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Onset temperature for the Kosterlitz-Thouless transition in the νt = 1 bilayer quantum Hall state
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We investigate the onset temperature T ∗ of the bilayer quantum Hall state at the total Landau level filling
factor νt = 1 together with the activation energy gap �. The onset temperature is the temperature at which the
quantum Hall state starts to form. We make two remarkable experimental observations: (1) As the total electron
density decreases, T ∗ increases while � decreases on account of the deterioration of electron mobility. (2) As the
in-plane magnetic field increases, T ∗ exhibits a rise at the point where � becomes a minimum. The minimum of
� occurs at the transition point from the commensurate phase to the recently discovered soliton lattice phase. We
discuss the relation between T ∗ and the Kosterlitz-Thouless transition on the basis of the XY symmetry possessed
by the νt = 1 bilayer system and discuss the experimentally observed behavior of T ∗.
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I. INTRODUCTION

Bilayer quantum Hall states (BQHSs) are one of the most
interesting systems observed in condensed matter physics
in which correlated electrons exhibit a rich variety of
phenomena.1,2 In particular, the interest generated in the
BQHS at the total Landau level filling factor νt = 1 has
encouraged numerous theoretical and experimental studies
because the layer degree of freedom in this quantum Hall state
demonstrates the fundamental aspects of electron correlations.
Recently, the prospects of realizing exciton superfluidity3,4 and
Josephson tunneling currents5–8 in two separately contacted
two-dimensional electron gases (2DEGs) have fueled renewed
research into the formation of the BQHS in GaAs/AlGaAs
heterostructures.

In the bilayer system, the layer degree of freedom can be
described as a pseudospin by equating the “up” (“down”)
pseudospins with electrons in the upper (lower) layer. The
layer separation causes the pseudospins to align along the
XY plane to minimize the capacitive charging energy, and
thus the system possesses an easy-plane anisotropy. One of
the important aspects of a system with XY symmetry is the
possibility of the system manifesting the finite-temperature
Kosterlitz-Thouless (KT) transition.8 For the νt = 1 BQHS,
two cases of KT transition can be considered theoretically.9–13

The first case of KT transition is when the energy gap
between the symmetric and antisymmetric wave functions,
�SAS, which is known as the tunneling energy, equals zero. In
this case, the pseudospins spontaneously break the symmetry
and lead to the formation of an itinerant XY ferromagnet. The
state possesses pseudospin vortex excitations (merons), and
they form vortex-pairs (bimerons) below the KT transition
temperature TKT. The KT transition occurs when a vortex-pair
is dissociated into two free vortices at TKT, because a free
vortex destroys the long-range order of the system.9,10,12

The second case of KT transition is observed in the recently
discovered soliton-lattice (SL) phase.14,15 When an in-plane
magnetic field B‖ is applied to the BQHS with a nonzero
tunneling gap (�SAS �= 0), the system undergoes a transition9

from the commensurate (C) phase to the incommensurate (IC)
phase as a result of the competition between the exchange
energy (∝ρps) and the tunneling energy (∝�SAS). Here,
ρps denotes the pseudospin stiffness that originates in the
interlayer Coulomb exchange energy [see Eq. (3) in Sec. IV A].
Experimentally, this transition was first discovered by Murphy
et al.16 when they observed that the activation energy gap �

changed its behavior from a rapid decrease to saturation at a
constant value. The SL phase exists at the C-IC transition point,
and it is manifested by the occurrence of a highly anisotropic
transport14 and a downward cusp in �.15 The SL is composed
of quantized magnetic vortices in a manner similar to those
observed in a Josephson junction, where each vortex represents
a 2π twist in the interlayer phase. In the SL phase, the
translational symmetry of the XY ferromagnet is restored, and
KT transition is induced by the dislocation-mediated melting
of the SL.9,11,13 An important feature is that, since the bimerons
and dislocations in the SL are electrically charged, the KT
transition can be detected by magnetotransport experiments.

Lay et al.17 noticed an interesting aspect of the onset
temperature T ∗, the temperature below which the quantum
Hall state (QHS) starts to form (see Fig. 1), by using a
wide-quantum-well sample. Their data showed a peculiar
result that, even when � was constant, T ∗ decreased as the
electron density nt increased. That is, paradoxically, the two
quantities showed different dependencies on nt. Lay et al.
suggested the relation between T ∗ and TKT because, in their
experiment, the behavior of T ∗ was not inconsistent with the
theoretical prediction made for the behavior of TKT.9 In a later
study, Abolfath et al.18 discussed the above result based on the
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FIG. 1. (Color online) Graphical representation of parameters T ∗

and �. The temperature at which the activated behavior terminates is
marked by T ∗.

reduction in ρps with an increase in nt. However, although the
large �SAS of their sample decreased with increasing nt, its
effect on T ∗ was not analyzed. Furthermore, no experiments
have thus far investigated the behavior of T ∗ for the SL phase.

In this study, we investigate the dependence of T ∗ on nt

and B‖ in the νt = 1 BQHS with small �SAS sample. The
dependence of T ∗ on nt shows a behavior similar to that
observed by Lay et al.17 This behavior is well explained by
the reduction in the pseudospin stiffness ρps, as mentioned
previously, whereas � decreases due to the decrease of the
electron mobility in the low-density regime. As regards the B‖
dependence, � decreases rapidly with increasing B‖ up to the
transition point, whereas T ∗ remains almost constant both in
the C and IC phases except in the region immediately after
the transition point (i.e., over the SL phase). These results
indicate that the behaviors of � and T ∗ are not correlated
and that T ∗ has a distinctive dependence on nt and B‖. We
discuss the physical interpretation of T ∗ in the context of the
KT transition, and we observe a reasonable agreement of our
results with theoretical predictions.

This paper is consisted as follows: In Sec. II, the experimen-
tal method is described. In Sec. III, we present the experimental
results regarding the variation in � and T ∗, after defining �

and T ∗. First we examine their nt dependence and then B‖
dependence. In Sec. IV, we discuss our results by comparing
them with the KT transition based on the bimeron separation
model (for nt dependence) and the SL melting model (for B‖
dependence). Finally, we present the summary in Sec. V.

II. EXPERIMENT

The sample used in this study, which was grown at the
NTT Basic Research Laboratories, consists of two 20-nm-wide
GaAs quantum wells separated by a 3-nm-wide AlAs barrier
layer; thus, the actual separation d between the two 2DEGs
is 23 nm. The estimated value of �SAS of this sample is
approximately 1 K. Experiments are carried out at the balanced
density point by varying nt. We can independently control the
electron density in each layer19 by adjusting the front- and
back-gate biases while maintaining the densities of the two
layers as equal. The sample is mounted in the mixing chamber
of a dilution refrigerator at a base temperature of 40 mK.
Measurements are performed using a standard low-frequency

(=17.7 Hz) ac lock-in technique with a current of 10 nA. The
in-plane field B‖ is applied by tilting the sample within the
magnetic field Bt using a goniometer with a superconducting
stepper motor.20 The tilting angle θ is expressed by B‖/B⊥ =
tan θ , where B⊥ denotes the perpendicular component of
the applied Bt to the 2DEG plane. Recall that the Landau
quantization of a 2DEG is determined by B⊥.

III. RESULTS

First, we provide the definitions of � and T ∗ in the
context of our study. Figure 1 shows a typical Arrhenius plot
(the inverse temperature 1/T dependence of the longitudinal
resistance Rxx) of the νt = 1 BQHS. The excitation gap � is
determined from the expression ln(Rxx) = ln(R0) − �/(2T ).
In this experiment, we carefully fit the slope in order to
realize the maximum value of ∂ ln(Rxx)/∂(1/T ), and thus,
an appropriate value of �. The onset temperature T ∗ is
determined by the crossover point of Rxx from the low-
temperature activated transport regime to the high-temperature
saturated resistance regime, following the approach of Lay
et al.17 Above T ∗, the Rxx minimum at νt = 1 vanishes and
Rxx is almost independent of T and B⊥. We deduce T ∗ from
the relation 1/T ∗ = [(ln(Rsat) − ln(R0)]/(−�/2), where Rsat

represents the saturated Rxx value in the high-temperature
limit. In general, any disorder present in the sample always
causes the ideal sharp transition to be converted into a
crossover transition from the low-temperature activated regime
to the high-temperature saturated Rxx regime, as we see in the
plot. Nevertheless, the obtained values are not significantly
different from the ideal values.

Figure 2 shows the observed values of � and T ∗ as
a function of nt at θ = 0 (B‖ = 0). It is found that �

becomes maximum around nt = 0.7 × 1011 cm−2, and then
it decreases to zero (non-QHS) as nt increases. This decrease
occurs because the intralayer Coulomb energy overcomes the
interlayer Coulomb energy.16 When nt increases, there is an
increase in the ratio of the intralayer Coulomb interaction to the
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FIG. 2. (Color online) Plots of � (left axis) and T ∗ (right axis)
as a function of nt. Inset: The zero-temperature phase diagram of
the ν = 1 bilayer system at B‖ = 0. EC represents the Coulomb
energy [=e2/(ε	B), e denotes the elementary charge and ε denotes
the dielectric constant]. The circles indicate the phase positions
corresponding to the data and the arrow indicates the direction in
which nt increases.
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FIG. 3. (Color online) Arrhenius plot (ln Rxx versus 1/T ) for
several values of θ at nt = 0.8 × 1011 cm−2.

interlayer Coulomb interaction, which is usually expressed as
d/	B, with 	B ≡ √

h̄/(eB⊥) denoting the magnetic length. In
the high-nt regime, the system approaches a system consisting
of two individual 2DEGs with each of the layers having a
filling fraction of 1/2 [Refs. 21,22] (see the phase position in
the inset phase diagram). This system essentially corresponds
to two composite Fermion metal states,22,23 and hence to a
compressible state. On the other hand, the decrease in � in the
low-nt regime is due to the deterioration of electron mobility.24

In contrast to the � behavior, T ∗ shows a monotonic decrease
as nt increases, similar to the result in Ref. 17.

Subsequently, we apply the in-plane field B‖ to our sample
to investigate the behavior of � and T ∗ in the SL phase.
Figure 3 shows the Arrhenius plot for several values of θ at
nt = 0.8 × 1011 cm−2. The slopes used to determine � and
the crossing points used to determine T ∗ are also shown.
As the sample is tilted within the magnetic field, � decreases
as the tilt angle increases; however, the activated regions start
to form at almost the same temperature. On the other hand, we
observe that only the crossing point (1/T ∗) at θ = 14◦ slightly
shifts to the left (to a higher temperature) when compared with
the three remaining crossing points, even though the slopes of
Arrhenius plots for θ = 14◦ and θ = 21◦ are nearly identical.
We also observe a similar shift in the slopes for the sample with
�SAS ∼ 11 K (not shown here). For T > T ∗, Rxx becomes
independent of T as well as the B‖ = 0 cases.

Figure 4 shows � and T ∗ as a function of θ for two different
values of nt. At nt = 0.8 × 1011 cm−2, � shows a behavior that
is typical of the C-IC transition. We observe a small dip at the
transition point, which indicates the formation of the SL phase
in this sample with a small �SAS. On the contrary, T ∗ is almost
constant over the measured region of θ except for a clear rise
observed immediately after the transition point, at which the
SL phase begins to form. This feature of T ∗ is somewhat
unexpected in two aspects: (1) T ∗ does not decrease with
increasing θ although � decreases to about half of its initial
value until the C-IC transition occurs. This suggests that T ∗
is not affected by the activation energy gap � and that it has
a distinctive dependence on B‖, at least in the νt = 1 BQHS.
(2) Although the system is rather unstable at the transition
point, T ∗ shows an increase in this region, thereby indicating
that the BQHS begins to form at higher temperatures than
the C phase. The two above-mentioned points can appear
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FIG. 4. (Color online) (a) � and (b) T ∗ as a function of θ for
nt = 0.6 and 0.8 × 1011 cm−2. Inset: The zero-temperature phase
diagram at the νt = 1 bilayer QHS in the nt versus B‖ plane. The
points shown correspond to the experimental regions to which B‖ is
applied.

counterintuitive because we can intuitively perceive that the
state with a smaller � would require lower temperatures to
begin to form a QHS.

Another interesting aspect of the behavior of � for nt =
0.6 × 1011 cm−2 is that � does not show a definite C-IC
transition point although T ∗ exhibits a clear rise at θ = 14◦.
With regard to the transition point, it is necessary to study the
Rxx behavior at low values of T . Figure 5 shows the variation
in Rxx at T ≈ 110 mK for nt = 0.6 and 0.8 × 1011 cm−2 as
a function of θ . We notice that Rxx for both densities rises
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FIG. 5. (Color online) Rxx at T ∼ 110 mK as a function of θ

for nt = 0.6 and 0.8 × 1011 cm−2. The arrows indicate the transition
points.
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abruptly (indicated by arrows). The sudden rise is the sign of
the onset of the SL phase,15 since the dissipation occurs due
to the scattering of charged carriers by the SL.25 Hence, we
can conclude that the SL phase starts to form at θ = 14◦ for
nt = 0.6 and at θ = 13◦ for nt = 0.8 × 1011 cm−2.

The reason that the C-IC transition point is not apparent
in the behavior of � remains unclear; however, we speculate
that certain disorder effects may be the underlying cause. We
recall1 that the tunneling energy density is given by

E = − 1
2 nt�SAS cos [θ (x) − δmx] , (1)

with δm ≡ edB‖/h̄, where θ represents the interlayer phase
field. Furthermore, we recall that the SL is described by a
periodic solution of the sine-Gordon equation,

ρps∂
2
x θ − 1

2nt�SAS sin[θ (x) − δmx] = 0. (2)

These equations indicate that the soliton is stabilized by the
tunneling energy E , which is proportional to the total density nt

and the tunneling gap �SAS. Hence, we can conclude that the
SL will show greater stability in samples with larger values of
nt�SAS. This is consistent with the experimental observation
of a clear cusp that appears in � at the C-IC transition point,
where the SL develops, in the sample with �SAS ∼ 11 K. In
contrast, when nt�SAS is extremely small, the tunneling energy
may be overcome by the energy associated with disorder.
We can ascribe the origin of the disorder to randomness in
the tunneling by impurities or small variations in the barrier
thickness. The disorder may also arise simply due to spatial
variations in densities that can change the C-IC transition point
locally. In any case, a well-developed SL would not appear
since it is unstable when nt�SAS is too small.

IV. DISCUSSION

A. T ∗ and bimeron separation

From Fig. 2, it can be observed that the onset temperature
T ∗ decreases as nt increases or, equivalently, as d/	B increases.
We now relate this unique behavior of T ∗ to that of the
KT transition temperature TKT. It has been argued9 that, if
�SAS = 0, the separation of a bimeron induces the KT
transition at TKT = (π/2)ρps. The pseudospin stiffness ρps is
given by the Hartree-Fock approximation as

ρps = e2

16πε	B

∫ ∞

0
dxx2 exp[−x2/2 − xd/	B], (3)

where e denotes the elementary charge and ε denotes the
dielectric constant. It is clear from this formula that ρps

decreases as d/	B increases, because ρps is attributed to the
interlayer Coulomb exchange interaction that decreases with
increasing d/	B. The manifestation of the KT transition in the
electric transport experiment is not entirely clear, although
it is argued that Rxx is almost independent of T and B⊥
for T � TKT and displays an activated dependence on T for
T < TKT because, unlike in other cases,26 the paired vortices
have an electrical charge e while their vorticity is neutral in
the temperature range below TKT.10 Above TKT, free vortices
destroy the long-range order of the QHS and thus the system
becomes a compressible state.

Figure 6 shows the plot of the observed T ∗ together
with the calculated TKT as a function of d/	B. As observed,
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FIG. 6. (Color online) Plot of T ∗ as a function of d/	B along with
the curve for TKT that follows the equation TKT = πρps/2.

the experimental T ∗ curve and the calculated TKT curve
show good agreement without the application of any fitting
parameters. Thus, even for low values of nt, the behavior of T ∗
demonstrates the intrinsic property of the interlayer Coulomb
correlation effect without being affected by the reduction in
electron mobility. Our result shows a better agreement with the
theoretical values than the previous work,17 probably due to
the smaller �SAS of our sample. Hence, our result indicates
that the KT transition, as elucidated by the bimeron separation
model, can explain the behavior of T ∗ very well. The
deviations at small and large d/	B values may originate due
to the nonzero �SAS value of the sample that reduces with
increasing d/	B.

B. T ∗ and soliton-lattice melting

In order to examine the B‖ dependence of T ∗, we again
discuss the behavior of T ∗ with reference to the KT transition.
Let us review the two points raised in Sect. III: (1) T ∗ is
almost constant, even though � decreases rapidly toward the
C-IC transition point; (2) T ∗ shows a clear rise at the C-IC
transition point. As regards the first point, the system is in
the C phase (�SAS �= 0, B‖ < Bc

‖), and it has been previously
argued that the KT transition is eliminated in this case.9,12 In
this state, the bimeron excitation is stretched in the direction
of B‖.12 However, it is to be noted that the behavior of T ∗
can be easily explained if we identify it as TKT. Indeed, it is
obvious from Eq. (3) that TKT (= πρps/2) is independent of
B‖. However, more theoretical considerations are required for
this issue.

The second point mentioned above is of greater significance
to this study. To discuss this point, we further investigate the
properties of the SL. The observed increase in T ∗ over the SL
phase region indicates that the SL is robust to the increase in
T , although the result of � indicates that the system loses
its ferromagnetic order at temperatures lower than that of
the C phase. This phenomenon may be explained as follows:
After the transition, solitons proliferate rapidly throughout the
sample,1,13,15 and at a finite temperature the soliton lines begin
to meander.27,28 Hence, the meandering solitons can produce
random dissipations of electrons, resulting in the increase
in Rxx and the reduction in �.15 Furthermore, the solitons
themselves have a finite melting or dislocation temperature
that is dependent on their elastic properties. The complete
melting of the SL should occur at T = T ∗, above which Rxx
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is saturated. When T � T ∗, the order of the system is again
destroyed. The rise in T ∗ at the C-IC transition point suggests
that the KT transition changes to the melting of the SL.

There are several theoretical studies on TKT behavior
with regard to the SL.11,13,29,30 Herein, we compare our
experimental results to the results of one of the theories of
KT transition in the SL phase. As mentioned previously,
for the case �SAS �= 0 and B‖ > Bc

‖ , the finite-temperature
KT transition can be ascribed to the dislocation-mediated SL
melting. Read11 has argued that the TKT behavior after the
transition B‖ > Bc

‖ can be expressed by

TKT ∼ (K11K22)1/2

∼ (B‖ − Bc
‖)1/2 ln3/2[1/(B‖ − Bc

‖)], (4)

where K11 denotes the compressional elastic constant and K22

denotes the shear elastic constant of solitons. It is to be noted
that K11 ∝ (B‖ − Bc

‖) ln2[1/(B‖ − Bc
‖)] because an elongated

soliton line that is weakly repulsive at the both ends can easily
be compressed, while K22 ∝ ln[1/(B‖ − Bc

‖)] because the tilt
of a soliton line, where the ground-state energy is minimized
when solitons are aligned in the direction of B‖, causes a
large energy expenditure [see Fig. 7(a)]. For B‖ → ∞, the
distance between the solitons is extremely small, whereby
the ground state becomes completely incommensurate (i.e.,
the system is well approximated by the isotropic XY model).
Hence, both K11 and K22 approach ρps, thereby resulting in
TKT → ρps. Figures 7(b) and 7(c) display the fitting results
for nt = 0.6 and 0.8 × 1011 cm−2, respectively. In order to
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FIG. 7. (Color online) (a) Theoretically predicted values of K11,
K22, and TKT as a function of B‖. (b) and (c) The fitting results of T ∗

with the theoretical TKT curve of the SL phase as obtained by Read11

for nt = 0.6 and 0.8 × 1011 cm−2, respectively.

proceed with the fitting, we use the following formula with
two fitting parameters A and C:

F (x) = A(B‖ − Bc
‖)1/2 ln3/2[1/(B‖ − Bc

‖)] + C. (5)

The constant A primarily accounts for the ρps term whereas C

does not exist in Eq. (4). It is naively considered that disorder
modifies the KT temperature to some extent. As we can see,
both the T ∗ values, obtained for nt = 0.6 and 0.8 × 1011 cm−2,
are fit very well by Eq. (5) in the SL-phase regime, and then the
obtained values deviate from the fitting curve as B‖ increases.
Although the experimental regions to which B‖ is applied in
this study remain small, this change is exactly consistent with
Read’s argument. This further corroborates the equating of T ∗
with TKT.

Another possible explanation for the behavior of T ∗, as
given by Lay et al.,17 is that there is a transition from
the correlated incompressible BQHS to the uncorrelated
compressible Fermi liquid. However, this explanation does not
account for the remarkable B‖ dependence of the SL phase,
because the transition to a compressible state is dependent on
the ratio d/	B. Furthermore, we stress the fact that, in the
off-balanced νt = 1 BQHS,31 or other fillings of the bilayer
and monolayer systems,32 T ∗ and � change similarly, and
the unusual behaviors of T ∗ observed in this experiment have
never been observed previously. This corresponds to the fact
that the ground state of the νt = 1 BQHS is the only system
that possesses the XY symmetry among other QHSs. On this
account, we believe that our results offer significant insights
into the KT transition.

V. SUMMARY

We have measured the onset temperature T ∗ together with
the activation gap � in the νt = 1 BQHS and have found
interesting dependencies on nt and B‖. When B‖ = 0, T ∗ is not
affected by the deterioration of electron mobility in the low-nt

regime, and it actually increases as nt decreases, while �

decreases in the same situation. As regards the B‖ dependence,
T ∗ rises at the C-IC transition point, and this is again contrary
to the behavior of �. When examined in reference to the KT
transition, the experimental results suggest that T ∗ represents
TKT for the cases of both bimeron separation and SL melting,
based on the comparison with theoretical predictions.
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