In relation to conformal restriction,
SLE6 was studied in Ref. 55 where it was shown that
chordal SLE6 conditioned not to intersect the real line satisfies
two-sided conformal restriction with exponent hA = 1. It then
follows that the right boundary of such conditioned SLE6 is
SLE(8/3,ρA) with ρA = 2/3. Furthermore, SLE6 conditioned
not to intersect the positive half-line satisfies the one-sided
conformal restriction with the exponent h = 1/3. Its right
boundary is SLE(8/3,−2/3).

As we will see in Sec. VI, the microscopic picture of
the SQH critical point as the critical bond percolation on a

r1 r2

FIG. 7. The average point-contact conductance between the links
at r1 and r2 is given by the probability that these points are connected
by a percolation hull.

square lattice allows us to identify the boundary operators
in the corresponding CFT and, consequently, obtain exact
results for various correlation functions of these operators.
Physically, these correlation functions are average PCCs in
the presence of various complicated boundary conditions.
In the case of SQH transition, they are known explicitly,
including values of conformal dimensions. In particular, we
will show that hLA = 1/3 and hRA = hA = 1 (ρLA = −2/3,
ρRA = ρA = 2/3). However, the main point of this paper is
that in all systems that we consider, the same exact results
(including nontrivial spatial dependence of PCCs) are valid,
except that the values of the two exponents hRA and hLA are
not always known exactly.

C. Classical limit of the Chalker-Coddington model

The two network models considered so far both had critical
points separating insulating states. In this section, we consider
a classical variant of the CC network model which leads to a
critical (metallic) behavior for any values of parameters. This
classical model describes diffusive transport of electrons in
high magnetic fields. The model has been studied in detail in
Ref. 70. Here we briefly summarize results of this analysis.

The classical limit of the (isotropic) CC model is obtained
if we neglect quantum interference effects. Thus, we consider
a classical particle performing a random walk along the links
of the network. Every time the walker approaches a node, it
turns right with probability R = t2

A or left with probability T =
1 − t2

A. Notice that in this limit the model becomes nonrandom
since the (random) phases that were present on the links in the
quantum CC model are not considered any more. Observables
in this model are not random quantities then, and we do not
need to average them. For example, the PCC g(a,b) in this
model is simply given by the probability that a random walker
starting at the link a reaches link b for the first time without
returning to a. Thus,

g(a,b) =
∑

p

P (p; a,b), (21)

where P (p; a,b) is the probability for a random walker to
follow a particular path p between the links a and b. These
probabilities are easily seen to satisfy restriction with respect
to absorbing boundaries.

In an infinite system, the time evolution of probability
ρ(r,t) for a random walker to be at point r at time t can
be obtained by the Fourier transform. In the long-wave limit,
this results in a diffusive spectrum

−iωk = Dk2, D = a2

4�t

RT

R2 + T 2
, (22)

where a is the lattice spacing, and �t is the time step. This
leads to the diffusive behavior of the coarse-grained probability
density ρ̄ in the continuum limit:

∂tρ(r,t) = D∇2ρ(r,t). (23)

The corresponding probability current (which can be micro-
scopically defined in various equivalent ways) is

jx(r,t) = −(σ 0
xx∂x + σ 0

xy∂y

)
ρ(r,t),

(24)
jy(r,t) = −(σ 0

yx∂x + σ 0
yy∂y

)
ρ(r,t),
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L

θH
L

gradρ n

τ

v

θL

FIG. 8. Various directions and angles at a “left” boundary. Here
T = 1/4, R = 3/4, so that γ = tan θH

L = −1/3.

where

σ 0
xx = σ 0

yy = RT

R2 + T 2
, σ 0

xy = −σ 0
yx = − T 2

R2 + T 2
(25)

are the components of the classical conductivity tensor. We
see that the coarse-grained density ρ is playing the role of the
electrochemical potential φ, related to the electric field in the
system by E = −∇φ.

In a steady state the diffusion equation (23) reduces to the
Laplace equation

∇2ρ(r,t) = 0. (26)

As in the cases considered above, for a system with
boundaries one can distinguish three types of boundary
conditions: absorbing (corresponding to ideal leads) and “left”
and “right” reflecting (hard wall) (see their definitions at the
end of Sec. II). At absorbing boundaries the probability density
is constant:

ρ = ρ0 on absorbing boundaries. (27)

Nonzero values of the constant ρ0 correspond to a system
which is driven (or biased) by a constant influx of particles
though an absorbing boundary. In a system that has no applied
bias of this sort, ρ0 = 0 reflects the fact that a random walker
that hits an absorbing boundary escapes to the lead and never
returns to the system.

On the other hand, at a reflecting boundary one must impose
the vanishing of the normal component jn of the current. In
Ref. 70, the authors only considered what we call a “left”
reflecting boundary. In this case, the requirement that jn = 0
leads in the continuum to the following boundary condition:

(∂n − γ ∂τ )ρ = 0, (28)

where we have introduced the notation

γ = σ 0
xy

σ 0
xx

= −T

R
. (29)

It is useful to depict this boundary condition by drawing a
straight line orthogonal to the direction of the gradient of the
density at the boundary. In Fig. 8, we show a classical Hall
system occupying the upper half plane. We assume that the
boundary of the system (along the x axis) is a left boundary.
Then, as follows from Eq. (28), the line orthogonal to ∇ρ is in
the direction (T ,R). This direction of the vanishing component
of the density gradient is shown as a dashed line, together with
the direction of the gradient itself (without an arrow). We
define the Hall angle θH

L as the angle that the dashed line
makes with the inward normal. Then we have

tan θH
L = γ. (30)

R
H
R

θR

grad

θ
n

τ

ρ

v

FIG. 9. Various directions and angles at a “right” boundary. Here
T = 1/4, R = 3/4, so that tan θH

R = −1/γ = 3.

Notice that the sign in this expression is consistent since the
angle θH is negative in the usual sense (we go clockwise from
the normal to the dashed line).

Similarly, at a right reflecting boundary, the vanishing of jn

leads to (
∂n + 1

γ
∂τ

)
ρ = 0. (31)

We now depict this boundary condition at a right boundary of
the Hall system occupying the upper half plane (see Fig. 9).
The gradient of the density in this case is parallel to the vector
(T ,R). The direction in which the component of ∇ρ vanishes
is then (−R,T ). We show both these directions in Fig. 9. The
Hall angle defined as before now satisfies

tan θH
R = R

T
= − 1

γ
= − cot θH

L . (32)

It follows then that the Hall angles at the two types of reflecting
boundaries are related by

θH
R − θH

L = π

2
. (33)

A steady (time independent) density and current profiles in
the continuum limit are governed by the Laplace equation
∇2ρ = 0 supplemented by the boundary conditions (27),
(28), and (31) on the tree types of boundaries. There is an
alternative (and equivalent) description of the continuum limit
in terms of reflected Brownian excursions. These excursions
are continuum limits of random walks on the network, which
are conditioned not to hit absorbing boundaries, and which are
reflected in the direction eiθ upon hitting a reflecting boundary
placed along the horizontal (real) axis (see Fig. 10).

This direction can be obtained microscopically from the
classical CC model as follows. Imagine a random walker at
the left boundary shown in the bottom on Fig. 5. Then, in one
time step the walker moves by the distance 2a (a is the lattice
spacing between the middle points of the links of the network)

θH

θ

FIG. 10. The Hall angle θH is measured from the normal to the
reflecting boundary (solid line). The angle θ measured from the
positive direction on the real axis is the angle of reflection of a
Brownian motion started at the boundary point where the reflecting
boundary switches to the absorbing boundary (dashed line).
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along the boundary to the left with probability T (left turn) or
normal to the boundary with probability R (right turn). Then
the expected displacement of the walker after one time step
from the boundary is 2a(Rn̂ − T τ̂ ). This displacement is in the
direction of the vector v ∝ (−T ,R) shown in Fig. 8. We denote
by θL the angle the vector v makes with the tangent vector τ̂ .
Notice that the direction of v is related to the direction of the
dashed line by a reflection across the normal to the boundary,
so we have

θL = π

2
− θH

L . (34)

Similarly, on a right reflecting boundary we have the relation

θR = π

2
− θH

R (35)

(see Fig. 9). This is, actually, a general relation between
the direction of reflection and the direction along which
the gradient vanishes, as can be inferred, for example, from
Dubedat’s paper on reflected Brownian motions.82 As a
consequence of Eq. (33), the angles of reflection at the two
types of reflecting boundaries are related by

θL − θR = π

2
. (36)

Brownian excursions reflected at an angle θ from a part
of the boundary are known to satisfy conformal restriction
property with the (one-sided) restriction exponent55,57

h = 1 − θ

π
. (37)

In terms of the Hall angles θH
R,L, we get the two possible values

of the one-sided restriction exponents corresponding to the two
possible types of reflecting boundaries:

hRA = 1

2
+ θH

R

π
, hLA = 1

2
+ θH

L

π
. (38)

Then the relation (33) implies the following:

hRA − hLA = 1
2 . (39)

While this relation holds for the classical limit of the CC model
(classical diffusion in magnetic field), a priori it is not valid
for other systems we consider in this paper. For example, for
the SQH transition, the exponents are known exactly to be
hRA = 1, hLA = 1/3 (see Sec. VI), so they do not satisfy the
relation (39).

The diffusive behavior in a magnetic field can also be
described by a simple Gaussian theory70 of a complex scalar
field z(r) with the action

S0 = σ 0
xx

4

∫
d2r ∂μz∂μz̄ + σ 0

xy

4

∫
d2r εμν∂μz∂ν z̄, (40)

where z̄ is the complex conjugate of z (and we use the
convention where field configurations are weighted by e−S0

in the functional integral). The propagator of the field z

d(r,r ′) = σ 0
xx

4
〈z̄(r)z(r ′)〉0, (41)

where 〈· · · 〉0 stands for the average in the field theory with the
action S0, satisfies (with respect to the coordinate r) the same
equations and boundary conditions as the density ρ above.

Its relation to transport properties of the diffusive system are
described in detail in Ref. 70.

D. Metal in class D

At the mean field level, the problem of thermal transport
of a disordered superconductor with broken spin rotation
and time-reversal symmetries belongs to class D in the AZ
classification.71–73 A generic model in this class can have an
insulating, a thermal quantum Hall, and a metallic state. The
metallic state at weak disorder can be described by a nonlinear
sigma model. We will be interested in the weak coupling
regime of this model where perturbation theory is justified,
and the replica and the supersymmetry formulations give the
same results. In the compact replica formulation, the sigma
model action is71

S = σ 0
xx

8

∫
d2r tr ∂μQ∂μQ + σ 0

xy

8

∫
d2r tr εμνQ ∂μQ∂νQ,

(42)

where Q is a 2n × 2n matrix from the coset O(2n)/U(n), and
σ 0

xx and σ 0
xy are bare longitudinal and Hall thermal conductiv-

ities in a certain normalization. A possible parametrization for
the sigma model field Q is

Q =
(√

1 − ZZ† Z

Z† −√
1 − Z†Z

)
, (43)

where Z is a complex antisymmetric matrix.
When the bare σ 0

xx is large, we can treat the sigma model
perturbatively. The Hall conductivity is not renormalized
perturbatively. At the same time, at one loop, the diagonal
conductivity is renormalized (with increasing system size L)
as

dσxx

d ln L
= 1

2π
, (44)

so at sufficiently large scale L the conductivity is logarith-
mically large σxx(L) ∼ ln L. If we consider such a large
metallic system in class D, then the leading [in inverse
powers of σxx(L)] behavior of correlation functions (including
transport properties) of the system will be described by the first
nontrivial (quadratic) term of the expansion of the action (42)
in powers of the matrix Z that appears in Eq. (43). In terms
of the matrix elements zij of this matrix, this quadratic term is
simply

S0[Z] = σxx(L)

4

∫
d2r ∂μzij ∂μz̄ij

+ σ 0
xy

4

∫
d2r εμν∂μzij ∂ν z̄ij . (45)

This is, essentially, the same action as S0 [Eq. (40)] except that
there are n(n − 1) copies of the complex field z.

We conclude that the leading transport behavior of metal
in class D is the same as diffusion in magnetic field described
in the previous section, and can be alternatively described by
conformal restriction theory. The value of the Hall conductivity
σ 0

xy is more or less arbitrary, and therefore, in this case we
again deal with arbitrary values of the Hall angles θL,R ∈
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[−π/2,π/2], and the one-sided restriction exponents hL,R ∈
[0,1].

We comment here that there are different network models
in class D, that have been studied numerically.33,36 In one of
these models, the so-called O(1) model, the random phases
on the links can only take values ±1 independently. The
model appears to have only the metallic phase. It is natural
to ask whether one can identify proper geometric objects and
establish the restriction property directly at the level of the
O(1) network model, similar to how it has been done for the
CC model above. The same question exists for other network
models in class D, including the Cho-Fisher model83 and the
network model equivalent to the Ising spin glass.77 At present
this remains an interesting open problem. We note, however,
that a straightforward generalization of the averaging over the
phases in the CC model [see Eq. (15)] to the O(1) model leads
to objects (analogs of the pictures in the CC model) where the
numbers of the advanced and retarded paths on a given link
have the same parity. It is clear then that if we truncate this
description by retaining only the objects which include links
visited by either retarded or advanced paths at most once,
we obtain exactly the truncated model of Ikhlef et al.78 This
illustrates the drastic nature of the truncation procedure which
leads to the same model starting from networks in different
symmetry classes.

IV. THEORY OF CONFORMAL RESTRICTION

In this section we review basic properties of conformal
restriction measures and and their relationship with multiple
SLE(8/3,ρ).

A. Basic theorem of conformal restriction

The basic theorem of conformal restriction states that
the statistics of a restriction measure is determined by a single
real parameter h called the restriction exponent.55 This is true
for both two-sided and one-sided restriction measures. The
proof is based on the idea that the statistics of a restriction
measure in a domain D is fully determined by the collection
of probabilities

PA ≡ P [K ∩ A = ∅] = P [K ∈ D \ A] (46)

that a sample K from this measure avoids an arbitrary subset
A attached to the boundary of D (or, alternatively, that K

stays in the subdomain D′ = D\A), as described in Sec. II A.
One then proceeds to show that PA is uniquely determined
by a single non-negative parameter h that shall be called the
restriction exponent.

In fact, for the case where the restriction measure lies in
the upper half plane H, is anchored at the origin, and aims
at infinity, it was proved that PA is given by the following
expression:

PA = |�′
A(0)|h, (47)

where �A is the conformal map from H \ A to H, which fixes
the origin and infinity �A(0) = 0, �A(∞) = ∞ and has unit
derivative at infinity �′

A(∞) = 1.

To prove this assertion, one proceeds as follows. Take two
sets A and B and consider their union A ∪ B. The probability
PA∪B that a restriction measure avoids A ∪ B can be written
as PA∪B = PAPB|A, where the second factor on the right-hand
side is the conditional probability to avoid B given that A is
avoided. Now, the conformal restriction property, assumed to
hold, means that this second factor can be written as PB|A =
P�A(B), where we have employed the map �A to “remove” the
avoided set A. Thus, we get the functional equation

PA∪B = PAP�A(B). (48)

The rest of the proof consists of solving this equation. In order
to appreciate the equation’s structure we switch notations, and
instead of labeling the probability PA by the set A, we label
it by the map �A and write P (�A). Now A ∪ B is associated
with the map �A∪B = ��A(B) ◦ �A. The functional equation
(48) takes the form

P (��A(B) ◦ �A) = P (�A)P [�A(B)]. (49)

Thus, P maps the composition operation in the space of
conformal maps into simple multiplication. It is clear that
(47) obeys (49) as the factor |�′

A(0)| is the Jacobian of the
transformation �A at the origin, and as such gets multiplied
as successive maps are composed. One can show that,
in fact, |�′

A(0)| is the only solution up to the arbitrary
parameter h.55

Once the basic theorem is established in the form of Eq. (47)
for restriction measures in the upper half plane, it can be
generalized to arbitrary simply connected domains.55 First,
we transport the restriction measure with exponent h from the
upper half plane to a domain D using a conformal map fD

chosen in such a way that fD(0) = a and fD(∞) = b for two
marked points a and b on the boundary ∂D. If we choose a set
A attached to ∂D such that both points a and b belong to the
common boundary of D and its subset D′ = D\A, then the
analog of Eq. (47) in this general situation is

P [K ∩ A = ∅] = P [K ∈ D\A] = |�′
A(a)|h|�′

A(b)|h, (50)

where �A is a conformal map from D′ to D normalized such
that �A(a) = a, �A(b) = b.

One may consider the total weight of all sets K extending
from a to b in the domain D and define this object as the
partition function ZD(a,b) in Sec. II A above. This definition
requires some care, as we have only been dealing with
probabilities until now, in effect dividing by ZD(a,b). To
make sense of the definition, we assign the total weight one
for some given, but arbitrary, domain, and then demand that
the partition function is consistent with conformal restriction
(which is nevertheless a statement about probabilities). It then
may be shown that conformal restriction is only consistent
with the following transformation law:

ZD1 (a,b) = |f ′(a)|h|f ′(b)|hZD2 [f (a),f (b)], (51)

where f (z) is a conformal map from D1 to D2 that maps the
marked points a and b to f (a) and f (b). This transformation
law is that of a two-point correlation function of primary
operators, in terminology of CFT.

All the results in this section so far are valid for both two-
sided and one-sided restriction measures. However, to derive
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Eq. (51), we first concentrate on the (easier) two-sided case. In
this case, the relation (51) is a direct consequence of Eq. (50) if
D1 ⊆ D2, and f (a) = a, f (b) = b. Indeed, the ratio of the two
partition functions is simply the probability that a sample K

of the restriction measure stays in the smaller domain D1, and
this probability, by Eq. (50), is the product |f ′(a)|h|f ′(b)|h.
The opposite situation D2 ⊆ D1 is also a straightforward
consequence when we use the fact that for the inverse map
f −1 : D2 → D1 the derivative is (f −1)′ = 1/f ′. Thus, the
restriction property can be used to relate total weights for
both decreasing and increasing sequences domains, thereby,
extending the result (51) to arbitrary domains D1 and D2 as
long as their boundaries agree at the points a and b. The last
condition can be relaxed as we can always rotate and rescale
the domains to make a coincide with f (a) and b coincide with
f (b). These two operations would only use the assumption
that partition functions are invariant under rotations and are
multiplied by powers of the rescaling factor under scale
transformations. This quite natural scaling property is much
weaker than the conformal covariance. Nevertheless, making
this assumption we see that the transformation law (51) holds
for arbitrary two-sided restriction measures. We shall argue
in Sec. VI A that for all the models of our interest, we have
h = hA = 1 on absorbing boundaries.

In the case of one-sided restriction, we can derive Eq. (51)
as follows. Consider a domain D1 with four marked points a,
b, c, and d on the boundary. The points c and d are where the
reflecting boundary condition switched to the absorbing one,
and the points a and b on the absorbing portion of the boundary
are the “attachment” points for the sets K . Consider all possible
subsets D′

1 ⊂ D1 which agree with D1 at the points a and b but
do not include the points c and d. Assume that the boundary
conditions in D1 are absorbing along the whole boundary.
We now can define the partition function ZD1 (a,b,c,d) by
demanding that it reduces to ZD′

1
(a,b) if we restrict the sets

K contributing to ZD1 (a,b,c,d) to stay in D′
1. Formally, we

define

ZD1 (a,b,c,d)PD1 [K ∈ D′
1] = ZD′

1
(a,b), (52)

where PD1 [K ∈ D′
1] is the probability that the set K (drawn in

D1 with its partly reflecting boundary conditions) stays in D′
1.

Now take a domain D2 and let f be a conformal map from
D1 to D2. Let D′

2 = f (D′
1). We assume that in D2 there are

reflecting boundary conditions between f (c) and f (d) and
the rest of the boundary is absorbing. In D′

2, the boundary
conditions are absorbing everywhere. We notice that

PD1 [K ∈ D′
1] = PD2 [K ∈ D′

2] (53)

by the conformal transport of probabilities. Even though
the domains in question have marked points c and d

(and their images) on their boundaries, the probabilities
above are conformally invariant since, as we will argue
in Sec. VI A, the conformal dimensions of the boundary
changing operators at c and d are zero. Next, for the
domains D′

1 and D′
2, the transformation property (51) is

valid (both domains have absorbing boundaries): ZD′
1
(a,b) =

|f ′(a)|hA |f ′(b)|hAZD′
2
[f (a),f (b)]. Dividing this by the equal

probabilities in Eq. (53) gives

ZD′
1
(a,b)

PD1 [K ∈ D′
1]

= |f ′(a)|hA |f ′(b)|hA
ZD′

2
[f (a),f (b)]

PD2 [K ∈ D′
2]

. (54)

Using Eq. (52) we rewrite this as

ZD1 (a,b,c,d) = |f ′(a)|hA |f ′(b)|hA

×ZD2 [f (a),f (b),f (c),f (d)]. (55)

Finally, we take the limit a → c and b → d with an appropriate
rescaling of the partition functions to get a well-defined finite
limit. Namely, we define

ZD(a,b) = lim
a→c,b→d

|a − c|h′ |b − d|h′
ZD(a,b,c,d), (56)

and similarly for ZD2 [f (a),f (b)]. We expect that for a certain
value h′ independent of the domains and the marked points,
the limit exists and is finite. This procedure is essentially the
same as the operator product expansion in field theory. Upon
taking the limit a → c and b → d, the extension of Eq. (51)
to one-sided restriction follows.

So far we have defined partition functions in the continuum.
Here we want to make contact with microscopic models.
To do this, a somewhat stronger assumption of conformal
invariance than the one we have made so far is needed to obtain
(51). Since the probability that a current inserted through the
absorbing boundary will persist a macroscopic distance away
is vanishing in the continuum limit, some care must be taken in
relating the discrete weights and the partition functions in the
continuum. The procedure we describe now essentially uses
current conservation, and not much else.

Let us choose some microscopic scale δ of the order
of the lattice spacing. Consider a point a on an absorbing
boundary, and a segment of length l containing this point a.
The length l is assumed to be much larger than δ but much
smaller than any other macroscopic scale (such as the scale
on which the boundary curves or the size of the system).
Through this segment we inject uniformly the current l/δ

(in units of elementary charges per unit time). The number
l/δ is, essentially, the number of point contacts that will each
contribute to the total current through the segment. We do the
same procedure around another point b on the boundary. Now
we define the partition function, or the two-probe conductance,
as the total weight of pictures connecting the point contacts
near point a with those near point b, multiplied by (l/δ)2.
Now we take the continuum limit δ → 0, and then also take
l → 0. The result will be the point-contact conductance in
the continuum. A crucial point in this construction is that the
total current through a segment is naturally assumed to be a
conformally invariant quantity.

Note that since l is much larger than the lattice spacing, the
definition is lattice independent, and the particular assumption
of conformal invariance made here seems no stronger than
the one we have made thus far (which concerned only
probabilities, not partition functions). We nevertheless can
not make the latter statement rigorous, and (51) remains an
assumption as it pertains to total weights defined from a
microscopic model. We also note that we have defined here the
operator which inserts current through an absorbing boundary,
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but similar procedures may be employed to handle other
boundary conditions.

B. Description of critical curves through SLE

The above description of a restriction measure by the
probabilities of avoidance of certain sets given by Eq. (47)
is somewhat implicit. To obtain a more explicit description of
restriction measures, which will be also useful for computa-
tions, we can concentrate on the boundaries of a restriction
sample (a cluster). These cluster boundaries are known to
be variants of SLE 8/3 distorted in a particular way, and are
described by a variant of the Schramm-Loewner equation. In
particular, the ensemble of the SLE 8/3 curves satisfies the
two-sided conformal restriction with the restriction exponent
h = 5/8.55 In this section, we describe the SLE method for
critical curves.

Suppose we have some statistical system defined in a
domain D in which 2n + m, xi , i = 1, . . . ,2n, and pj ,
j = 1, . . . ,m, special points are marked on the boundary.
Figure 11 illustrates this situation for a system in the upper
half plane, so that the marked points lie on the real axis.
The partition function of such a system is denoted by
ZD(x1, . . . ,x2n; p1, . . . ,pm). The points xi are beginnings and
ends of curves that are crated in the statistical system. Namely,
we assume that there exist n curves in the upper half plane, the
ith curve connecting xi with xn+i on the real axis. pj denote
points where boundary conditions are changed or operators are
inserted, etc. The shape of the curves depends on the positions
of the m marked points pj in some way. We shall consider only
the case where the operators inserted at pj are primary fields
of weights hj . It turns out that the points xi also correspond
to insertions of primary fields, and that all these have the
same weight hκ = (6 − κ)/(2κ). Then the partition function
ZD transforms under conformal maps of the domain D and
the marked points on its boundary as a correlation function of
primary operators in CFT:

ZD(x1, . . . ,x2n; p1, . . . ,pm)

=
2n∏
i=1

|g′(xi)|hκ

m∏
j=1

|g′(pj )|hj

×ZD̃[g(x1), . . . ,g(x2n); g(p1), . . . ,g(pm)], (57)

where g is a conformal map from D to D̃.
An important consequence of Eq. (57) is obtained if we

consider both domains D and D̃ to be the upper half plane H.
In this case, the allowed conformal transformations are Möbius
transformations with real coefficients. These transformations

p p p pxx x x

1

2 4 3

1 2 341 23 4

γ

γ γ γ

FIG. 11. Two SLE’s interacting with four points pi in the upper
half plane D = H.

form the SL(2,R) group and are generated by

L−1 =
2n∑
i=1

∂xi
+

m∑
j=1

∂pj
,

L0 =
2n∑
i=1

(xi∂xi
+ hi) +

m∑
j=1

(pj∂pj
+ hκ ), (58)

L+1 =
2n∑
i=1

(
x2

i ∂xi
+ 2hixi

)+
m∑

j=1

(
p2

j ∂pj
+ 2hκpj

)
.

Then the infinitesimal form of the transformation law (57)
for the Möbius transformations gives the global conformal
invariance of the partition function ZH in the upper half plane:

L±1,0ZH = 0. (59)

Let us now mark 2n disjoint segments on the curves γi ,
i = 1, . . . ,2n, so that the ith segment connects the point xi

to a point zi on the ith curve for i = 1, . . . ,n or the it−nth
curve for i = n + 1, . . . ,2n (see Fig. 11). Let us also denote the
contribution to the partition function from configurations of the
statistical system in which the segments take a particular shape
γi as Z(γ1, . . . ,γ2n; p1, . . . ,pm). With the shape of the curves
γi fixed, the quantity Z(γ1, . . . ,γ2n; p1, . . . ,pm) is the partition
function in the slit domain H \⋃2n

i γi , that is, the upper half
plane with the segments γi removed. The full partition function
is obtained by summing these partial contributions over the
shapes of all segments γi . Somewhat abusing notation for the
sum over all possible shapes of curves γi , we write

ZH(x1, . . . ,x2n; p1, . . . ,pm)

=
∑
{γi }

Z(γ1, . . . ,γ2n; p1, . . . ,pm). (60)

The points zi sit at the tips of the segments. We can enlarge
or reduce the size of the segments by moving the tips zi along
the curves. We shall parametrize this motion along the ith
curve by a “time” parameter ti . To describe the shape of the
segments at arbitrary times ti , SLE makes use of a conformal
map from the slit domain H \⋃2n

i=1 γi back to the upper half
plane. This conformal map gt (z) depends on all the times ti
which together form the vector t . This time dependence is
given by a stochastic differential equation, which determines
gt (z) as a function of ti :

dti gt (z) = 2dti

gt (z) − ξi(t)
. (61)

Here ξi(t) = gt (zi) are the images of the tips of the segments
γi under the map gt (z). Each ξi is located on the real axis
and obeys the same equation (61) with respect to tj for j 	=
i. However, for z = zi , Eq. (61) is ill defined and must be
replaced by

dti ξi =κ ∂ξi
ln ZH[ξ1, . . . ,ξ2n; gt (p1), . . . ,gt (pm)]dti +

√
κdBi,

(62)

where Bi(t) are independent standard Brownian motions.
When all the times are increased by small increments dti ,
the evolution of the conformal map gt (z) can be described by
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the following system of equations:

dgt (z) =
2n∑
i=1

2dti

gt (z) − ξi(t)
, (63)

dξi = κ ∂ξi
ln ZH[ξ1, . . . ,ξ2n; gt (p1), . . . ,gt (pm)]dti

+√
κdBi +

∑
j 	=i

2dtj

ξi − ξj

. (64)

These equations are essentially the same as Eqs. (2) and (3)
in Ref. 58. Note that Eq. (63) fixes the asymptotic behavior
of the map gt (z) ∼ z + (

∑
i ti)/z as z → ∞. The 2n curves

whose evolution is described by Eqs. (63) and (64) are
often called SLE traces or simply traces. Since the equations
are stochastic differential equations, they, in fact, define a
probability measure on the traces, or an ensemble.

So far we did not specify the partition function ZH that
appears in the general SLE equation (64). In the next section we
consider special cases where ZH will be uniquely determined
by the global conformal invariance (59). For the special value
κ = 8/3, this will give a description of general one-sided
restriction measures.

C. Description of restriction measures using SLE(8/3,ρ)

One can obtain a restriction measure by taking m = 0, n =
1, and x2 → ∞. By translational invariance (L−1ZH = 0), we
immediately obtain that ZH(x1,∞) is a constant and thus the
forcing term in Eq. (62) vanishes. We shall also drop t2, never
considering the evolution with respect to this time. Equations
(61) and (62) reduce to

dgt (z) = 2dt

gt (z) − ξ (t)
, dξ = √

κdBt . (65)

Different values of κ lead to different ensembles of curves.
The only value of κ for which the restriction property holds is
κ = 8/3.55 The restriction exponent in this case turns out to be
h = 5/8. This corresponds to the insertion at x1 of a primary
operator of weight h = 5/8.

Thus, the SLE process without forcing thus can only
produce a restriction measure of a single exponent 5/8. It
is possible to modify the SLE8/3 process somewhat and
obtain more general one-sided restriction measures with other
restriction exponents. We shall still be interested in the case
where a single curve emanates from x1 and ends at infinity. In
order to be able to generalize the usual SLE procedure which
gives rise to the exponent 5/8, one has to employ a point
splitting procedure. Namely, we shall take the point x1 and
replace it by two points x1 and X1 < x1 [this choice will lead
to a restriction measure in the upper half plane whose right
boundary will be the SLE(8/3, ρ) curve]. The SLE trace shall
emanate from x1, and X1 will be a marked point (previously
this was denoted by p1). At the end of the procedure the two
points are refused, and we have a trace emanating from a
single point x1 which is also a marked point. Note, however,
that independently of whether the points x1 and X1 are fused
or not, for any nonzero time t = t1 the partition function
appearing in Eq. (62) will depend on three distinct points
p1 = gt (X1), ξ = gt (z1), and ∞. X1 will correspond as usual
to an insertion of a primary operator. The global conformal
invariance determines in this case partition function to have a

simple power law dependence whose exponent is denoted by
3ρ/8:

ZH(ξ,∞,p1) = 1

(ξ − p1)3ρ/8
. (66)

With this form of the partition function, the general equations
(63) and (64) reduce to

dgt (z) = 2dt

gt (z) − ξ (t)
, dξ = ρdt

ξ − gt (X1)
+ √

κdBt . (67)

The value of ρ determines the restriction exponent

h = (3ρ + 10)(2 + ρ)

32
. (68)

Moreover, it determines the conformal weight of the operator
at X1, which is given by

h′ = ρ(4 + 3ρ)

32
. (69)

The process one obtains in this way is termed SLE(8/3,ρ).
The described procedure shows that boundaries of one-

sided restriction measures can be created by fusing the operator
creating an SLE 8/3 curve with a primary operator. Since
a restriction measure is fully specified by its exponent, by
appropriately choosing the parameter ρ > −2 in the above
procedure, we can obtain restriction measures with any given
exponent h > 0. We shall assume in the following that this
also holds locally, independently of other curves or marked
points. This assumption does not have a rigorous mathematical
proof. It rests on the physical assumption that any additional
operators or curves can only change the large scale properties
of the given curve rather than its local structure.

D. Martingale conditions on partition functions

When considering more general situations where restriction
holds, we shall have to consider more complicated partition
functions than those appearing in Sec. IV C. To compute those
partition functions, it is not sufficient to use the conformal
covariance (57) and the global SL(2,R) invariance (59). In
addition to these conditions, we must make use of the idea of
the partial summation over segments of curves expressed by
Eq. (60) to obtain further conditions on ZH.

We will derive these well known conditions in this section.
In order to set notation, we first consider the situation where
m = 0 and the forcing term in Eq. (62) vanishes, namely,

dti ξi = √
κdBi. (70)

In this situation, 2n independent curves start at the points xi and
go to infinity. Due to independence of the Brownian motions
in Eq. (70), the statistical weight of the SLE traces in this case
is given by

2n∏
i=1

Z(γi,∞). (71)
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This product of independent SLE measures can be used to
define expectation values by

E[f (γ1, . . . ,γ2n)] ≡ 1

N2n

∑
{γi }

[
f (γ1, . . . ,γ2n)

2n∏
i=1

Z(γi,∞)

]
,

N2n =
∑
{γi }

2n∏
i=1

Z(γi,∞), (72)

where the sum over γi is used in the same sense as in
Eq. (60) and denotes summing over all possible shapes of the
curves. We now consider the general case with a nontrivial
forcing term in Eq. (62). The SLE measure in this case
is different from the product (71). However, it is possible
to describe a general ensemble of SLE curves using the
product measure (71) produced by independent Brownian
motions (70). Heuristically, we can think of the measure
(71) produced by Eq. (70) serving to scan a large class of
curves. Very loosely speaking, we can consider curves sampled
from the noninteracting measure (71) and the same curves
from the general SLE ensemble, and compare their weights.
Alternatively, we can think of creating the probability measure
in Eq. (62) by first producing the curves using (70) and then
reweighting them. A priori it is not at all clear that this should
be possible since the weights of the curves sampled from the
two measures can be incomparable (for example, one weight
can be zero, while the other nonzero). However, it happens
to be possible in the case of the two SLE measures with the
same value of κ: one with the independent forcing (70) and
the other with a nontrivial forcing (62).84 More formally, for
an expectation value in a general SLE ensemble we have

∑
{γi }

Z(γ1, . . . ,γ2n; p1, . . . ,pm)f (γ1, . . . ,γ2n)

=
∑
{γi }

Z(γ1, . . . ,γ2n; p1, . . . ,pm)f (γ1, . . . ,γ2n)∏2n
i=1 Z(γi,∞)

×
2n∏
i=1

Z(γi,∞)

= N2n E

[
Z(γ1, . . . ,γ2n; p1, . . . ,pm)f (γ1, . . . ,γ2n)∏2n

i=1 Z(γi,∞)

]
,

(73)

where N2n and E are the ones defined in Eq. (72), that is, E
denotes the expectation value with respect to the measure of the
independent SLE’s. This method of reweighting the measure,
when done with appropriate mathematical rigor, is known
under the name of Girsanov’s transformation. The condition
that the weights of the curves sampled from two measures are
comparable translates in more rigorous terms to the condition
of absolute continuity of one measure with respect to the other.
(For Girsanov’s theorem and other information on stochastic
analysis see, for example, Refs. 85 and 86.)

We now make us of the reweighting procedure to obtain
further conditions on ZH. We freeze all the times ti except
t1 and rename it t1 = t . Consider the partition function
ZH(x1, . . . ,x2n; p1, . . . ,pm). By definition, it is independent

of t :
∂tZH(p1, . . . ,pm; x1, . . . ,x2n) = 0. (74)

When t is varied, only the segment γ1 is produced, and the
partial summation (60) can be used in the form

ZH(x1, . . . ,x2n; p1, . . . ,pm)

=
∑
γ1

Z(γ1,x2, . . . ,x2n; p1, . . . ,pm). (75)

Now we can use the reweighting procedure (73) with f = 1:
ZH(x1, . . . ,x2n; p1, . . . ,pm)

= N1 E

[
Z(γ1,x2, . . . ,x2n; p1, . . . ,pm)

Z(γ1,∞)

]
,

(76)
N1 =

∑
γ1

Z(γ1,∞).

Next we transform both the numerator and the denominator
in the last expression using the SLE map from H \ γ1 to H
and recall the covariance property (57):
ZH(x1, . . . ,x2n; p1, . . . ,pm)

= N1 E

⎡
⎣ 2n∏

i=2

|g′
t (xi)|hκ

m∏
j=1

|g′
t (pj )|hj

×ZH[ξ1(t),gt (x2), . . . ,gt (x2n); gt (p1), . . . ,gt (pm)]

⎤
⎦.

(77)

Notice that the singular derivative g′
t (x1) has canceled between

the numerator and the denominator. The last equation is valid
at any time t . We now substitute this into Eq. (74) (taking into
account that the normalization N1 is t independent):

∂tE

⎡
⎣ 2n∏

i=2

|g′
t (xi)|hκ

m∏
j=1

|g′
t (pj )|hj

×ZH[ξ1(t),gt (x2), . . . ,gt (x2n); gt (p1), . . . ,gt (pm)]

⎤
⎦ = 0.

(78)

Conditions of this type often appear in stochastic analysis
when one studies special types of stochastic processes
called martingales.85,86 Roughly speaking, a martingale is a
stochastic process M(t) whose expectation value is constant
in time: ∂tE[M(t)] = 0. For this reason, we call consequences
of Eq. (78) derived below martingale conditions on partition
functions.

Now we set t = 0 in Eq. (78). It is then straightforward to
use the stochastic equations (61) and (70) and Ito’s formula85,86

to transform this equation into a Fokker-Planck equation:⎡
⎣κ

2
∂2
x1

− 2
2n∑
i=2

(
hκ

(xi − x1)2
− 1

xi − x1
∂xi

)

− 2
m∑

j=1

(
hj

(pj − x1)2
− 1

pj − x1
∂pj

)⎤⎦
×ZH(x1, . . . ,x2n; p1, . . . ,pm) = 0. (79)
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This equation was derived using evolution with respect to t1
only. Similar equations result when we use other times ti , so
in the end we get 2n martingale conditions

⎡
⎣κ

2
∂2
xi

− 2
2n∑
j 	=i

(
hκ

(xj − xi)2
− 1

xj − xi

∂xj

)

− 2
m∑

k=1

(
hk

(pk − xi)2
− 1

pk − xi

∂pk

)]

×ZH(x1, . . . ,x2n; p1, . . . ,pm) = 0, (80)

which the partition function ZH must satisfy in addition to the
conditions of conformal invariance (59).

The Fokker-Planck equations can be written in a compact
way using the following differential operators:

L−m(xi) =
2n∑
j 	=i

(
(m − 1)hκ

(xj − xi)m
− 1

(xj − xi)m−1
∂xj

)

+
m∑

k=1

(
(m − 1)hk

(pk − xi)m
− 1

(pk − xi)m−1
∂pk

)
. (81)

Notice that each operator insertion except xi contributes a term
toL−m(xi). The translational invariance condition L−1ZH = 0
can be written as

∂xi
ZH = L−1(xi)ZH. (82)

Thus, trading the derivative ∂xi
for L−1(xi), the Fokker-Planck

equations (80) can be written as

(
κ

2
L2

−1(xi) − 2L−2(xi)

)
ZH(x1, . . . ,x2n; p1, . . . ,pm) = 0.

(83)

V. CONFORMAL RESTRICTION AND CFT IN THE
COULOMB GAS FORMALISM

In Sec. VI, we will make use of conformal restriction to
obtain certain information on the transport behavior of the
system. The development can be cast solely in the language
of conformal restriction, however, we shall make use of ideas
which are already well developed in the language of CFT,
so we prefer to mix the two approaches in the presentation. In
this section, we set up notations related to CFT in the so-called
Coulomb gas formalism.87 To find more details the reader may
consult Refs. 39 and 50–52.

As we have already mentioned, from a field theory perspec-
tive restriction models are described by conformal field theory
(CFT) with vanishing central charge c = 0. In the Coulomb
gas formalism, correlation functions of CFT are computed by
a certain ansatz. The CFT correlation function is replaced by a
correlation function for the Gaussian free field, with a possible
introduction of certain additional nonlocal operators, called
screening charges. We shall describe the procedure briefly
below.

Consider a Gaussian free field, namely, a fluctuating
bosonic field with the action

S = 1

8π

∫
d2r(∇ϕ)2. (84)

This action describes a CFT with c = 1. We can modify
the central charge to c < 1 by introducing the so-called
background charge −2α0, where α0 is related to the central
charge as follows:

c = 1 − 24α2
0 . (85)

Next, consider vertex operators, namely, the exponentials of
the free field

Vα(z,z̄) = ei
√

2αϕ(z,z̄), (86)

where the parameter α is called the Coulomb charge of the
operator. In the CFT with the background charge the vertex
operator Vα has the conformal weight

h(α) = α(α − 2α0). (87)

The last ingredient we need are the screening operators defined
as

Q± =
∫

dz dz̄ Vα± (z,z̄), (88)

where α± are the positive and negative solutions of h(α±) = 1:

α± = α0 ±
√

α2
0 + 1. (89)

With these ingredients, the recipe to compute a CFT
correlation function of primary operators Ohi

(zi,z̄) using
Coulomb gas is (roughly) given by〈
Oh1 (z1,z̄1)Oh2 (z2,z̄2) · · · OhN

(zN,z̄N )
〉
CFT

= 〈Vα1 (z1,z̄1)Vα2 (z2,z̄2) · · · VαN
(zN,z̄N )Qm+

+ Q
m−
−
〉
GFF. (90)

The subscript GFF indicates that the correlation function is
computed with a weight e−S with action (84), while the CFT
subscript indicates a correlation function in a conformal field
theory. The charges αi are chosen such that h(αi) = hi . The
number of insertions m± of the screening operators is arbitrary,
but a constraint which reads as

m+α+ + m−α− +
∑

i

αi = 2α0 (91)

must be satisfied. This recipe can be motivated in different
ways, but as far as we know can not be justified fully and
rigorously.

A special place is given to operators whose charges αm,n

are given by

αr,s = 1
2 (1 − r)α+ + 1

2 (1 − s)α−. (92)

The primary operators corresponding to these charges are
denoted by ψr,s . r and s are the numbers of screening operator
insertions Q+ and Q− necessary to compute two-point
correlation functions of ψr,s . The operators ψr,s have a special
role in the representation theory of conformal symmetry (the
Virasoro algebra), particularly when r and s are positive
integers. In this case, correlation functions with insertions of
ψr,s satisfy differential equations of order rs. The relation (92)
is called the “Kac table,” originally meant to be used only when
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r are s are positive integers, but often is extended to include
all integer and even half-integer indices. We shall often make
use of this (extended) Kac table parametrization.

We may use (92) as a convenient parametrization of the
primary operators appearing in the theory. Every primary
operator has a conformal weight h. With this conformal weight,
a conformal charge α may be associated, which satisfies
h(α) = h. In fact, for a given value of α0, Eq. (87) for a
conformal weight has two solutions for the Coulomb charge:

α = α0 ±
√

α2
0 + h. (93)

These charges can always be written as α = αr,s for some
choice of numbers r and s, not necessarily positive integers.

The parametrization (92) has several advantages. First, the
conformal charge α naturally appears in formulas, and turns
out to be a particularly convenient parametrization. Second, the
parametrization is widely used in CFT literature. And third,
if α happens to be given by αr,s for some positive integers r

and s, there is some chance that the operator will have special
properties, closely related to the representation theory of CFT,
so keeping track of r and s is generally a good idea.

Notice that given a central charge c, Eq. (85) has
two solutions for the possible background charge: α0 =
±√

(1 − c)/24. In the SLE language, these correspond to two
dual values of κ describing distinct “phases” of SLE curves:
“dilute” (κ < 4) and “dense” (κ > 4).88 A convenient choice
of parametrization52 is such where

2α0(κ) =
√

κ

2
− 2√

κ
, (94)

α+(κ) =
√

κ

2
, α−(κ) = − 2√

κ
. (95)

This value of α0 is positive in the dense phase and negative in
the dilute phase. In terms of κ , the general Kac table charges
and weights become

αr,s(κ) = 4s − κr + κ − 4

4
√

κ
, (96)

hr,s(κ) = (κr − 4s)2 − (κ − 4)2

16κ
. (97)

The models we are interested in are related to conformal
restriction, and the central charge for them is c = 0. The two
values of κ that correspond to it are κ = 8/3, related to self-
avoiding walks, and κ = 6 related to percolation. Since the
boundaries of restriction measures are always simple (“dilute”)
curves SLE(8/3,ρ), in order to describe them we choose κ =
8/3 and

α0

(
8

3

)
= − 1

2
√

6
, α+

(
8

3

)
=
√

2

3
, α−

(
8

3

)
= −

√
3

2
.

(98)

With this choice, the charges and weights of operators
appearing in the Kac table are

αr,s

(
8

3

)
= 3s − 2r − 1

2
√

6
, (99)

hr,s

(
8

3

)
= (2r − 3s)2 − 1

24
. (100)

On the other hand, to describe percolation hulls that in the
continuum are SLE6 curves, we need to choose κ = 6 and

α0(6) = 1

2
√

6
, α+(6) =

√
3

2
, α−(6) = −

√
2

3
. (101)

In this case, the general Kac charges and weights are

αr,s(6) = 2s − 3r + 1

2
√

6
, (102)

hr,s(6) = (3r − 2s)2 − 1

24
. (103)

The conformal covariance properties of the partition func-
tions given in Eqs. (57) and (59) imply that these are CFT
correlation functions, where the points pi and xi (see Fig. 11)
correspond to the insertion of primary operators of conformal
weights hκ for the SLE traces beginning at xi and hi for the
points pi . Moreover, the martingale conditions in the form
of the second order differential equations (83) imply that the
operators inserted at points xi are degenerate at level two, to use
the CFT language. Using the Kac table parametrization, these
can be identified with ψ1,2, as was demonstrated by Bauer
and Bernard89 for an arbitrary value of κ . Here we provide
an interpretation of this operator in the CFT/Coulomb gas
language for c = 0. In this case, the operator has conformal
weight 5/8 and the corresponding Coulomb charge α = √

3/8
can be written as α1,2(8/3). Thus, the operator creating an
SLE 8/3 trace is ψ1,2.

The CFT interpretation of SLE(κ,ρ), which is anchored at a
point x on the boundary, is the insertion of the operator ψ1,2 at x
and another operator Oh′ of conformal dimension h′ at x − 0+.
The relation between h′ and ρ is given by Eq. (69). Comparing
this equation with Eq. (87) for α0(8/3) = −1/(2

√
6) (c = 0),

we see that

α′ =
√

3

32
ρ (104)

is a Coulomb charge representing Oh′ . We have two operators
close together at x, ψ1,2, and Oh′ . These in fact fuse together
to produce another primary operator Oh(x), whose conformal
weight depends on ρ as in Eq. (2). A conformal charge
consistent with h appearing in Eq. (2) is given by

α = α1,2(8/3) + α′. (105)

This last formula can be read as follows: an operator of charge
α1,2(8/3) (which creates the SLE trace) is fused with an
operator of charge α′ (this is the operator Oh′) to produce
an operator Oh whose charge is given by the simple sum of
the two operators which were fused to produce it. This is in
fact no surprise, as charges add up in the Gaussian free field
formulation of CFT. Oh may then be called the simple fusion
product of Oh′ and ψ1,2.

We can also consider fusions of multiple ψ1,2. These may
lead to SLE lines that form small loops touching the boundary,
but the simple fusion where the charges add leads to multiple
SLE lines starting at the same point and going to infinity
of other distant points.50,52,58 These are created by insertions
of the so-called n-leg operators ψ1,n+1. For κ = 8/3 these
operators create n SAWs and have dimensions

h1,n+1

(
8

3

)
= n(3n + 2)

8
. (106)
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For κ = 6 they create n percolation hulls, and their dimensions
are

h1,n+1(6) = n(n − 1)

6
. (107)

Multileg operators can also be defined in the bulk. It is
known50,52 that the bulk n-leg operator is ψ0,n/2 in the extended
Kac table. The conformal weights of these operators for the
two values of κ relevant for c = 0 are

h0,n/2

(
8

3

)
= 9n2 − 4

96
, h0,n/2(6) = n2 − 1

24
. (108)

VI. POINT-CONTACT CONDUCTANCES IN THE
SIMPLEST SETTINGS

In this section we will use the relation (3) between PCCs
at critical points of the disordered systems considered above
and conformal restriction measures to compute PCCs in the
simplest settings. These are the settings where the PCC in
question is either itself a two- or three-point function of
primary boundary operators, or related to such functions
in a simple way. All such two- and three-point functions
are essentially fixed by global conformal invariance (see,
for example, Ref. 39). For convenience, we reproduce the
standard argument in the language of conformal restriction,
and constraints imposed on partition functions.

The simplest quantity one can compute is the average
two-point conductance 〈g(a,b)〉 between points a and b on the
straight absorbing boundary of a critical system occupying the
upper half plane. We have already seen that this conductance is
the same as the partition function ZH(a,b). In CFT language,
these are primary (boundary) operators with scaling dimen-
sions hA. This immediately implies that the same quantity is
given by a correlation function of currents 〈g(a,b)〉 = 〈jajb〉,
where the operator ja injects current into the system through
a link at the point a and jb extracts the current through a link
at the point b (see the left panel in Fig. 12):

〈g(a,b)〉 = C

|a − b|2hA
. (109)

We will argue below that for all systems that we consider
hA = 1 is the weight of the conserved current operator. At
the same time, the constant C, while universal upon fixing
the normalization of the current operators in the continuum,
does depend on the particular critical point. This constant is
related to the critical longitudinal conductivity σxx , as can be
seen from the following consideration. We can integrate the
expression (109) over a ∈ [1,R] and b ∈ [−R,−1] to obtain a

a b a b

FIG. 12. Two-point point-contact conductance. Left: contacts are
placed on the absorbing boundary. Right: contacts are placed at
juxtapositions of the absorbing and a reflecting boundary.

two-probe conductance

G =
∫ R

1
da

∫ −1

−R

db
C

|a − b|2 = C ln
(R + 1)2

4R
. (110)

By conformal invariance, this is the same as the two-probe
conductance of a rectangle of length L and width W that can
be obtained from the upper half plane by a conformal map by
an elliptic integral. In the limit R � 1 we get W � L, and
the conformal map reduces essentially to the logarithmic map
w = ln z to an infinite strip of width π , with metallic contacts
of width W = ln R placed along the boundaries at Im w = 0
and Im w = π , at the distance L = π apart. In this limit the
conductance G becomes

G ≈ C ln R = σxx

W

L
, (111)

which is the Ohm’s law with

σxx = πC. (112)

Thus, as we have claimed, the universal constant C in the
PCC (109) is related to the critical conductivity σxx which
depends on a particular critical system. For the SHQ transition,
for example, this conductivity is know exactly to be equal to
σxx = √

3/2 (in natural units).27 For the IQH critical point,
this conductivity is not known analytically, and for the classical
limit of the CC model, it can take any value in the range [0,1/2]
[see Eq. (25)].

Now let us illustrate how the result (109) can be understood
in terms of pictures as samples of a restriction measure, and
their SLE boundaries. The pictures that contribute to g(a,b)
include two lines, the inner and outer boundaries of the picture,
both lines start at a and end at b (see the left panel of Fig. 12).
To define a partition function for the process described by
Eqs. (61) and (62) that creates those lines, we must split points
a and b each into three points a−, a0, a+ and b−, b0, b+.
a− is now the origin of the outer line, a+ is the origin of the
inner line, and at a0 we place an operator with a proper weight
such that after fusing a−, a0, and a+, we get an operator of
a weight corresponding to j . The same is done at b. We end
up with a partition function ZH(a0,b0; a−,b−,a+,b+). The
fused partition function ZH(a,b), obtained when all the points
associated with a are fused and all the points associated with
b are fused, gives 〈g(a,b)〉 = ZH(a,b). The fused partition
function also satisfies (59), and these three conditions are
sufficient to specify it completely up to a constant factor, and
we get back to Eq. (109). The same arguments apply to the
average PCC between two contacts placed at juxtapositions
of the absorbing boundary and a reflecting boundary (see the
right panel in Fig. 12). Depending on whether the reflecting
segment of the boundary (illustrated by the solid line) is “left”
or “right” (see Sec. II B for definitions), we get

〈g(a,b)〉 = C

|a − b|2hLA
or

C

|a − b|2hRA
. (113)

We can also consider point contacts placed at small
openings in reflecting boundaries (see the top panel in Fig. 13).
We denote the dimensions of current insertions through such
contacts by hR and hL. The two situations shown on the top in
Fig. 13 are related by reflection across the vertical line. Such
reflection should not change the dimensions of the current
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FIG. 13. Top: point contacts placed at reflecting boundaries
through small openings. The dimensions of current insertions at these
contacts are denoted by hR and hL. Bottom: point contacts placed at
small openings between reflecting boundaries of opposite chirality.
The corresponding dimensions are hRL and hLR .

insertions, so we expect these dimensions to be equal:

hR = hL. (114)

Then the two-point PCCs between such contacts is

〈g(a,b)〉 = C

|a − b|2hR
. (115)

Point contacts can be also placed at small openings between
reflecting boundaries with the opposite chirality (see the
bottom part of Fig. 13). Injecting current through the middle
(incoming) link on the left figure inserts an operator with
dimension hRL. In this situation, there is no symmetry relating
hRL and hLR , so we expect these dimensions to be different in
general.

We can consider slightly more complicated setups without
any additional input. Indeed, Eqs. (59) contain three indepen-
dent conditions which determine all three-point functions up
to a constant. The three-point function of primary operators of
dimensions ha,hb,hc inserted at points a,b,c has the form

C

|a − b|ha+hb−hc |a − c|ha+hc−hb |b − c|hb+hc−ha
. (116)

As a physical example we can consider the following
setup shown in the left panel of Fig. 14. It shows a critical
system whose boundary is mostly absorbing but with a small
insertion (of length ε) of a reflecting boundary near the point
c. This insertion makes possible for a picture contributing
to 〈g(a,b)〉 to touch this small reflecting boundary segment,
thereby increasing the overall conductance. The difference
between the conductance in this case and the one without
the insertion is then represented by pictures that necessarily
touch the reflecting segment. This corresponds to a three-point
function of two current insertion operators (of dimension hA)
and one operator that “forces” the picture to “touch” the point
c. Denoting the dimension of this operator by hT , we have

δ〈g(a,b)〉 = CεhT

|a − b|2hA−hT |a − c|hT |b − c|hT
. (117)

a bc a bc

FIG. 14. A three-point function. Left: the change δ〈g(a,b)〉 in the
two-point conductance is positive when a small segment of reflecting
boundary of length ε is inserted near the point c. Right: δ〈g(a,b)〉 is
negative when a small bump of radius ε on the absorbing boundary
is inserted near the point c.

Similarly, we can consider the situation where the absorbing
boundary is slightly moved into the system, forming a small
semicircular bump of radius ε centered at c. This is shown
in the right panel of Fig. 14. In this case, the conductance
〈g(a,b)〉 is reduced by essentially the same amount [Eq. (117)]
since now the pictures that were going through the semicircle
(the same as the picture on the left panel of Fig. 14) do not
contribute anymore.

Another situation, shown in Fig. 15, leads to a three-point
function. Here a reflecting boundary extends from a to b, and
the rest of the boundary is absorbing. The current is injected
into the sample at the point b and extracted through a point
c on the absorbing boundary. The weight of the operator at
c is hA. The weight hb of the operator at b is either hLA or
hRA, and depends on the particular situation. Point a is a point
at which the boundary conditions change, and a priori we
do not know if it may be described by a primary operator.
We do know however that for every picture (the gray area
on Fig. 15) there is a point x between a and b at which the
picture will lift off the real axis, never to visit the real axis
again before exiting at c. For all pictures with a given point x,
the boundary to the left of x serves as the absorbing boundary
(microscopically, a shift of one lattice spacing into the bulk is
necessary). The fact that the boundary conditions to the left of
x are effectively absorbing allows us to identify x as a point
anchoring a one-sided restriction measure. Indeed, the left
boundary of the picture is anchored at x and obeys restriction
with respects to sets placed on the absorbing boundary to
the left of x. Denoting the dimension of the operator at the
point x by hl , the contribution 〈g(b,c; a,x)〉 of the pictures
with a given x to the conductance 〈g(b,c; a)〉 is given by the

a x b c

FIG. 15. Feynman picture drawn in gray for current inserted at an
interface between reflecting and absorbing boundaries (the reflecting
boundary, represented by a heavy line, occupies the segment [a,b],
the dotted line represents absorbing boundaries). The point x denotes
the location at which the diagram lifts off the real axis.
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three-point function

C

|x − b|hl+hb−hA |x − c|hl+hA−hb |b − c|hb+hA−hl
. (118)

Summing (integrating) over all lift-off points x we get

〈g(b,c; a)〉 =
∫ b

a

dx 〈g(b,c; a,x)〉. (119)

While for arbitrary weights hl,hA,hb this integral can be
expressed in terms of a hypergeometric function, the actual
final expression [see Eq. (125)] is quite simple due to the
special values hA = hl = 1.

In the next sections will will discuss the weights hA,hT ,hl ,
and hL,R in the models that we consider in this paper. We
will argue that the weights hA = 1, hT = 2, and hl = 1 are
superuniversal and do not depend on a particular model
and its symmetry class. We will exhibit other operators with
superuniversal weights, and will give explicit constructions of
these for specific systems of our interest. Other weights (hL,R)
will also be discussed for each system separately.

A. Superuniversal weights

In this section we show that the weights of some operators
that have appeared in the previous sections are superuniversal,
that is, they do not depend on the symmetry class of a particular
disordered system, but only on the conformal restriction
property.

The first example is the operator that injects current through
an absorbing boundary. Its dimension hA = 1 is superuniver-
sal, which is related to the fact that we are describing a critical
conductor with a finite average conductivity and various
conductances. Indeed, suppose two leads are connected to
the conductor: one lead connects to a segment [a,b] of the
boundary, while the other connects to the segment [c,d].
The conductance between the leads is given by the Kubo
(Landauer) formula

〈g〉 =
∑

i∈[a,b]

∑
j∈[c,d]

〈jijj 〉, (120)

where i ∈ [a,b], for example, denotes that site i belongs to
segment [a,b]. In the continuum limit this becomes

〈g〉 = ε2hA−2
∫

[a,b]

∫
[c,d]

dx dy 〈j (x)j (y)〉, (121)

where hA is the conformal weight of j , and ε is the lattice
spacing. For this expression to remain finite (neither zero, nor
infinity) as expected for a critical conductor, the weight hA

must be equal to 1. If hA > 1 we will have an insulator as
ε → 0, while if hA < 1 we will have a superconductor.

Another way to arrive at the same conclusion is to consider
the total current through a segment I = ∫ b

a
dx j (x). This total

current should be a conformally invariant object of dimension
0. But, if we perform a conformal transformation that takes x

to f (x), the current transforms to

I =
∫ f (b)

f (a)
df |f ′(x)|hA−1j (f ). (122)

The conformal invariance of I implies hA = 1.

The second example of a superuniversal operator appears
in the situations shown in Fig. 14. In these cases we consider
diagrams in which current is forced to pass through a point
x on the boundary of the system. The boundary is absorbing
around this point. A diagram forced to touch the point x looks
locally as a sample of a two-sided restriction measure, and the
weight of this measure can be easily seen to be 2. Indeed, to
select only diagrams that pass through the point x we introduce
a small semicircle A of radius ε centered at x. The difference
between the overall weight of all diagrams and the weight
of diagrams that avoid A is proportional to the weight of the
pictures that pass through x (as ε tends to zero). The conformal
restriction property allows us to compute the weight of the
diagrams that avoid A by effecting a conformal transformation
that removes A [see Eq. (51)]. Such transformation f (z) that
also fixes the points a and b can be easily written explicitly (see
Appendix B). Then, using Eq. (51) we can find the change in
the PCC after the deformation of the boundary to the first
nonvanishing order in ε as

δ〈g(a,b)〉 = [1 − |f ′(a)|hA |f ′(b)|hA]〈g(a,b)〉
≈ 2hA|b − a|2

|c − a|2|c − b|2 ε2〈g(a,b)〉

= Cε2

|a − b|2hA−2|a − c|2|b − c|2

= Cε2

|a − c|2|b − c|2 . (123)

This is exactly the equation (117) with hT = 2, a universal
value independent, in particular, of hA = 1.

The dimension hT = 2 is consistent with the fact that in the
CFT language the removal of the semicircle A is effected by
the insertion of the stress energy tensor T . The stress energy
tensor T has always dimension 2, and for c = 0 is a primary
operator.

The third superuniversal weight is that of lift-off points:
hl = 1 (see Fig. 15). This can be seen in the following
way: the lift-off point must always be integrated over to
obtain a physically measurable average conductance. The
conductance is conformal invariant. For example, to compute
the overall contribution of diagrams in Fig. 15 we must take
〈∫ b

a
dx Ohl

(x) · · · 〉, where Ohl
(x) is the operator which creates

a lift off at point x, and the ellipsis denotes other operators
which must be inserted (in the example shown in Fig. 15, the
other operators are inserted at the points b and c). Upon a
Möbius conformal transformation f (z) that maps the upper
half plane to the upper half plane, the integral

∫ b

a
dx Ohl

(x)
transforms to ∫ f (b)

f (a)
df |f ′(x)|hl−1Ohl

(f ). (124)

Conformal invariance of the PCC that is obtained from this
expression implies that hl = 1.

Since the operator Ohl
is of dimension one, its integral is

also a primary operator, but of dimension90 hBC = 0. This
means that in Fig. 15, instead of summing over x, we may
simply place an operator of dimension zero at a. Thus, the
operator that changes the boundary condition from absorbing
to reflecting is a primary of dimension zero. Note that this

165324-22



QUANTUM HALL TRANSITIONS: AN EXACT THEORY . . . PHYSICAL REVIEW B 86, 165324 (2012)

FIG. 16. Contacts placed at points where the two reflecting
boundary conditions, left and right, are switched. The average PCC
between these contacts does not depend on the distance between them
due to the current conservation.

result is completely general. This has been noticed and used
before by Cardy91 in the context of percolation to compute the
crossing probability in a rectangle. But, for other systems with
central charge c = 0, to the best of our knowledge, the value
hBC = 0 was not reported before. This shows that the integral
expressing the average conductance in Eq. (119) is simply
given by the three-point function of operators with weights
hBC = 0, hb, and hA = 1:

〈g(b,c; a)〉 = C

|a − b|hb−1|b − c|hb+1|a − c|1−hb
. (125)

One more superuniversal weight h0 is a special case of hRL

(or hLR) which is obtained when current is injected through the
smallest possible opening between reflecting boundaries with
the opposite chirality (see Fig. 16). In this situation, the current
can not exit through the same opening, and the average PCC
between two such contacts does not depend on the distance
between them due to current conservation. Therefore, the
dimension of such current insertion is zero: h0 = 0.

We note that most of the results for superuniversal weights
are consequences of conservation laws, and can be derived
from Ward identities, such as those associated with the
current operator or the stress energy tensor. However, some
of the results for the superuniversal weights are stronger.
For example, as we shall see in the next section, for critical
percolation the operator that creates two percolation hulls at
the absorbing boundary, namely ψ1,5, has weight two. This is
the superuniversal weight hT = 2 of the stress energy tensor.
Both operators locally correspond to the case that a unit flux of
charge impinges on the boundary and then escapes to infinity.
Since they are locally equivalent, they must have the same
weight. However, ψ1,5 is not globally equivalent to the stress
energy tensor. The difference between the operators becomes
apparent at the macroscopic level: while the stress energy
tensor only forces a hull to touch down on the absorbing
boundary, solutions to the null vector equation associated with
a ψ1,5 operator may be selected in such a way as to obtain
a certain topology of current flow through boundary points.
Such global distinction is important, for example, in the proof
of Watts’ formula.92

B. Weights of operators for the SQH effect

We now turn to the Kac table classification of the operators
appearing in the SQH effect problem. These are directly related
to hulls of percolation clusters.26 The operator creating n

percolation hulls (multiple SLE 6) at a boundary (also called
the boundary n-leg operator) is known93 to be ψ1,n+1 in the

theory with κ = 6. According to Eq. (103), its weight is

h1,n+1(6) = n(n − 1)

6
. (126)

Consider now the operator that injects current through a
single link (a point contact) at the origin on the absorbing
boundary. This creates a percolation hull that is not allowed
to hit the boundary until it goes out through the other point
contact. Consider the positive real axis. By known94 perco-
lation arguments, this absorbing boundary can be replaced
by a reflecting boundary plus insertion of an additional hull
emanating from a point immediately to the right of the
origin. This extra hull “screens” the current-carrying hull
from approaching the boundary. The same can be done for
the negative real axis. This absorbing boundary can also be
equivalently described by a reflecting boundary plus insertion
of a hull, this time immediately to the left of the origin. The
overall outcome is that we can think of current inserted on
the absorbing boundary as three hulls inserted on a reflecting
boundary. This is the three-leg operator ψ1,4 with dimension
hA = h1,4(6) = 1, the superuniversal value. This value is
consistent with what is known rigorously55 about the SLE 6

conditioned not to touch the boundary.
Similarly, we can consider the operators that inject current

at points of juxtaposition of a reflecting and the absorbing
boundaries. These are shown in Fig. 17 and have weights hRA

and hLA. Let the current be injected at the origin through links
that are shown by fat lines. The absorbing boundary along
the positive real axis can be replaced by a reflecting boundary
plus a “screening” hull inserted immediately to the right of
the origin (its origin is marked by a dashed link immediately
to the right of the current insertion). The reflecting boundary
conditions on the negative real axis are in fact different for hRA

and hLA. For hLA the negative real axis is simply the reflecting
boundary in the percolation language. Then it is clear that
the weight hLA is that of the two-leg operator in percolation,
that is, hLA = h1,3(6) = 1/3. At the same time, for hRA the
negative real axis is described by a reflecting boundary plus
an insertion of an additional screening hull immediately to the
left of the origin. This makes hRA the weight of the three-leg
operator just like hA: hRA = h1,4(6) = 1.

The dimensions for operator insertions at reflecting bound-
aries are easily seen to correspond to the two-hull operators:
hR = hL = h1,3(6) = 1/3. They are equal to each other, in
accord with Eq. (114). Similarly, it is easy to see that hRL =
h1,4(6) = 1 and hLR = h1,3(6) = 1/3.

FIG. 17. Point contacts at the juxtapositions of the absorbing
boundary with the right and left boundaries. The current is injected
through the fat links. The dashed links represent the origins of
“screening” percolation hulls (see the main text).
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Other superuniversal weights are also easily confirmed for
the SQH transition. Indeed, forcing a hull to go through a
point on the absorbing boundary is equivalent to having two
percolation hulls starting at this point, plus two screening hulls
to screen the absorbing boundary. Thus, the relevant operator
is the four-leg operator with hT = h1,5(6) = 2. For a lift-off
point we have the two halves of the current-carrying hull that
comes to this point and leaves it, plus one screening hull that
ensures that the current does not touch the boundary again.
This is the three-leg operator, and hl = h1,4(6) = 1. The switch
between the absorbing and a reflecting boundary can be
described by a single screening hull, and the corresponding
weight is hBC = h1,2(6) = 0. The same one-leg operator
injects current through a switch between the left and the right
reflecting boundaries (see Fig. 16), and h0 = h1,2(6) = 0.

We comment here that the degeneracies between certain
weights (hA = hRA = hRL and hLA = hR = hL = hLR) are a
consequence of the locality property of percolation: even one
“absorbing” link next to a point contact creates a screening
hull.

C. Weights of operators for classical CC

Weights of all boundary operators that we have introduced
can be found exactly for the classical CC model (diffusion
in a magnetic field). In particular, this confirms the superuni-
versal weights. First consider injecting a current through the
absorbing boundary. The dimension of such current insertion
is hA = 1. Indeed, since there are no reflecting boundaries
around, the problem is equivalent to that of diffusion. It is easy
to see, using Green’s functions, that the fraction of diffusing
particles that will reach a height y from the real axis if they are
released from the point iε is ε/y, the rest will be trapped by
the absorbing boundary. Since releasing the diffusing particles
is equivalent to the insertion of current through the absorbing
boundary (we assume that ε is the lower cutoff scale), and
the ε dependence marks the weight of the operator, we indeed
see that the weight for current insertion through the absorbing
boundary is hA = 1. The rigorous formulation of this result in
terms of Brownian excursions and its proof are due to Virag.95

Now let us consider lift-off points. A touch-off point is
a point at which current arrives at a point on a reflecting
boundary, immediately leaves it, and is conditioned never to
touch the boundary again, say, to the left of the point at which
it arrived. In the classical CC, due to lack of interference, one
may separate the past of the diffusing particle from its future,
relative to the moment it reached the lift-off point. The past and
the future are actually two independent restriction measures,
whose weights simply add up55 due to lack of interference.
The weight of the future measure is 1 − θ/π as in Eq. (37).
For the past measure we must apply time reversal in order to
be able to apply Eq. (37); this takes θ → π − θ , which means
that for this measure, h = θ/π . The sum of the two weights is
the weight of the touch of point hl = 1.

The simple decoupling (independence) of the past from the
future also occurs if we force the current to pass through
a boundary point. Here both the past and the future are
current insertion (extraction) operators having the same weight
hA = 1. Summing up the weights of the two measures, we
obtain that the operator in question has weight hT = 2.

TABLE I. Dimensions of various operators. The first four lines
represent the superuniversal weights. The values of hRA and hLA for
the IQH are obtained from numerical simulations of PCC in the CC
model in Ref. 76. All other dimensions are exact. The angles θH

R,L are
the Hall angles at the two types of reflecting boundaries. The symbols
“—” mean that the corresponding exponents are not known to us.

IQH transition SQH transition Classical CC model

hA 1 h1,4(6) = 1 1
hT 2 h1,5(6) = 2 2
hl 1 h1,4(6) = 1 1
hBC 0 h1,2(6) = 0 0
hRA 0.8 h1,4(6) = 1 1/2 + θH

R /π

hLA 0.32 h1,3(6) = 1/3 1/2 + θH
L /π

hR – h1,3(6) = 1/3 0
hL – h1,3(6) = 1/3 0
hRL – h1,4(6) = 1 1/2
hLR – h1,3(6) = 1/3 0
h0 0 h1,2(6) = 0 0

A general way of finding weights of current insertions at a
boundary is to solve a boundary value problem for the electric
potential φ that gives the conductance of a rectangular sample
(Hall bar) of length L and width W . For long samples with
L/W � 1 the conductance is exponentially small:

g ∼ e−πhL/W , (127)

where h is the scaling dimension of the most relevant operator
contributing to the conductance. Details of this calculation are
given in Appendix C. Results are presented in Table I, where
we summarize the dimensions of various operators for the
systems of our interest.

VII. CONCLUSIONS AND OUTLOOK

We have revisited the problem of the plateau transition
in the integer quantum Hall (IQH) effect and related An-
derson localization-delocalization transitions in two spatial
dimensions. Specifically, we have considered the Chalker-
Coddington network model and related models. In all cases,
we have focused on the so-called boundary point-contact
conductances (PCCs) at critical points, and their behavior in
the presence of various boundaries (absorbing and reflecting).
While most of our results are general and apply to all problems
we consider, let us concentrate here on the most interesting
case, the IQH problem.

There are two key observations that allow us to analyze the
problem. The first observation is that microscopic expressions
for PCCs can be written as a sum of positive contributions
related to certain geometric objects that we call pictures (see
Sec. III A). Written as a sum over pictures, a PCC can be
interpreted as a partition function of an ensemble of pictures,
each picture having a certain statistical weight. The second
observation is that these statistical weights are intrinsic and
satisfy the so-called restriction property with respect to absorb-
ing boundaries. Namely, whenever we deform an absorbing
boundary, the pictures that continue to contribute to a PCC
are the ones that are present in the new (deformed) system.
The pictures that intersect the deformed boundary do not
contribute any more, and the PCC is renormalized. When we
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combine the restriction property with the assumed conformal
invariance at the IQH transition point, we can employ the
recently developed mathematical theory of conformal restric-
tion measures. This theory is closely related to conformal field
theories (CFTs) with zero central charge. As a result, we get
several results that were already mentioned in the Introduction
and discussed at length in the main part of the paper. Let us
briefly repeat them here.

First, PCCs in various geometries can be studied as
correlation functions of (Virasoro) primary CFT operators.
This statement alone allows us to calculate exact forms for
PCCs that reduce to three-point functions. Second, we predict
the values of conformal dimensions of some of the primary
operators that appear in the theory based on very general
arguments. Finally, the connection with conformal restriction
is established for other disordered systems, including the spin
quantum Hall transition, the classical limit of the Chalker-
Coddington model (diffusion in a magnetic field), and the
metal in class D. For these systems, many more dimensions of
primary operators can be obtained exactly.

The relation between the Chalker-Coddington model and
conformal restriction that we have discovered allows for an
approach to the study of the critical properties of the IQH
transition that is alternative to the ones used before. A full
understanding of the transition by these methods will require
much more work. We plan to extend this paper in several
directions.

We hope to be able to consider PCCs in more complicated
geometries, where the necessary CFT correlation functions
will be four-point or higher functions. In these cases, knowing
the conformal dimensions of the primary operators involved
will not be sufficient. In addition, we would have to under-
stand whether there are degenerate operators38 related to the
existence of null vectors in the corresponding representations
of the Virasoro algebra. Potentially, this can be established
by analyzing fusions of the operators that we have already
identified.

In this paper we have considered only boundary PCCs.
The necessary mathematical theory of sets K that “touch” the
boundary of a domain at two points is called the “chordal
restriction theory.” In principle one can define conductances
between point contacts in the bulk of a network (obtained by
cutting some of the internal links),64 or between a boundary
and a bulk contact. Upon disorder averaging these conduc-
tances should also satisfy a (suitably modified) restriction
property. The corresponding mathematical theory of the “bulk”
restriction or the “radial” restriction has not been worked
out, and we plan to develop it, and its relations to bulk CFT
operators.

For the bulk theory, the cut points that we have mentioned
in Secs. II A and III A will likely be important objects. It
is known from the conformal restriction theory57 that two-
sided restriction measures have cut points for any restriction
exponent h in the range 5/8 � h < 35/24. The cut points form
a fractal set of Hausdorff dimension

dcut(h) = 2 − (
√

24h + 1 − 1)2 − 1

12

= 2 − 2h + 2
√

24h + 1 − 1

12
. (128)

As we have argued, in our problems two-sided restriction
measures correspond to PCCs between contacts placed on the
absorbing boundary, in which case the restriction exponent is
the dimension of the conserved current operator: hA = 1. Then
the dimension of the set of cut points is dcut(1) = 3/4. In the
case of the SQH transition (percolation), this dimension can
be written as

dcut(1) = 2 − 2h0,2(6), (129)

where h0,2(6) = 5/8 is the dimension of the bulk four-leg
operator [see Eq. (108) for n = 4] well known to be related to
the critical exponent of the correlation length for percolation

νperc = [2 − 2h0,2(6)]−1 = dcut(1)−1 = 4/3. (130)

While we know that the localization length exponent for the
SQH transition is exactly this νSQH = 4/3, it is very different
for the IQH transition. The relation of cut points to νIQH (if
any) is not clear to us at the moment, but it is tantalizing to
speculate that one can get more understanding by focusing
on a decomposition of fillings of pictures into irreducible
components.

Another possible extension of our results is in the direction
of studying the restriction property away from critical points.
While the conformal invariance is lost away from critical
points, the restriction property for pictures survives, and
one can attempt to create a theory of “massive” restriction
measures. Similar attempts to develop a theory of “off-critical”
or “massive” variants of SLE exist in the literature.96,97 Also,
one-sided conformal restriction measures can be built from
Brownian motions with oblique reflection at boundaries, and
one can try to extend this construction by introducing a
finite “killing rate” for the Brownian particles. In the field
theory language this corresponds to adding a mass term to the
action (40).

Finally, we hope that the general idea of using notions
and methods of stochastic conformal geometry (conformal
restriction and SLE) can be fruitful in the study of other critical
disordered systems.
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APPENDIX A: DIRECTED GRAPHS, PICTURES,
AND FEYNMAN PATHS

In this Appendix we present a relation between pictures
and Feynman paths on the CC network. The connection
goes through the notion of a directed graph, or digraph (see
Refs. 98–101). Namely, for each picture p we construct a
digraph with vertices being the network nodes visited by the
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picture by replacing each link of the picture that is traversed nj

times with nj directed edges. (All graphs constructed in this
way are loopless: there is no edge in them that connects a vertex
to itself.) Then, each Feynman path f ∈ F (p) corresponds to
a Eulerian trail (that is, a sequence of directed edges that visits
every edge exactly once) on this digraph. The correspondence
is one-to-many since all permutations among nj edges of the
digraph connecting a pair of vertices correspond to the same
Feynman path.

There are several theorems in the theory of directed graphs
that are relevant for our discussion and allow us to characterize
the pictures that come from Feynman paths, and also count the
number of Feynman paths |F (p)| for a given picture p.

First, we introduce a few definitions. Let D be a di-
graph with vertex set V = {v1, . . . ,vm} and edge set E =
{e1, . . . ,en}. A trail in D is a sequence e1,e2, . . . ,er of distinct
edges such that the final vertex of ei is the initial vertex of ei+1

for all 1 < i < r − 1. If, in addition, the final vertex of er is
the initial vertex of e1, then the trail is called a tour or cycle. A
trail (tour) is Eulerian if it visits every edge of D exactly once.
A digraph that has no isolated vertices and contains a Eulerian
tour is called a Eulerian digraph. The outdegree of a vertex v,
denoted outdeg(v), is the number of edges of the digraph with
initial vertex v. Similarly, the indegree of v, denoted indeg(v),
is the number of edges of the digraph with final vertex v. A
digraph is balanced if indeg(v) = outdeg(v) for all vertices v.

The first theorem that we need is the following: a di-
graph without isolated vertices is Eulerian if and only if
it is connected and balanced. This immediately gives the
characterization of pictures that come from Feynman paths:
for every vertex of such a picture, the sum of numbers nj on
the incoming links must be equal to the sum of numbers nj

on the outgoing links. An example of such a balanced picture
is shown in Fig. 18. Actually, there is a little caveat that we
need to mention. As drawn, this picture has the initial and final
vertices that are not balanced. To eliminate this problem, we
connect these two vertices into a single vertex v0 (labeled by
0 in Fig. 18) with outdeg(v0) = indeg(v0) = 1. The resulting
picture is balanced. Moreover, after this is done, the number of
Feynman paths corresponding to the original picture is equal
to the number of Eulerian tours on the digraph corresponding
to the modified picture divided by the multiplicity factors nj !
for each link of the balanced picture.

1
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n1

n2 n2

n2

n 1

n 2
+

−1

n

1

2

3

4

5

6
0

n1

n 1 n1

n2

n2

n2

n1 n2+
1

2 3

4

56

FIG. 18. Left: a balanced picture (see the main text). The dashed
line joins the initial and final vertices of every Feynman path
corresponding to this picture into a single vertex labeled by 0 here.
Removing this vertex leads to the balanced picture shown on the right.

Next we describe how we can count the number of Feynman
paths |F (p)| that correspond to a balanced picture p. We
need two more theorems. One of them is the so-called BEST
theorem that relates the number of Eulerian tours on a digraph
D to the number of spanning (directed) trees on D. Here is a
precise formulation. Let D be a connected balanced digraph
with vertex set V . Fix an edge e of D, and let v be the
initial vertex of e. Let T (D,v) denote the number of oriented
(spanning) subtrees of D with root v, and let E(D,e) denote
the number of Eulerian tours of D starting with the edge e.
Then

E(D,e) = T (D,v)
∏
u∈V

[outdeg(u) − 1]!. (A1)

The other theorem, the so-called matrix-tree theorem, gives
the number of spanning trees T (D,v) with a given initial vertex
v in terms of the minor of the Laplacian matrix of the digraph.
Let us denote the number of edges going from vertex vi to
vertex vj by mij . The Laplacian matrix L = L(D) of a directed
graph D with vertex set V = {v1, . . . ,vm} is the m × m matrix

Lij =
{−mij if i 	= j,

outdeg(vi) if i = j.
(A2)

The matrix-tree theorem states the following: Let D be a
digraph with vertex set V = {v1, . . . ,vm}, and let 1 � k � m.
Let L be the Laplacian matrix of D, and define Lk to be L

with the kth row and column deleted. Then

T (D,v) = det Lk. (A3)

The result is independent of k.
Combining Eqs. (A1) and (A3) with the known degeneracy

of the Eulerian tours that give the same Feynman path, we
finally obtain the following general formula:

|F (p)| = det Lk

∏
u∈V [outdeg(u) − 1]!∏

i,j mij !
. (A4)

To illustrate this formula, consider the balanced picture shown
on the left in Fig. 18. Instead of counting the number of
Eulerian trails that start at the beginning of every Feynman
path, we can join the initial and final vertices of these paths into
a single vertex (labeled by 0 on the left in the figure), and count
the number of Eulerian tours on the corresponding digraph.
It is clear from the above discussion that the extra vertex 0
does not enter into the calculation of E(D,e) (even though
the denominator in the formula (A4) for |F (p)| should still
contain the edge multiplicities mij from the original picture).
Therefore, we remove it and obtain the balanced picture shown
on the right in Fig. 18. Labeling the remaining vertices as
shown, we obtain the following Laplacian matrix:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1 + n2 −n1 0 0 0 −n2

0 n1 −n1 0 0 0

0 0 n1 −n1 0 0

−n1 − n2 0 0 n1 + n2 0 0

0 0 0 −n2 n2 0

0 0 0 0 −n2 n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A5)
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FIG. 19. A more complicated balanced picture.

Deleting the first row and the first column, we get

det L1 = (n1 + n2)n2
1n

2
2. (A6)

The formula (A4) now gives

|F (p)| = (n1 + n2)n2
1n

2
2

[(n1 + n2 − 1)!(n1 − 1)!(n2 − 1)!]2

(n1 + n2 − 1)![n1! n2!]3

= (n1 + n2)!

n1! n2!
. (A7)

In this particular case, |F (p)| has a combinatorial interpreta-
tion as the number of distinct orderings of going around the
top and the bottom plaquettes on the right picture in Fig. 18.
However, in the more complicated cases there is no such
simple interpretation, while the general formula (A4) is still
straightforward to use. For example, for the picture shown in
Fig. 19 we have

|F (p)| = (n1 + n2 + n3 − 1)!

n1! (n2 − 1)! n3!
+ (n1 + n2 + n3 − 2)!

(n1 − 1)! n2! (n3 − 1)!
.

(A8)

We note here that the weighting factors for Feynman paths
f that enter the definition of the quantity S(p) in Eqs. (11)–
(13) are not determined by the graph-theoretic data for the
corresponding digraph (even in the simplest case of the critical
point in the isotropic system). Therefore, it seems that an
explicit calculation of S(p) for a given picture p is a much
more challenging problem than that for |F (p)|.

APPENDIX B: A CONFORMAL MAP

Here we construct the conformal map f : H \ A → H,
where A is the semicircle of radius ε centered at c ∈ R,
that preserves two points a < c and b > c (see Fig. 14). The
semicircle’s diameter along the real axis goes from c− ≡ c − ε

to c+ ≡ c + ε. We are interested in the limit where ε is much
smaller than other distances in the problem: ε � c − a,b − c,
and will expand results to the first nontrivial order in ε.

Let the original domain H \ A be in the complex z plane.
We construct the map w(z) in stages. First, we perform a
Möbius transformation s(z) that maps the point a to 0 and the
point b to ∞:

s(z) = z − a

b − z
. (B1)

The images of various points under this map are

s(a) = 0, s(b) = ∞,
(B2)

s(c±) = c± − a

b − c±
≈ c − a

b − c

[
1 ± ε

(
1

c − a
− 1

b − c

)]
.

Since s(z) is a Möbius transformation, the semicircle A

maps to another semicircle in the s plane. The center of this
semicircle is

s0 = 1

2
[s(c+) + s(c−)] = (c − a)(b − c) + ε2

(b − c)2 − ε2
≈ c − a

b − c
,

(B3)

and its radius is

r0 = 1

2
[s(c+) − s(c−)] = ε(b − a)

(b − c)2 − ε2
≈ ε

b − a

(b − c)2
. (B4)

Next we shift everything by s0 and rescale by r0:

t(s) = s − s0

r0
= z(1 + s0) − a − bs0

r0(b − z)
. (B5)

This transformation preserves the infinity, but maps 0 to

t0 = − s0

r0
= − (c − a)(b − c) + ε2

ε(b − a)
≈ −1

ε

(c − a)(b − c)

(b − a)
,

(B6)

and the semicircle in the s plane to the semicircle of unit radius
centered at the origin in the t plane.

Now we can perform the Zhukovsky transformation

u(t) = 1

2

(
t + 1

t

)

= 1

2

(
z(1 + s0) − a − bs0

r0(b − z)
+ r0(b − z)

z(1 + s0) − a − bs0

)
,

(B7)

which removes the semicircle in the t plane, preserves the
infinity, and maps t0 to

u0 = 1

2

(
t0 + 1

t0

)
≈ t0

2
= − 1

2ε

(c − a)(b − c)

(b − a)
. (B8)

One more Möbius transformation maps ∞ back to b, and
u0 to a:

w(u) = b(u − u0) + a

u − u0 + 1
. (B9)

Finally, the transformation w(z) that we want is obtained
by composing all the above maps:

f = w ◦ u ◦ t ◦ s. (B10)

Under these maps, the points a and b are successively mapped
as

a
s→ 0

t→ t0
u→ u0

w→ a, b
s→ ∞ t→ ∞ u→ ∞ w→ b.

Now we can wind the derivative of the map f (z) as

f ′(z) = w′(u) · u′(t) · t ′(s) · s ′(z)

= 1

2r0

(
1 − 1

t2
0

)[
b − a

(b − z)(u − u0 + 1)

]2

. (B11)
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From this expression we immediately see that

f ′(a) = 1

2r0

(
1 − 1

t2
0

)
. (B12)

To evaluate f ′(b) we need first to find

(b − z)u = z(1 + s0) − a − bs0

2r0
+ r0(b − z)2

z(1 + s0) − a − bs0
,

(b − z)u|z=b = b − a

2r0
. (B13)

Then

f ′(b) = 2r0

(
1 − 1

t2
0

)
. (B14)

The basic transformation formula for conformal restriction
measures [Eq. (51)] now gives

ZH\A(a,b) = |f ′(a)|hA |f ′(b)|hAZH(a,b)

=
(

1 − 1

t2
0

)2hA

ZH(a,b). (B15)

Relating this to transport properties, we find the change in
the average point-contact conductance between a and b upon
deforming the real axis by the bump A:

δ〈g(a,b)〉 = [1 − |f ′(a)|hA |f ′(b)|hA]〈g(a,b)〉

=
[

1 −
(

1 − 1

t2
0

)2hA
]
〈g(a,b)〉

≈ 2hA

t2
0

〈g(a,b)〉 ≈ 2hA|b − a|2
|c − a|2|c − b|2 ε2〈g(a,b)〉

= Cε2

|a − b|2hA−2|a − c|2|b − c|2 . (B16)

APPENDIX C: WEIGHTS OF CURRENT INSERTIONS
IN THE CLASSICAL CC MODEL

Let us place the Hall bar in the complex z = x + iy plane so
that its corners A,B,C, and D (going counterclockwise around
the sample) are at the points 0,L,L + iW,iW (see Fig. 20).
In the bulk of the sample the potential φ(x,y) satisfies the
Laplace equation

∇2φ = 0. (C1)

θ1
H

θ2
H

C

BA

y

x

D
πγ

πβ
A

D
v

B

u

C

πα

πδ

FIG. 20. Left: Hall bar in the complex z plane. The vertical
(dashed) portions of the boundary are attached to ideal leads. The
horizontal portions of the boundary are reflecting with possibly
different Hall angles θH

1 and θH
2 . Right: the same Hall bar in the

complex w plane. In this figure θH
1 = θH

R and θH
2 = θH

L . The dotted
lines are the directions in which the components of ∇φ vanish.

We assume that two ideal contacts are attached to the sides of
length W , and that these leads are kept at constant potentials:

φ|AD = 0, φ|BC = V. (C2)

Boundary conditions at the horizontal sides AB and CD of the
Hall bar have to be chosen according to the particular boundary
operator we are interested in. To find, say, hA, we require

φ|AB = 0, φ|CD = 0. (C3)

Similarly, for hRA and hLA we choose

φ|AB = 0, (∂y − tan θH∂x)φ|CD = 0, (C4)

where the Hall angle θH can take two possible values. For the
dimensions hR , hL, hRL, and hLR we choose(

∂y − tan θH
1 ∂x

)
φ|AB = 0,

(
∂y − tan θH

2 ∂x

)
φ|CD = 0.

(C5)

It is this case that is shown in Fig. 20.
In the case of the dimensions hA and hLA,hRA it is easier to

solve the necessary boundary value problem for the Laplace
equation (C1) in an infinite strip of width W . In this situation
the boundary conditions (C2) for the potential at the ends of the
strip are not important, and we can simply look for solutions
that decay exponentially in the positive x direction. Thus, we
assume

φ(x,y) = e−kxf (y). (C6)

Once possible values of k are found, they are related to the
scaling dimension h of the corresponding boundary operator
by

πh = kW, (C7)

and the leading scaling dimension is given by the smallest
non-negative k. Substituting this into the Laplace equation
(C1) gives

f ′′(y) + k2f (y) = 0, f (y) = A sin ky + B cos ky. (C8)

In the case of hA the boundary conditions (C3) imply that
B = 0 and kW = πn, n = 1,2, . . . . The smallest exponent
then is

h = hA = 1, (C9)

as expected. In the case of hLA,hRA the boundary conditions
(C4) immediately give B = 0 and

cos kW + tan θH
2 sin kW = 0, ⇒ cot kW = − tan θH

2 ,

kW = θH
2 + π/2 + πn, n ∈ Z.

(C10)

The smallest positive eigenvalue (n = 0) leads to

hLA = 1

2
+ θH

L

π
, hRA = 1

2
+ θH

R

π
, (C11)

the restriction exponents for reflected Brownian motions, as
expected.

To find the two-probe conductance in the case when both
the top and the bottom sides are reflecting, we need to solve
the problem (C1), (C2), and (C5). An exact solution of this
problem is possible via the use of the Schwarz-Christoffel
conformal map.102–104 The idea is to conformally map the
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Hall bar in the z plane to the quadrilateral in the complex
w = u + iv plane shown on the right in Fig. 20. The angles at
the vertices of the sample in the w plane are πα, πβ, πγ , and
πδ, where

α = 1

2
+ θH

1

π
, β = 1

2
− θH

1

π
= 1 − α,

(C12)

γ = 1

2
+ θH

2

π
, δ = 1

2
− θH

2

π
= 1 − γ.

Once we find such a map w(z), then in the w plane the
dotted lines denoting the direction in which the gradient of
the potential vanishes become vertical. The solution of the
boundary value problem [Eqs. (C1), (C2), and (C5)] in this
plane is simply given by

φ(u,v) = u = Re w. (C13)

This then gives the total potential drop

V = Re w(B), (C14)

and the horizontal electric field Eu = −∂uφ(u,v) = −1. This
means that the current in the bulk is also uniform in this
geometry and has the form(

ju

jv

)
=
(

σxx σxy

−σxy σxx

)(−1

0

)
=
(−σxx

σxy

)
. (C15)

Notice that in the case when the Hall angles θH
1 and θH

2 are
not equal, the conductance in one direction is not equal to the
conductance in the other direction. Thus, we have to be careful
with the calculation. We need to evaluate the current through
the right lead, where the potential is higher, since this is where
the current enters the system. In the direction away from this
lead into the bulk the current starts to accumulate on one of the
edges, and the current distribution acquires a delta-function
contribution at this edge.

The total current entering through the right lead is

I = |ju||v(C) − v(B)| = σxx Im[w(C) − w(B)]. (C16)

Combining Eqs. (C14) and (C16) gives the two-terminal
conductance:

g = I

V
= σxx

Im[w(C) − w(B)]

Re w(B)
. (C17)

In this form the conductance depends on a particular normal-
ization of the conformal map w(ζ ) which was chosen such that
w(D) is purely imaginary. This expression can be rewritten in
an equivalent form

g = σxx

sin(πα)

|w(C) − w(B)|
|w(B)| , (C18)

which is independent of the normalization of w(ζ ).
While it is straightforward to find an exact Schwarz-

Christoffel map w(z), in the case of long systems (L � W )

it is much easier to use an approximate map w̃(z). In this
case, the trapezoids (like the one shown in the right panel
in Fig. 20) almost degenerate into triangles. We can then
use a map appropriate for mapping an infinite strip to an
infinite wedge, that is, an exponential map. We will only
need to make sure that the opening angle of the wedge is
the same as that of the trapezoid in question (determined by
the Hall angles θH

1 and θH
2 ). Thus, we use an approximate

formula

g ∼ σxx

sin(πα)

|w̃(C) − w̃(B)|
|w̃(B)| . (C19)

For a long finite strip, this introduces distortions near the leads,
but they happen to be negligible, which is confirmed by the
exact solution.

It is convenient to treat the cases of equal and unequal Hall
angles separately. When θH

1 = θH
2 , we need to use a simple

rotation as the approximate map:

w̃(z) = e−iθH
1 z. (C20)

For the conductance g this gives g ∼ σxxW/L and implies

hR = hL = 0. (C21)

When the Hall angles are not equal, we will use the
following (shifted and rescaled) exponential map:

w̃(z) = e−iθH
1 (ekz − 1). (C22)

This maps the corner A to the origin in the w plane, and also
the side AB to a straight segment with the argument −θH

1 . To
make sure that the upper side DC has the correct slope, we
need to choose

kW = θH
1 − θH

2 . (C23)

The images of the vertices of the strip are

w̃(A) = 0, w̃(B) = e−iθH
1
(
e(θH

1 −θH
2 )L/W − 1

)
,

w̃(C) = e−iθH
2 e(θH

1 −θH
2 )L/W − e−iθH

1 , (C24)

w̃(D) = e−iθH
2 − e−iθH

1 .

Using Eq. (33), the conductance g is found to be

g ∼ σxx

e(θH
1 −θH

2 )L/W∣∣e(θH
1 −θH

2 )L/W − 1
∣∣ = σxx

|1 − e±πL/2W | . (C25)

When θH
1 = θH

R and θH
2 = θH

L the exponential term in the
denominator in Eq. (C25) can be neglected, and we get
gLR ∼ σxx . In the opposite case, the exponential term in
the denominator in Eq. (C25) dominates, and we get gRL ∼
σxxe

−πL/2W . These two imply, in turn,

hLR = 0, hRL = 1
2 . (C26)
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