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We report on a systematic numerical study of carrier multiplication (CM) processes in spherically symmetric
nanocrystalline and bulk forms of PbSe and PbS representing the test bed for understanding basic aspects of CM
dynamics. The adopted numerical method integrates our previously developed interband exciton scattering model
and the effective mass based electronic structure model for the lead chalcogenide semiconductors. The analysis
of CM pathways predicted by the interband exciton scattering model shows complete lack of their interference
during the biexciton photogeneration. This allows us to interpret this process as a single impact ionization
event and to explain a major contribution of the multiple impact ionization events during the phonon-assited
population decay into the total quantum efficiency (QE). We investigate the role of quantum confinement on QE
and find that the reduction in the biexciton density of states (DOS) overruns weak enhancement of the Coulomb
interactions leading to lower QE values in nanocrystals as compared to the bulk on the absolute photon energy
scale. However, represented on the photon energy scale normalized by corresponding band gap energies, the trend
in QE is opposite demonstrating the advantage of nanocrystals for the photovoltaic applications. Comparison
to published experimental data allows us to interpret the observed features and to validate the applicability
range of our model. Modeling of QE as a function of pulse duration shows weak dependence for the Gaussian
pulses. Finally, comparison of the key quantities determining QE in PbSe and PbS demonstrates the enhancement
of impact ionization rate in the latter materials. However, the fast phonon-assisted population decay in PbS
nanocrystals can lead to experimentally observed reduction in QE as compared to PbSe nanocrystals.
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I. INTRODUCTION

An ability to produce more than one electron-hole pairs
(excitons) per single absorbed photon in semiconductor ma-
terials can potentially enhance the solar energy conversion
efficiency in photovoltaic devices beyond the fundamental
Shockley-Queisser limit.1–8 In the literature, this process
is referred to as Carrier Multiplication (CM) or multiple
exciton generation, MEG, and has been extensively studied
in the bulk semiconductors for decades.9–13 Recent ultrafast
optical studies of CM in semiconductor nanocrystals reported
significantly higher quantum efficiency (QE) and much lower
activation energy threshold (AET) as compared to the bulk
materials on the photon energy scale normalized by the
corresponding band gap values.3,14–23

These reports stimulated extensive experimental and theo-
retical studies of CM in the nanostructured materials in which
the exciton dynamics is affected by quantum confinement.
It was initially expected that the quantum confinement en-
hancement of Coulomb interactions between carriers could
result in more efficient multiexciton production. Furthermore,
a relaxation of the quasimomentum conservation constrains
by breaking the translational symmetry should open addi-
tional pathways for CM and reduce the AET. Finally, the
presence of phonon bottleneck in the nanocrystals should
slow down the intraband phonon-assisted population decay
and further increase the QE. However, subsequent reports
claimed significantly lower QE and even the absence of CM
in the nanocrystals.24–27 This controversy possibly rises from
experimental inaccuracy,26,28 sample-to-sample variation in
surface preparation,29–34 and contribution from extraneous

effects such as photocharging.35,36 The optical measurements
of QE in bulk PbS and PbSe semiconductors37 show that the
bulk QE exceeds validated values in nanocrystals25,35,36,38–40

if compared on the absolute photon energy scale.37 However,
due to confinement induced increase in the band gap energy,
Eg , the benefits to photovoltaics is higher in nanocrystals
than in bulk. The controversy calls for the development of
new sensitive spectroscopic tools,41,42 alternative photocurrent
measurements,43,44 and reassessment of the quantum confine-
ment role in CM dynamics based on a unified theoretical
model.25,45

Accepted theoretical models of CM are based on the many-
body Coulomb interactions that correspond to the valence-
conduction band transitions conserving total charge but not the
number of electrons and holes.46–48 In the exciton picture, this
represents transitions between the exciton bands of different
multiplicity. Hence, we will refer to these transitions below
as the interband exciton transitions, and to the corresponding
Coulomb interactions as the interband Coulomb interactions.
Within adopted nomenclature, the intraband Coulomb interac-
tions (i.e., restricted to an exciton band of a certain multiplicity)
conserve the number of electrons and holes and determine the
multiexciton interaction (e.g., binding) energy.

The simplest theoretical model initially developed to
explain CM in bulk materials is the impact ionization im-
pact ionization model.49 It treats CM dynamics following
high-energy photoexcitation as the lowest-order interband
transitions whose rate is given by the Fermi’s golden rule.
This rate depends on the interband Coulomb matrix elements
and the final multiple-carriers (e.g., biexciton) density of states
(DOS).50,51 The model has been further applied to interpret CM
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dynamics in the nanocrystals along with various methods for
the electronic structure calculations.

Franceschetti, An, and Zunger performed atomistic pseu-
dopotential calculations of the impact ionization and Auger
recombination rates in PbSe nanocrystals. Assuming the
absence of the quasimomentum constraint and rapid growth
of the biexciton DOS, they estimated low value (∼2.2Eg) of
AET after defining this quantity as the energy above which
the impact ionization rate exceeds the Auger recombination
one.52 Rabani and Baer performed screened semiempirical
pseudopotential calculations of the impact ionization rates
in CdSe and InAs and found significant reduction of QE
as the nanocrystal size increases. The observed trend makes
CM already inefficient in the nanocrystals whose diameter is
∼3 nm. The observation has been rationalized by strong size
dependence of the interband Coulomb interactions and the
trion DOS behavior.53

Using the semiempirical tight-binding model, Allan and
Delerue performed extensive calculations for PbSe, PbSe,
InAs, and Si nanocrystals.54,55 They found that although
the Coulomb interactions are enhanced by the quantum
confinement, the quantum-confinement-induced reduction in
the biexciton DOS facilitates decrease of the impact ionization
rate and subsequently decrease of QE. The comparison of
the impact ionization rates calculated in PbSe bulk and
PbSe nanocrystals shows that the impact ionization rates
in the nanocrystals does not exceed the bulk one.54 Based
on these calculations, the authors of Ref. 37 argue that the
experimentally observed drop of QE in the nanocrystals can
be attributed to the dominant effect of the reduced carriers’
DOS. Lack of the phonon bottleneck, leads to the rapid
intraband phonon-assisted relaxation that further reduces the
QE.54,55

Schaller, Agranovich, and Klimov, first pointed out that
in addition to impact ionization, the direct photogeneration
of biexcitons can take place in nanocrystals through “virtual-
exciton channel.”15 Subsequently, Rupasov and Klimov sug-
gested that additional contribution to photogeneration QE
can rise from the “vitual biexciton channel.”56 Using the
effective mass model for the electronic structure of PbS
and PbSe nanocrystals proposed by Kang and Wise,57 the
authors estimated the photogeneration QE and argued that
this process provides the dominant contribution to the net
QE in the nanocrystals. Recently, Silvestri and Agranovich,
using the same model, performed detailed calculations for
relatively small radii (i.e., 1.95 and 3 nm) PbSe nanocrystals.58

They concluded that the contribution of the photogeneration
processes in nanocrystals is much weaker than it was claimed
before and clarified that the overestimated values of QE
result from disregarding the effect of selection rules for
the interband Coulomb matrix elements and the oscilla-
tor strength factors weighting optically allowed transitions.
Here, we demonstrate that the absence of the interference
between the photogeneration pathways and the presence of
small size dispersion further decreases the photogeneration
QE.

Another model describing the coherent photogeneration of
biexcitons from the resonant exciton states, initially proposed
by Shabaev, Efros, and Nozik considered an idealized five-
level system,59 and was subsequently refined to account for

the biexciton DOS effect.60 Using the effective mass k · p
Hamiltonian, the authors of Ref. 60 performed calculations
for the small radii (i.e., 2 and 3 nm) PbSe nanocrystals,
and found that dense biexciton DOS leads to the vanishing
coherent oscillations between exciton and biexciton states.
They also pointed out that efficient CM can be expected in
the considered small nanocrystals. A drawback of the coherent
superposition model is the lack of pure-dephasing effects and
the inhomogeneous broadening, which as we demonstrate here
play important role in the CM dynamics leading to smaller QE.

Finally, the ab initio calculations on small clusters
(�1 nm) revealed the role of strong Coulomb correlations
and fast exciton-biexciton dephasing rates in the multiexciton
photogeneration61,62 and suggested additional contributions of
the phonon-assisted Auger processes to CM.63 The atomistic
calculations mostly focused on impact ionization dynamics
occurring during the population decay are limited to the small
diameter (�3 nm) nanocrystals. However, reported experi-
mental studies consider larger nanocrystals with the diameter
varying up to 10 nm. To close this gap and to perform a
comparison with the bulk materials, an extrapolation procedure
combined with atomistic calculations has been proposed.64 For
larger but still small diameter (∼4–6 nm) nanocrystals, the
photogeneration dynamics has been investigated with the help
of an effective mass model.

Recently, we have published a letter summarizing the
results of our numerical investigation on the direct photo-
generation and population decay processes contributing to
CM in the broad diameter range PbSe nanocrystals and in
PbSe bulk.65 The calculations employ our earlier proposed
interband exciton scattering model48 that recovers the models
discussed above as various limiting cases and which we further
parametrized using the Kang and Wise effective mass, k · p,
electronic structure model.57,66 In the letter, we argue that
in both cases of the photogeneration and population decay
dynamics, the impact ionization is the main mechanisms of
CM. This explains weak contribution of the direct photo-
generation to the total quantum QE. Analyzing the scaling
of the total QE with the nanocrystals size, we found that
the nanocrystals QE plotted on the absolute energy scale
does not exceed the bulk QE. This is in agreement with the
reported experimental data and some theoretical studies and
confirms that the quantum-confinement-induced reduction in
the biexciton DOS leads to the decease of QE.

This paper discusses in great details the theoretical method
and provides extended analysis of the numerical results
summarized in Ref. 65. In addition, we consider the effect of
optical pump pulse duration on QE, and provide a comparative
analysis of the key processes leading to CM in PbS and PbSe
materials. The paper is organized as follows. In Sec. II, we
review the weak Coulomb interaction limit of the interband
exciton scattering model used for the numerical calculations,
introduce a convenient quasicontinuous representation, and
further discuss the details of the model parametrization. In
Sec. III, an extensive analysis of our numerical results for
PbSe nanocrystals is given. Comparison of PbSe and PbS
is performed in Sec. IV. Section V concludes the paper
by discussing limitations of the adopted model, providing a
connection with experiment, and suggesting possible ways to
enhance QE in the nanocrystals.
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II. THEORETICAL MODEL AND NUMERICAL
PARAMETRIZATION

The central quantity describing CM efficiency is QE, which
can be calculated as3

QE = 2Nxx + Nx

Nxx + Nx

. (1)

Here, Nx and Nxx are the total exciton and biexciton popula-
tions, respectively, produced by a single absorbed photon in
the limit of vanishing pump fluence. In general, QE depends on
the delay time measured from the center of the pump pulse. By
taking into account that the photogeneration process occurs on
subpicosecond and the population decay on picosecond time
scales, the photogeneration QE can be attributed to the Nx

and Nxx values at times longer than the pulse duration but
much shorter than the population decay time. The total QE is
attributed to the exciton and biexciton band-edge population
values on a time scale longer than the population decay time
but much shorter than the Auger recombination time for the
band-edge biexciton. This quantity is typically determined
in experiment.35 A complimentary quantity, often used to
describe CM, is the biexciton quantum yield, ηxx = QE − 1,
defined as a number of biexcitons produced per single absorbed
photon.

Next, we review the weak Coulomb limit of the interband
exciton scattering model48 also outlined in Appendix A. This
approach has been implemented to calculate the time evolution
of the exciton and biexciton populations in Eq. (1). We further
introduce the quasicontinuous frequency representation, which
is convenient to analyze the quantum confinement signatures
and the size scaling of the quantities determining QE in
transition from a nanocrystal to the bulk limit. Finally, we
discuss the model parametrization used in our numerical
calculations of QE for PbSe and PbS materials.

A. Biexciton photogeneration and population relaxation model

Derivations of the expressions for the exciton, nx
a

(0), and
biexciton, nxx

k
(2), populations generated by optical ultrafast

pump pulse are given in Appendix A. Accordingly, in the
weak Coulomb interaction limit, the leading contribution
to the photogenerated population of the ath exciton state
is48

nx
a

(0) = ∣∣μx
a0

∣∣2I
(
ωx

a − ωpm

)
, (2)

where μx
a0 is transition dipole moment between the ground

state, |x0〉, (i.e., filled valence band) and an exciton state |xa〉,
projected on the direction of linearly polarized pump pulse.

I
(
ωx

a − ωpm

) = 2

h̄2

∫ ∞

−∞
dt

′
∫ ∞

0
dt1e

−γ x
a t1

× cos
[(

ωx
a − ωpm

)
t1

]
Epm(t

′
)Epm(t

′ − t1),

(3)

is the pulse self-convolution function depending on the exciton
state transition frequency ωx

a and dephasing rate γ x
a . The

pump pulse is characterized by the envelope electric field
amplitude Epm(t) determining the temporal profile of the
pulse, and the central frequency ωpm. In our calculations,

we used the Gaussian form of the pulse envelope function,
Epm(t) = E (0)

pme−t2/2τ 2
pm , with the peak value E (0)

pm and pulse
duration defined as the temporal variance of the envelope, τpm.
(The subscript pm is used to designate that the introduced
quantities describe the optical pump pulse.) For the pulses
longer than typical dephasing time, τpm � 1/γ , the contin-
uous wave limit is recovered and the pulse self-convolution
function becomes proportional to the Lorentzian line shape
function.

According to Appendix A, the photogenerated population
of the kth biexciton state is

nxx
k

(2) =
∑
a�1

∣∣�xx,x
k,a μx

a0

∣∣2I
(
ωx

a − ωpm

)
+

∣∣∣∣∣ ∑
a�1

�
xx,x
k,a μx

a0 +
∑
l�1

μxx
kl �

xx,x
l,0

∣∣∣∣∣
2

I
(
ωxx

k − ωpm

)
,

(4)

where μxx
kl is the intraband transition dipole between the

biexciton states |xxk〉 and |xxl〉, and

�
xx,x
k,a = V

xx,x
k,a

h̄
[
ωxx

k − ωx
a + iγ

xx,x
k,a

] , (5)

describes the transition amplitude associated with the single
(Born) scattering event between exciton sate |xa〉, and
biexciton state |xxk〉. The quantity �

xx,x
l,0 , also entering

Eq. (4), is the transition amplitude between the ground state
|x0〉 (ωx

0 = 0) and biexciton state |xxl〉. V
xx,x
k,a is the interband

Coulomb matrix element in the exciton representation
giving rise to the interband scattering, and γ

xx,x
k,a is the

interband dephasing rate. The pulse self-convolution function
I(ωxx

k − ωpm), in Eq. (4), is defined by Eq. (3) but contains
ωxx

k and γ xx
k instead of ωx

k and γ x
k , respectively.

Our numerical calculations show that the rapid sign varia-
tion of the interfering terms in Eq. (4) leads to their cancellation
allowing us to write Eq. (4) as

nxx
k

(2) =
∑
a�1

∣∣�xx,x
k,a μx

a0

∣∣2I
(
ωx

a − ωpm

)
+

∑
a�1

∣∣�xx,x
k,a μx

a0

∣∣2I
(
ωxx

k − ωpm

)
+

∑
l�1

∣∣μxx
kl �

xx,x
l,0

∣∣2I
(
ωxx

k − ωpm

)
. (6)

The resulting three noninterfering photogeneration pathways
are illustrated in Fig. 1.

The first and the second pathways, given by the first and
the second terms in Eq. (6), are shown in Figs. 1(a) and 1(b),
respectively. These terms describe redistribution of the exciton
oscillator strengths (∼|μx

0a|2) between exciton and biexciton
bands mediated by the interband Born scattering (�x,xx). The
first pathway [see Fig. 1(a)] involves the ground-to-exciton-
state resonant optical transition and further scattering to the
final biexciton states distributed around h̄ωpm according to the
nonzero components of �x,xx . We will refer to this process as
the indirect biexciton photogeneration throughout this paper.48

Figure 1(b) illustrates the second pathway, where the exciton
is virtual and final biexciton state is in resonance with the
optical pulse. Thus this pathway will be refereed to as the
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FIG. 1. (Color online) Noninterfering biexciton photogeneration pathways associated with the weak Coulomb limit. (a) Indirect biexciton
photogeneration via exciton states. (b) Direct biexciton photogeneration via virtual exciton states. (c) Direct biexciton photogeneration via
biexciton states. (See details in the text.)

direct biexciton photogeneration via virtual exciton states.15

The third pathway [see Fig. 1(c)] consists of Born scattering
between the ground and biexciton (�0,xx) states stabilized by
the intraband dipole transition, μxx . Accordingly, the final
biexciton state is in resonance with the optical pulse. This
process, refereed to as the direct biexciton photogeneration
via biexciton states,56 becomes prohibited in the bulk limit
by the momentum conservation constraint for optical valence-
conduction band transitions.

Equations (2)–(6) fully describe the exciton and biexciton
populations prepared by the pump pulse. We use them
for the numerical evaluation of the photogenerated exciton,
Nx = ∑

a nx
a , and biexciton, Nxx = ∑

k nxx
k , populations and

subsequently the QE [see Eq. (1)]. They also provide the
initial conditions to model population decay dynamics using
a set of rate equations.48 Using this computational approach,
our goal is to clarify the effect of quantum confinement on
QE in transition from a nanocrystal to the bulk limit. Since
the CM dynamics in nanocrystals takes place in the energy
region characterized by high electron and hole DOS, we expect
that the CM dynamics in the nanocrystals and bulk should
have common features. Thus we intend to see how strongly
these features are affected by the presence of the confinement
potential.

Quantitatively, we are going to look at the interplay between
the size scalings of the interband Coulomb interaction and ex-
citon/biexciton DOS determining the QE variation in transition
from nanocrystal to the bulk limit. First, we define the bulk
limit as the thermodynamic limit: V → ∞, V/v → ∞, and
v = const., where V is a crystal volume, v is the unit cell
volume, and the ratio V/v gives the number of unit cells in the
crystal. Then Eqs. (2) and (6) and quantities determining the
population decay should be represented in such a form that the
effect of interband Coulomb interactions and exciton/biexciton
DOS are clearly distinguished. This can be achieved by using
the quasicontinuous energy representation defined below.
Since some quantities of interest in the bulk limit have volume
scaling, it is convenient to introduce associated intensive
(i.e., volume independent in the bulk limit) variables. Their
deviation from the well defined bulk values will provide us

with the convenient measure of the quantum confinement
effects.

We start with the exciton and biexciton populations by
recasting them to the quasicontinuous energy representation67

by using the following transformations:68

nx(ω) =
∑
a�1

nx
aδ

(
ω − ωx

a

)
, (7)

nxx(ω) =
∑
k�1

nxx
k δ

(
ω − ωxx

k

)
, (8)

respectively. Both nx and nxx have linear scaling with
the volume in the bulk limit. Therefore we eliminate the
latter scaling by multiplying the total populations with the
dimensionless prefactors v/V and end up with the following
intensive quantities:

Ñx = v

V

∫ ∞

0
nx(ω)dω, (9)

Ñxx = v

V

∫ ∞

0
nxx(ω)dω. (10)

Although the prefactor v/V cancels out in the expression for
QE (1), indicating that the latter quantity is indeed intensive,
it is convenient to keep it in Eqs. (9) and (10) for consistency.

According to the arguments provided in Appendix B, we
define the intensive exciton and biexciton DOS as

ρx(ω) =
(

v

V

)2 ∑
a

δ
(
ω − ωx

a

)
, (11)

ρxx(ω) =
(

v

V

)4 ∑
k

δ
(
ω − ωxx

k

)
, (12)

respectively. The associated optically allowed exciton and joint
biexciton DOS can be defined as

ρ̃x(ω) =
(

v

V

)∑
a

∣∣μx
a0

∣∣2
δ
(
ω − ωx

a

)
, (13)

ρ̃xx(ω1,ω2) =
(

v

V

)4 ∑
kl

∣∣μxx
kl

∣∣2

× δ
(
ω1 − ωxx

k

)
δ
(
ω2 − ωxx

l

)
, (14)
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respectively. These quantities carry information on the optical
selection rules reducing number of states participating in the
photogeneration process.

Our central quantity is the effective Coulomb interaction
between the states within the frequency intervals [ω1,ω1 +
dω1] and [ω2,ω2 + dω2] defined as the rms of the interband
Coulomb matrix elements,69

V
x,xx

eff (ω1,ω2) =
(

V

v

)2
[∑

a,m

∣∣V x,xx
a,m

∣∣2

× δ
(
ω1 − ωx

a

)
δ
(
ω2 − ωxx

m

)∑
b δ

(
ω1 − ωx

b

)∑
n δ

(
ω2 − ωxx

n

)]1/2

.

(15)

The related effective Coulomb term, connecting the ground
and biexciton states, can also be defined as

V xx
eff (ω) =

(
V

v

)3/2
[∑

m

∣∣V x,xx
0,m

∣∣2 δ
(
ω − ωxx

m

)∑
n δ

(
ω − ωxx

n

)]1/2

.

(16)

As we show in Appendix B, the volume prefactor (V/v)2

[(V/v)3/2] in Eq. (15) [Eq. (16)] corresponds to a finite
effective Coulomb value in the bulk limit. Therefore the
size scaling of such defined interaction with the nanocrystal
diameter, d, provides a quantitative measure of the quantum
confinement effects. In general, a deviation from the bulk
value for the effective Coulomb interaction reflects the net
result of the scaling of the Coulomb matrix elements with
d, relaxation of the momentum conservation constraints, and
the appearance of new selection rules associated with the
symmetry of confinement potential.

Assuming the continuous wave excitation, the exciton and
biexciton populations produced by the pump pulse can be
obtained by substituting Eqs. (2) and (6) [along with Eq. (5)]
into Eqs. (7) and (8), and further integrating over dω as de-
scribed in Eqs. (9) and (10), respectively. In this representation,
the exciton population becomes simply proportional to the
corresponding optically allowed DOS [see Eq. (13)],

Ñx(ωpm) = Aρ̃x(ωpm), (17)

where A = 2π3/2τpmE (0)
pm

2
/h̄2. The biexciton population as a

function of the pump frequency in the adopted representation
reads

Ñxx(ωpm) = A
h̄2

∫
dω′[V x,xx

eff (ωpm,ω′)
]2 ρ̃x(ωpm)ρxx(ω′)

(ω′ − ωpm)2 + γ 2

+ A
h̄2

∫
dω′[V x,xx

eff (ω′,ωpm)
]2 ρ̃x(ω′)ρxx(ωpm)

(ω′ − ωpm)2 + γ 2

+ A
h̄2

∫
dω′[V xx

eff (ω′)
]2 ρ̃xx(ω′ωpm)

ω′2 , (18)

and depends on the introduced above effective Coulomb
interaction [see Eqs. (15) and (16)] as well as variously
defined DOS [see Eqs. (12)–(14)]. As desired, Eq. (18) is
volume independent and clearly distinguishes the contribu-
tions from the effective Coulomb interactions and the DOS.
Accordingly, Eqs. (17) and (18) provide central expressions for

interpretation of our numerical results for the photogeneration
QE provided in the subsequent section.

According to Appendix A, the phonon-assisted population
relaxation dynamics is described by a set of kinetic equations
[see Eqs. (A20)–(A22)]. We recast them to the quasicontinuous
representation defined by Eqs. (7) and (8). This results in the
following set of equations:

ṅx(ω) = −kII (ω)nx(ω) + kAR(ω)nxx(ω)

−
∫ ∞

0
dω′ 
x(ω′,ω)nx(ω)

+
∫ ∞

0
dω′ 
x(ω,ω′)nx(ω′), (19)

ṅxx(ω) = kII (ω)nx(ω) − kAR(ω)nxx(ω)

−
∫ ∞

0
dω′ 
xx(ω′,ω)nxx(ω)

+
∫ ∞

0
dω′ 
xx(ω,ω′)nxx(ω′), (20)

containing both the impact ionization and Auger recombina-
tion rates,

kII (ω) = 2π

h̄2

[
V

x,xx
eff (ω)

]2
ρxx(ω), (21)

kAR(ω) = 2π

h̄2

(
v

V

)2[
V

x,xx
eff (ω)

]2
ρx(ω), (22)

respectively. The shorthand notation, V
x,xx

eff (ω), stands for
the diagonal component of the effective Coulomb term, i.e.,
V

x,xx
eff (ω) ≡ V

x,xx
eff (ω,ω). According to Eq. (21), the impact

ionization rate is an intensive variable. In contrast, the Auger
recombination rate [see Eq. (22)] vanishes in the the bulk limit
as d−6.

In the case when the impact ionization processes determine
CM dynamics, the ratio of the impact ionization to Auger
recombination rates,

kII (ω)

kAR(ω)
=

(
V

v

)2
ρxx(ω)

ρx(ω)
, (23)

should determine QE. Since this ratio is proportional to the
ratio of corresponding DOS, it has been proposed as a selection
criterion for the materials showing efficient CM.70 However,
Eq. (23) clearly shows that besides the material-specific
signatures given by the ratio of the intensive DOS, it also
contains the volume scaling factor. Therefore, we argue that
Eq. (23) can only be used for a material selection criterion,
after the volume prefactor is eliminated.

The intraband relaxation rates, 
x and 
xx , in Eqs. (19)
and (20) describe the phonon-assisted population decay. In
the absence of the phonon bottleneck and in the region of
high exciton DOS, it is expected that single-phonon processes
dominate the exciton and biexciton intraband population
decay. Accordingly, we calculate these quantities by using
the following expression:71,72


α(ω′,ω) = sign(ω′ − ω)
2Jα(|ω′ − ω|)

exp[h̄(ω′ − ω)/kBT ] − 1
, (24)

where α = x,xx. kBT is thermal energy, and Jα(�ω) is the
phonon spectral density approximated by the ohmic form with
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exponential cutoff:

Jα(�ω) = λα

�ω

ωc

e−�ω/ωc . (25)

Here, the adjustable parameters are electron-phonon coupling,
λα , with the constraint λxx = 2λx and the phonon frequency
cutoff, ωc.

We found that the quasicontinuous representation of the
kinetic equations [see Eqs. (19)–(25)] is more suitable for
numerical integration. The solution of these equations with the
initial conditions determined by the photogenerated popula-
tions [see Eqs. (2)–(6)] provides closed computational scheme
that we use to determine the total QE. Next, we discuss the
parametrization of the introduced model and some details on
the adopted numerical techniques.

B. Model parametrization

An accurate knowledge of single-electron and hole wave
functions is required to construct the exciton and biexciton
states and to evaluate the transition dipoles and the interband
Coulomb matrix elements. For this purpose, we adopt the ef-
fective mass k · p formalism, originally developed by Mitchell
and Wallis,73 and Dimmock74 for the bulk lead chalocogenide
semiconductors, and further advanced by Kang and Wise57

for the spherically symmetric nanocrystals. The formalism
is based on a four-band envelope function model explicitly
taking into account spin-orbit interaction between valence and
conduction bands. In considered PbSe and PbS materials, the
band structure anisotropy is small and, therefore, is neglected
in our calculations.

An electron and hole wave function obtained within this
formalism reads

�i(r) =
4∑

m=1

F i
m(r)um(r). (26)

Here, um(r) is mth component of the bulk Bloch wave function
associated with the band-edge states in L valley whose
index, m = 1, . . . ,4, denotes the bands.73,74 The envelope
eigenfunctions, F i

m(r), and the corresponding eigenenergies,
h̄ωi , are found by solving the k · p Hamiltonian eigenvalue
problem with the infinite wall boundary condition, Fi(|r| =
R) = 0, at the surface of a spherical nanocrystal of radius R.57

If h̄ωi > 0 (h̄ωi < 0), we identify the state as a conduction
band electron (valance band hole) state. The eigenstate index
represents a set of quantum numbers, i = {n,π,j,m}, such
as a primary quantum number describing the number of the
wave function nods, parity, total angular momentum, and its
projection, respectively. In what follows, we will refer to the
single-particle states, described by Eq. (26), as the Kang-Wise
states. In the bulk limit, we set the envelope functions, F i

m(r),
to the plane waves.

A natural way to introduce the exciton and biexciton states
is to use the second quantization representation within the basis
of the Kang-Wise states [see Eq. (C1)]. Taking into account that
the electron-hole Coulomb interactions are weak compared
to their kinetic energies (i.e., strong confinement regime),
we introduce exciton and biexciton states as the following

configurations of uncorrelated electron-hole pairs:

|xa〉 = ĉ†q d̂
†
r |x0〉, (27)

|xxk〉 = ĉ†pĉ†q d̂
†
r d̂

†
s |x0〉. (28)

As introduced above, the ground state |x0〉 is attributed to
the fully filled valence band. An exciton (biexciton) energy
in terms of the electron h̄ωe

p and the hole h̄ωh
q energies

is simply: h̄ωx
a = h̄ωe

q − h̄ωh
r (h̄ωxx

k = h̄ωe
p + h̄ωe

q − h̄ωh
r −

h̄ωh
s ). Note that the exciton index a = {p,q} (biexciton index

k = {pq,rs}) is a collection of two (four) sets of Kang-Wise
quantum numbers.

The expressions used to calculate the dipole moments,
μx

a0 and μxx
kl , and the interband Coulomb matrix elements,

V x,xx , in Eqs. (2), (4), (5), (15), and (16) using the
Kang-Wise basis set are given in Appendix C. Numerical
calculations of the interband Coulomb Kang-Wise matrix
elements are performed with the help of multipole ex-
pansion in terms of the Clebsch-Gordan coefficients. The
dephasing rates for the high excited states are not available
from experiment, and in our calculations we use some
average value of h̄γ x = h̄γ xx/2 = h̄γ x,xx/2 = 50 meV. This
value is consistent with the calculations performed on PbSe
clusters.61,77,78

The numerical calculations of the photogenerated popu-
lations have been done according to Eqs. (2)–(5) including
the first- and second-order corrections to Eq. (2) provided
in Ref. 48. To account for the degeneracy of the exciton
and biexciton states associated with the four equivalent L

valleys, we multiply the right-hand side of Eqs. (2) and
(4) by factors 4 and 16, respectively. This assumes that the
intervalley Coulomb scattering processes are negligible. In
most calculations, the pump pulse duration is set to τpm =
50 fs, which is a typical value used in the experimental
studies.75

The number of exciton and biexciton states to handle
computationally is extremely high. Even for PbSe nanocrystals
of moderate size (d ∼ 5 nm), the number of the biexciton states
with energies below 4Eg is ∼105. In the bulk limit, the number
of the exciton and biexciton states becomes infinite rendering
the direct summation over these states in Eq. (4) impossible.
Therefore, in both cases of finite-size nanocrystals and the
bulk, we use the Monte Carlo sampling, which allows us to
consider significantly larger nanocrystals than it was possible
in the work of Silvestri and Agranovich.58

To perform numerical calculations of the population decay
processes, we first evaluated the interband Auger recombina-
tion and impact ionization rates according to Eqs. (21) and
(22). For this purpose, we smeared the delta functions in the
effective Coulomb term [see Eq. (15)] and exciton/biexciton
DOS [see Eqs. (11) and (12)] with the Lorentzian profiles
containing the corresponding dephasing rates and used the
Monte Carlo procedure to sum over the exciton and biexciton
states. To evaluate the phonon-assisted population decay rates
[see Eqs. (24) and (25)], we set the room-temperature value for
kBT = 25 meV and the cutoff energy to h̄ωc = 50 meV. The
electron-phonon coupling λx = λxx/2 was fit to reproduce the
experimentally observed intraband population decay time in
the range of 0.5 � τph � 5 ps.37,54 The kinetic equations [see
Eqs. (19) and (20)] have been further numerically integrated on
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the energy grid. All calculated observables are averaged over
a nanocrystal ensemble with the Gaussian size distribution
characterized by the standard deviation σ = 5%.

III. INTERPLAY OF CM PATHWAYS IN PbSe

In this section, we discuss our numerical results for the
photogeneration and population relaxation processes in the
nanocrystalline and bulk PbSe. We clarify the effect of
interplay between CM pathways and the effect of quantum
confinement on QE. As mentioned above, QE depends on the
interplay between DOS and effective Coulomb values scaling
with the size of nancrystals. Therefore, to set the stage for
further analysis, we start by considering these quantities.

The calculated energy dependence of the exciton and
biexciton DOS [see Eqs. (11) and (12)] for different diameter
PbSe nanocrystals and the bulk is shown in Figs. 2(a) and
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FIG. 2. (Color online) Energy dependence of (a) exciton and
(b) biexciton DOS calculated for various diameter, d , PbSe nanocrys-
tals and PbSe bulk. (c) The diagonal component of the effective
Coulomb term. The inset shows actual interband Coulomb interaction
in nanocrystals defined as the effective Coulomb term with the volume
prefactor canceled, i.e., V

x,xx
C = (V/v)2V

x,xx
eff .

2(b), respectively. Obviously, the quantum confinement leads
to the DOS reduction in the nanocrystals compared to the
bulk. The energy dependence of the DOS follows power
law. Specifically, for the bulk limit, we find that ρx(ω) ∼
(ω − ωg)2.2 and ρxx(ω) ∼ (ω − 2ωg)6 with h̄ωg = 0.28 eV
reflecting contributions of the nonparabolic regions of the
electron/hole band structures. Even in the high-DOS regions
where the bulk behavior is expected in nanocrystals, the DOS
converges rather slowly to the limiting bulk values as the
nanocrystal diameter increases.

The effective Coulomb interaction as a function of energy
is plotted in Fig. 2(c) and follows power law behavior,
V

x,xx
eff (ω) ∼ ω−5. According to the plot, the effective Coulomb

interaction is only weakly enhanced by quantum confinement,
except for the small diameter (i.e., d = 5 nm) nanocrystals.
Specifically, the confinement results in a factor of two
Coulomb enhancement for the nanocrystals with d = 8 nm
as compared to the bulk. Therefore the scaling of the actual
interband Coulomb interaction, i.e., VC = (v/V )2V

x,xx
eff , in

nanocrystals [inset to Fig. 2 (c)] in the region of high DOS
should be dominated by the volume prefactor, i.e., ∼d−6.
However, we remind that the volume prefactor responsible for
such dramatic scaling does not enter the quantities determining
the QE except the Auger recombination rate [see Eqs. (17)–
(22)].

A. Photogeneration QE

The photogeneration QE as a function of the absolute
photon energy in nanocrystalline and bulk PbSe is shown
in Fig. 3(a). According to the plot, the QE at fixed photon
energy monotonically increases with the nanocrystal diameter
but does not exceed the bulk value. In contrast, the QE plotted
on the unitless photon energy scale [see Fig. 3(b)] shows
the opposite trend useful for the photovoltaic applications.
Since the absolute energy scale representation is more suitable
to understand the physical mechanisms of photogeneration,
we continue our analysis using this scale. First, we compare
our calculations for small, d = 5 nm, nanocrystal with the
calculations reported by Silvestri and Agranovich58 for d =
6 nm PbSe nanocrystal. In Ref. 58, the size dispersion of the
nanocrystals is set to 2% resulting in sharp peaks reaching
QE ≈ 1.2. The increase in the dispersion to a realistic value
of 5% [red solid line in Fig. 3(a)] washes out the peaks and
reduces the QE to QE ∼ 1.01.

Contributions of different pathways (see Fig. 1) to the
biexciton photogeneration quantum yield, ηxx = QE − 1,
are depicted in Fig. 4. First of all, we point out that for the
energy region h̄ωpm > 1.5 eV in which the biexciton DOS
shows steep growth, the indirect biexciton photogeneration
(black line) and the direct biexciton photogeneration via
exciton state (red line), provide identical contributions. This
behavior can be interpreted by looking at the related first and
second terms in Eq. (18) in which the resonant nature of the
denominator, (ω′ − ωpm)2 + γ 2, corresponds to the leading
contribution of the diagonal component of the effective
Coulomb term V

x,xx
eff (ωpm) ≡ V

x,xx
eff (ωpm,ωpm). Hence, the

integral convolutions can be evaluated resulting in the identical
two terms whose net contribution to the biexciton population
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FIG. 3. (Color online) (a) The pump energy dependence of the
photogeneration QE for various diameter, d , nanocrystalline and
bulk PbSe plotted on the absolute pump energy scale. Solid lines
represent the results obtained from numerically exact [see Eqs. (2)–
(5)] calculations, and the dash indicates approximate calculations
[see Eq. (30)] for d = 5, 8, 15 nm nanocrystals and the bulk
using the effective dephasing rates h̄γeff = 50, 40, 55, and 45 meV,
respectively. (b) Solid lines from (a) plotted on the unitless pump
energy scale (i.e., normalized by corresponding nanocrystals and bulk
band gap energies Eg).

is

Ñ ′
xx(ωpm) = kII (ωpm)Ñx(ωpm)/γeff . (29)

Here, kII is the impact ionization rate given by Eq. (21)
and γeff is effective interband dephasing rate. The derived
expression has a very clear physical interpretation: the
photogenerated biexciton population associated with the first
and second pathways is a result of a single impact ionization
event taking place on the dephasing time scale γ −1

eff and
following optical preparation of the exciton states.76

The direct biexciton photogeneration via exciton states is
manifested by the direct dependence of the biexciton DOS on
ωpm in the second term of Eq. (18). As a result, for h̄ωpm <

1.5 eV, this contribution (red line in Fig. 4) drops quickly.
Accordingly, h̄ωpm = 1.5 eV can be identified as the AET for
the photogeneration processes in d = 15 nm nanocrystals. In
contrast, the indirect biexciton photogeneration (black line in
Fig. 4) is resonant at exciton states, and decreases relatively
slow for h̄ωpm � 1.5 eV. According to the first term in Eq. (18),
this behavior reflects the behavior of the off-diagonal effective
Coulomb component V

x,xx
eff (ω′,ωpm) at h̄ω′ � 1.5 eV.

Figure 4 clearly shows that direct biexciton photogeneration
via biexciton states (green line) has negligibly small contri-
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FIG. 4. (Color online) Contributions of the photogeneration
pathways to the biexciton quantum yield calculated for d = 15 nm
PbSe nanocrystal. Black and red lines show the contributions of the
two components associated with the first two pathways schematically
shown in Figs. 1(a) and 1(b), respectively. The green line shows the
contribution of the third pathway illustrated in Fig. 1(c). The inset
presents the relative contribution of the third pathway to the total
photogeneration quantum yield in various size nanocrystals.

bution compared to the other terms. The inset shows that the
relative contribution (i.e., normalized per total photogeneration
QE) of the latter pathway for all considered nanocrystal sizes
is small and has tendency to decrease with the nanocrystal size
growth and further vanish in the bulk limit. This contribution
becomes small due to the strong off-resonant nature of the
ground state to biexciton state effective Coulomb term [see
Eq. (16)] entering the third term in Eq. (18).

The small contribution of the last pathway leads us to an
important conclusion that the photogeneration QE is fully
determined by a single impact ionization event occurring on
the dephasing time scale. According to Eqs. (1) and (29), this
QE can be approximated by the following simple expression:

QE(ωpm) = 2kII (ωpm) + γeff

kII (ωpm) + γeff
≈ 1 + kII

γeff
, (30)

where kII is the impact ionization rate given by Eq. (21) and
γeff is the effective interband dephasing rate. Note that the
optical selection rules do not enter Eq. (30). The approximate
form of QE given in Eq. (30) is quite general, since the
approximation is based on a general fact of weak interband
Coulomb interaction. To verify this relation, we calculated the
QE using Eqs. (21) and (30) and compare the results (dashed
lines) in Fig. 3(a). The dashed lines well reproduce the trends
in the behavior of the associated solid lines confirming the
validity of the approximation. Observed small discrepancies
are due to the numerical noise, phenomenological origin of the
effective dephasing rate neglecting its frequency dependence,
and neglect of the correlations between the effective Coulomb
and DOS fluctuations during the nanocrystal ensemble aver-
aging.

Both direct biexciton photogeneration pathways via exciton
and biexciton states have been studied before.15,56,58 The
indirect biexciton generation as we demonstrated above is
also important and should not be omitted. Initial studies of the
photogeneration pathways15,56 also based on the Kang-Wise
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Q
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FIG. 5. (Color online) Calculated photogeneration QE as a
function of pump energy for PbSe nanocrystal of d = 15 nm and
PbSe bulk. For comparison, we also show experimentally measured
total QE in PbSe nanocrystals35 with the diameter varied in the range
of 5 � d � 8 nm and in the bulk.37 The inset shows calculated QE
for PbSe nanocrystal of d = 5 nm on extended pump energy scale
compared to the experimentally measured total QE for the same size
nanocrystal.

parametrization reported significantly larger QE compared to
our results and the results report in Ref. 58. The cause of
the overestimate is the disregard of the Coulomb coupling
selection rules and the oscillator strengths factors weighting
optically allowed transitions.58 Next, we show that the inter-
ference related power-scaling of the DOS not accounted for in
the previous studies further leads to a significant reduction in
the photogenerated QE.

Provided, the terms in Eq. (4) associated with the di-
rect biexciton photogeneration processes via exciton and
biexciton states are interfering constructively, one can show
that associated biexciton populations scale as [ρ ′

x]2ρxx and
[ρ ′

xx]2ρxx , respectively. This is exactly the case considered in
Refs. 15 and 56. Here, ρ ′

x (ρ ′
xx) is DOS for the intermediate

exciton (biexciton) states and ρxx is the biexciton DOS at the
pump frequency. Since we found that there is no interference
between the photogeneration pathways, the first two terms in
Eq. (18) scale as ρ ′

xρxx , and the last one as ρ̃xx ∼ ρxx
′ρxx .

The latter, linear dependence on the intermediate exciton
and biexciton DOS versus the former, quadratic one15,56

significantly decreases the biexciton photogeneration quantum
yield and, in fact, allows us to interpret the photogeneration
dynamics as a single impact ionization event [see Eq. (29)]!

In Fig. 5, we compare the experimentally measured total
QE35,37 with the calculated photogeneration QE. The compar-
ison with experimental data for nanocrystals is possible only at
the photon energy fixed at ∼3.1 eV, where the vertical aligned
diamonds represent the QE measured for the nanocrystals
whose diameters vary in the range between 5 and 8 nm. The
comparison shows that for the bulk and for the nanocrystals
of comparable diameter the experimentally measured total
QE significantly exceeds the calculated photogeneration QE.
Accordingly, we conclude that the biexciton photoexcitation
along does not explain the experimentally observed QE values.
Next, we investigate the contribution of the impact ionization
events to the total QE taking place during the phonon-assisted
population decay.
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FIG. 6. (Color online) Energy dependence of the calculated
impact ionization rates in PbSe nanocrystals of different diameter
and in PbSe bulk. The inset shows associated Auger recombination
rates calculated for the nanocrystals using [see Eq. (23)].

B. Effect of population decay and pump pulse
duration on total QE

Central quantity defining QE during the population decay
(and as shown above during the photogeneration event as well)
is the impact ionization rate [see Eq. (21)]. Figure 6 shows the
calculated energy dependence of the impact ionization rate for
the nanocrystalline and bulk PbSe. According to the plot, the
rate scales linearly at energies about 0.5 eV higher than AET.
The scaling directly follows from Eq. (21) if one substitutes
there the effective Coulomb, V

x,xx
eff (ω) ∼ ω−5, and biexciton

DOS, ρxx(ω) ∼ (ω − 2ωg)6, whose scalings were determined
from Fig. 2. In the literature, quadratic and even higher power
scalings of the impact ionization rate are obtained near the
AET. As proposed in Refs. 51, 79, and 80 such scalings solely
follow from the DOS behavior. However, these theories do not
account for the long-range interband Coulomb corrections at
the energies higher than AET. As we show in Appendix C, the
first nonvanishing k · p contribution to the matrix elements of
the interband Coulomb term yields an additional factor ω−1/2.
As a result, one gets kII (ω) ∼ (ω − ω0)2/ω ∼ ω at ω � ω0,
which is in agreement with our numerical calculations.

According to Fig. 6, the impact ionization rate increases
as the nanocrystal diameter increases but does not exceed the
bulk values. This observation is a result of the weak effective
Coulomb enhancement in the nanocrystals as observed in
Fig. 2(c). In agreement with the previously reported studies,37

we find that this enhancement is fully suppressed by the
reduction in the biexciton DOS [see Fig. 2(b)]. As we
already pointed out, strong size scaling of the actual interband
Coulomb interaction is determined by the volume prefactor
(v/V )2, which does not enter the impact ionization rate, and
therefore has no effect on the rate.

In contrast, the volume prefactor appears in the expression
for the Auger recombination rate [see Eq. (22)], and as we
show in the inset to Fig. 6, makes this effect negligible. On the
frequency scale, the Auger recombination rate drops as kAR ∼
ω−3 further decreasing its contribution to QE at high energies.
As a result, the only region where the Auger recombination
processes are significant is near the band edge. However, this
region has no contribution to QE, and we conclude that the
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FIG. 7. (Color online) Pump energy dependence of the total QE
in PbSe. (a) Calculations performed for bulk PbSe using various
population decay times, τph. Experimental data from Ref. 37 are
shown for comparison. (b) Calculations for both nanocrystals and bulk
using τph = 1 ps (solid lines) and τph = 2 ps (dash). For comparison,
the experimental data from Refs. 35 and 37 are plotted in diamonds
and dots, respectively.

Auger recombination processes can be neglected in the present
analysis.

Since the Auger recombination processes are weak, ef-
ficient CM during the population decay is expected if the
impact ionization rates are comparable to or higher than
the phonon-assisted population decay rates. To evaluate the
upper boundary for QE in nanocrystals, we first calculate
total QE in bulk PbSe for typical population decay times
τph = 0.5, 1.0, and 2 ps. The results are plotted on the pump
energy scale in Fig. 7(a) and also compared with published
experimental data. In general, the calculations reproduce the
experimental trends and provide the best fit at τph = 1.0 ps.
The discrepancy between theory and experiment in the interval
1.0 < h̄ωpm < 3.5 eV is due to the phenomenological nature
of the phonon-assisted relaxation model that lacks exact
knowledge on the spectral dependence of the electron-phonon
coupling and phonon DOS. Above 3.5 eV, the effect of
triexciton generation and possibly contribution from the higher
energy bands take place. Hence our theory is valid below this
energy value.

For comparison, the contribution of the photogeneration
processes to the total QE is shown in Fig. 7(a). Its small con-
tribution can be explained by the fact that the photogeneration
pathways reduce to a single impact ionization event taking
place on the short (subpicosecond) dephasing time scale [see
Eq. (30)]. In contrast, the population decay dynamics occurs
on a much longer (picosecond) time scale allowing for the
multiple impact ionization events that make major input into
the total QE.

ωpm/Eg

Q
E

FIG. 8. (Color online) Comparison of the calculated total QE
for selected τph and experimental data from Fig. 7(b) plotted on the
unitless pump energy scale (i.e., normalized per corresponding band
gap energy Eg). Dashed lines are extrapolation of the solid lines linear
regions to determine the AET values (see Table I).

Comparison of the calculated total QE in both nanocrys-
talline and bulk PbSe with experimental results35,37 is shown
in Fig. 7(b). The total QE dependence on the nanocrystals
diameter both in theory and experiment follows the same trend
as the impact ionization rate. Solid lines in Fig. 7(b) show
QE calculated for τph = 1.0 ps, which gives the best fit for
the bulk. However, taking into account that the upper values
of the measured QE in the nanocrystals are associated with
their diameter, d = 8 nm, we had to increase their relaxation
time up to τph = 2 ps (blue dash). This value gives better
agreement with the experiment and can be rationalized by the
quantum-confinement-induced increase of the level spacing.81

The values of the population decay times determined above are
also in good agreement with those obtained in earlier reported
theoretical works.54,64

Determination of AET is convenient to perform using the
unitless energy scale, i.e., the pump energy normalized per
corresponding Eg of nanocrystals or the bulk. Figure 8 presents
the same curves as in Fig. 7(b) for selected τph, now, plotted on
the unitless scale. Dashed lines extrapolate the linear portion
of the curves to the energies below 3.5 eV. Their intercept
points with the horizontal, QE = 1, line provide the AET
values. The deviation from linear behavior at low energy ends
and apparent CM below the energy conservation threshold,
2Eg (red and green curves) are merely due to the ensemble
averaging included into our calculations.82

The calculated values of AET are summarized in Table I.
For the nanocrystals with d = 5, 8 nm, the calculated
AET ≈ 2.2Eg is in excellent agreement with the experiment.35

TABLE I. AET in PbSe nanocrystals and bulk calculated as the
intercept point between dashed lines and the solid horizontal line at
QE = 1 in Fig. 8.

PbSe d (nm) Eg (eV) AET/Eg AET (eV)

Nanocrystal 5 1.10 2.3 2.5
Nanocrystal 8 0.66 2.2 1.5
Nanocrystal 15 0.42 3.3 1.4
Bulk ∞ 0.28 3.7 1.0
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FIG. 9. (Color online) Calculated dependence of the total QE for
PbSe nanocrystal of d = 8 nm on the pump pulse duration, τpm. The
population decay time is set to τph = 1 ps.

Furthermore, the photogeneration AET = 1.5 eV for the
nanocrystals with d = 15 nm (see Sec. III A, Fig. 4) is close
to the value of 1.4 eV given in Table I. This presents an
additional indication of the “pure” impact ionization nature
of CM processes including the photogeneration. For the bulk,
however, there is a disagreement between the calculated,
3.7Eg , and experimentally observed, 6Eg , AET.37 The
discrepancy is related to the phenomenological nature of the
adopted phonon-assisted relaxation model. Getting back to
Fig. 7(a), one can clearly see that the best fit to the initial rise
of QE is due to τph = 0.5 ps. However, for τph = 1 ps used
to evaluate the AET, the model does not accurately reproduce
the initial slope and gives the underestimated values of AET.

All calculations discussed above are performed for the
continuous wave pulses typically used in the ultrafast spectro-
scopic studies. However, an estimated solar light correlation
time is about 5 fs. Hence, in light of photovoltaic applications,
it is natural to calculate QE as a function of the pump pulse
duration τpm. Such a dependence evaluated for various photon
energies, h̄ωpm, is shown in Fig. 9. First of all, we notice
that the continuous wave regime is reached at τpm > 10 fs.
For τpm < 10 fs, the QE at h̄ωpm = 3.15 eV has no variation
whereas QE at the lower energies show insignificantly small
increase. The observed weak dependence of QE on the pulse
duration suggests that, for the Gaussian pulses, the expected
increase in the QE due to the increase in the pulse duration is
equally compensated by the reduction in the number of states
populated by the pulse whose spectral width is narrowed.

IV. COMPARISON OF QE IN PbS and PbSe

Both PbS and PbSe have electronic structures described
by the same Kang-Wise effective mass model with some
different parameters.57 This implies that our conclusions on the
interplay between the CM pathways in PbSe fully apply to PbS
nanocrystalline and bulk materials. In this section, we perform
a comparison of the key quantities such as exciton/biexciton
DOS, effective Coulomb terms, the impact ionization rates,
and the resulting QEs calculated for these semiconductors. Our
numerical tests show that these quantities are weakly affected
by the differences in the Kane momentum and the unit cell
volume. Hence, the dominant contributions come from the
interplay between the band gap energies, carriers effective
masses, and dielectric constants.

Figures 10(a) and 10(b) clearly show that both the exciton
[see Eq. (11)] and biexciton [see Eq. (12)] DOS in bulk PbS
exceed the corresponding DOS in PbSe across the spectral
range of interest. Compared to PbSe (Eg = 0.28 eV), PbS has
a larger band gap energy (Eg = 0.41 eV) and heavier carrier
effective masses.57 In order to isolate the band gap effect,
we plot the PbSe DOS calculated with the band gap energy
replaced by that of PbS (red dash). This replacement results
in reduction of the DOS values (red dash). Hence, the major
contribution to the steeper growth of the exciton and biexciton
DOS in PbS comes from the heavier effective masses.

Figure 10 (c) compares the effective Coulomb terms, V x,xx
eff

[see Eq. (15)], calculated for bulk PbSe and PbS. In contrast to
the DOS, the effective Coulomb interaction in PbS is weaker

ω (eV )

ω (eV )

ρ
x

(e
V

−
1
)

ρ
x
x

(e
V

−
1
)

ω (eV )

V
x
,x

x
e
f

f
(m

eV
)

(a)

(b)

(c)

FIG. 10. (Color online) Energy dependence of (a) the exciton
DOS, (b) the biexciton DOS, and (c) the effective Coulomb term
in bulk PbS (solid black) and PbSe (dashed black). In all panels,
red lines show the corresponding quantities calculated using PbSe
parameters except for the band gap energy replaced with that of PbS.
In (c), green line shows the effective Coulomb term calculated for
PbSe with both band gap energy and the effective masses substituted
with their corresponding PbS values.
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ω (eV )

Q
E

FIG. 11. (Color online) Energy dependence of the photogenera-
tion QE in the bulk PbS (solid black) and PbSe (dashed black). Red
(green) line shows the QE calculated for PbSe with the band gap
energy (band gap energy and the effective masses) replaced with that
(those) of PbS.

than that in PbSe. To understand the trends, we alter the
PbSe band gap value in the same way as for the DOS and
observe small reduction in V

x,xx
eff (red dash). Altering the

effective masses of PbSe with those of PbS, significantly
reduces the V

x,xx
eff , i.e., lowers the green dash curve below

black solid one (V x,xx
eff in PbS). The gap between these curves

is purely due to the difference in the dielectric constants which
in PbS (ε = 17) is lower than in PbSe (ε = 23). Therefore, the
lighter effective masses in PbS make a major contribution to
the reduction of V

x,xx
eff values in PbS compared to PbSe.

Next, we compare the photogeneration QE in bulk PbS and
PbSe plotted in Fig. 11. The plot also shows photogeneration
QE values for PbSe with the band gap energy and effective
masses altered in the same way as in the case of the effective
Coulomb interaction. [The color code is the same as in
Fig. 10(c).] By taking into account the linear dependence of
the photogeneration QE on the impact ionization rate [see
Eq. (30)], one can conclude that the trends in the behavior
of the QE are a result of the interplay between the trends
in the biexciton DOS and effective Coulomb term shown in
Figs. 10(b) and 10(c), respectively. Specifically, the lower
dielectric constant of PbS contributes to the increase in the
photogeneration QE and the competing effect of the lighter
effective masses on the DOS and V

x,xx
eff results in additional

increase of the QE in bulk PbS. This net increase fully
overruns the reductions associated with the band gap decrease
making the photogeneration QE and the impact ionization
rate [see Fig. 12(a)] in bulk PbS more efficient than in bulk
PbSe.

To demonstrate that the size quantization does not change
the trends, we plot the impact ionization rate calculated for
PbS and PbSe nanocrystals and the bulk in Fig. 12(a). It is
clear from the plot that the PbS impact ionization rate always
exceeds the PbSe impact ionization for identical in diameter
nanocrystals and for the bulk. Similar to PbSe, the PbS impact
ionization rate monotonically increases with the nanocrystal
diameter but does not exceed the bulk values. Finally, in
Fig. 12(b), we plot the total QE in PbS and PbSe nanocrystals
and the bulk calculated using the same population decay
time, τph = 1.0 ps. The trends are the same as in Fig. 12(a)
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FIG. 12. (Color online) Energy dependence of (a) impact ion-
ization rate and (b) total QE calculated for PbS (solid lines) and
PbSe (dash) nanocrystals, and the bulk. For all curves in (b), the
phonon-assisted relaxation time is set to τph = 1.0 ps.

demonstrating that the overall calculated QE in PbS is higher
than in PbSe. The latter is a result of the interplay between the
band gap energies, effective masses and the dielectric constant
values as discussed above.

Ultrafast measurements of QE in bulk PbS and PbSe show
that QE for both materials are approximately the same.37

However, the atomistic calculations reported along with the
experimental data demonstrate that for identical population
decay times (specifically, τph = 0.5 ps) the calculated QE
in PbS exceeds that in PbSe. This observation is in direct
agreement with our calculations. Taking into account that both
models show the same trend in QE for identical population
decay times, we conclude that the impact ionization rate in
bulk PbS is expected be higher than in PbSe and, conse-
quently, the photogeneration QE. Furthermore, we extend this
conclusion to PbS nanocrystals according to the results shown
in Fig. 12.

Recently reported ultrafast measurements demonstrated
significant reduction in QE of large PbS nanocrystals com-
pared to the PbSe nanocrystals.83 The authors rationalize
this observation by estimating the phonon-assisted energy
loss rate which in PbS turns out to be a factor of two
faster than in PbSe. A rigorous calculation of the phonon-
assisted relaxation is beyond our model capability forcing
us to introduce phenomenological τph. Since the remaining
electronic structure parameters in our and reported atomistic
models are well validated, the calculations directly support
the idea of the QE reduction in PbS merely due to the fast
phonon-assisted population decay characterized by τph.
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V. DISCUSSION AND CONCLUSIONS

The effective mass model used in this paper has signif-
icant limitations accounting only for the L-valley optical
transitions.57 It does not catch contributions from the higher
energy transitions originating at other Brillouin zone points.
Specifically in PbSe, the �-point transitions show large
contribution to the absorption spectra above 1.6 eV.84 Experi-
mentally, the CM dynamics is probed using ultrafast transient
absorption and fluorescence techniques.35 These techniques
explicitly determine the number of carriers accumulated near
the band edge of the lowest in energy L valley. Following
the excitation with a high-energy optical pump, the excitons
and biexcitons can be generated not only in L valley (denoted
L excitons and biexcitons) but also at � point (denoted �

excitons and biexcitons). The contribution of the � excitons
to the transient ultrafast signal depends on the mixing between
the L and � points. Rigorous calculations of the intervalley
mixing can be done through atomistic calculations. However,
such calculations become tremendously expensive for the
considered large diameter nanocrystals. Below, we provide
quantitative discussion of possible mixing mechanisms and
rough estimates of the their contribution to QE for the pump
energy below 3.5 eV.

First, we consider mixing between the valleys due to
the size quantization that could be efficient in very small
(d � 3 nm) nanocrystals at low excitation energies. However,
for the large nanocrystals, considered here, the excitations
with the energies higher than 2.5 eV are effectively of the
bulk type84,85 resulting in the negligible quantum-confinement-
induced mixing. Another option is the impact ionization event
initiated by the optically prepared � exciton and resulting
in the direct production of an extra L exciton. During this
process, the excess energy of the � exciton is transferred
to create an extra electron-hole pair within L valley. The
AET for this process can be roughly estimated as AET�L ≈
AETL + (E�

g − EL
g ) = 3.3 eV pointing to an efficient CM at

photon energies h̄ωpm � 4 eV. Note that efficient CM events
fully constrained to � point should occur at even higher
energies that are above the excitation energy range considered
in this paper.

Finally, the optically prepared � exciton can participate
in the impact ionization event resulting in the creation of
an electron-hole pair through the intervalley transition. For
instance, a higher energy conduction band electron from �

point can be transferred to L-valley releasing the excess
energy to create an additional electron-hole pair through the L

valence to �-conduction band transition. As we mentioned
above, most of the states involved in efficient CM are of
the bulk type with the quasimomentum being a “good”
quantum number. Therefore the Coulomb matrix elements
describing the impact ionization processes become ∼1/|�q|2,
where �q is the difference between the electron/hole initial
and final states. Accordingly, the impact ionization events
involving the intervalley transitions require large variation in
the quasimomentum �q and, therefore, become less favorable.

Experimental verification of the discussed interplay be-
tween the CM pathways contributing to the photogeneration
QE requires direct measurements of the interband Coulomb
interactions. Distinguishing the inter- and intraband Coulomb

interactions is a challenging task, since in the transient
absorption and time-resolved fluorescence experiments these
two components contribute to a measured energy shift
between the exciton and biexciton bands. We have shown
theoretically that the two-dimensional double-quantum coher-
ence spectroscopy is capable to probe directly the interband
Coulomb interactions.86 Alternatively, the photogeneration
QE can be determined based on its linear relationship to the
impact ionization rate which has been established above [see
Eq. (30)]. The later rate can be obtained by fitting the total
QE as a function of the excitation energy.87 However, the
determination of the effective dephasing rate, also entering
Eq. (30), might require use of coherent experimental technique
(e.g., photon echo) and/or modeling of the phonon-induced
relaxation processes.

The absolute photon energy scale h̄ωpm is used throughout
this paper [except Fig. 3(a) and 8]. This scale is more useful
to discuss fundamental physical mechanisms determining the
CM dynamics, e.g., the role of the quantum confinement.25,64

However, performance of photovoltaic devices can be char-
acterized by various power conversion efficiencies.35,64 In
particular, QE can be calculated on a dimensionless energy
scale, which is normalized per nanocrystal or bulk band
gap, h̄ωpm/Eg . Despite lower values of QE in nanocrys-
tals compared to the bulk that show up on the absolute
photon energy scale, the performance of prospective photo-
voltaic devices based on nanocrystals can overrun their bulk
counterpart.36,64,87 By comparing Fig. 8 with Fig. 7(b), one
can notice that smaller size nanocrystals have better rise in QE
than large ones and the bulk. This results from the quantum-
confinement-induced blue shift of the band gap energy.45

In light of this effect and the requirement to match solar
radiation peak energy, semimetal nanocrystals can become
more efficient solar energy converters.88

Further enhancement of the interband Coulomb interactions
in nanocrystals can possibly be reached in nanocrystal-metal
heterostructures in which the surface plasmon response is
tuned in resonance with the exciton states participating
in CM. This issue requires additional study, since besides
the enhancement of the Coulomb interactions, the surface-
plasmons-induced Ohmic and radiative energy losses can be-
come significant.89 The large variations in the experimentally
observed QE including total suppression of CM processes or
their additional enhancement are likely due to the the surface
states and ligands. This question is difficult to analyze using the
adopted effective mass approximation. However, the atomistic
calculations30,31,63,90–92 combined with the interband exciton
scattering model should be extremely helpful in addressing
this issue.

In conclusion, we have performed a systematic numerical
investigation of CM mechanisms in nanocrystalline and
bulk PbSe and PbS using our interband exciton scattering
model parametrized by the effective mass Kang-Wise model.
We investigated the role of quantum confinement in the
photogeneration and total QE. The analysis of the photo-
generation pathways resulted in an unexpected conclusion
that the photogeneration processes reduce to a single impact
ionization event due to the complete lack of the pathways
interference. This allowed us to explain the minor role of
the photogeneration in the net QE dominated by the multiple
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impact ionization events occurring during the phonon-assisted
population decay. Comparison of the size scaling of the
effective Coulomb interaction and the biexciton DOS in
transition from nanocrystal to the bulk limit showed that
the weak enhancement of the former quantity is overrun by
a significant reduction in the latter one. This explains the
higher values of the QE in bulk compared to nanocrystals
as plotted on the absolute energy scale, and well agrees
with the previously reported experimental studies and some
theoretical predictions. However, the quantum-confinement-
induced increase in Eg makes nanocrystals more efficient
than bulk for practical photovoltaic applications. We have also
found that the variation in the pump pulse duration does not
significantly change the QE. Comparison of QE in PbSe and
PbS suggests that the impact ionization processes are more
efficient in PbS. However, variation of the material-dependent
population decay time can strongly affect the total QE. Finally,
we have identified the limitations of our model and defined its
applicability range.
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APPENDIX A: INTERBAND EXCITON SCATTERING
MODEL IN THE WEAK COULOMB COUPLING LIMIT

In this appendix, we derive leading contributions to the
photogenerated exciton and biexciton populations and the
kinetic equations describing their further phonon-assisted
relaxation. Our derivation is based on a simple perturbation
expansion, valid in the weak interband Coulomb coupling
regime. For the sake of simplicity, the calculations are not
rigorous. One can find a complete analysis of the weak
Coulomb coupling limit of the interband exciton scattering
model including the terms omitted below in Ref. 48.

Let us consider an ensemble of nanocrystals in which
the carrier dynamics is restricted to the coupled exciton and
biexciton bands described by the following Hamiltonian:48

Ĥ = Ĥ0 + V̂C. (A1)

Here, the first term,

Ĥ0 =
∑
a�1

|xa〉h̄ωx
a 〈xa| +

∑
k�1

|xxk〉h̄ωxx
k 〈xxk|, (A2)

describes noninteracting exciton |xa〉 and biexciton |xxk〉 states
and the second term,

V̂C =
∑
a�0

∑
k�1

|xa〉V x,xx
a,k 〈xxk| + H.c., (A3)

represents the interband Coulomb interactions V
x,xx
a,k between

the exciton and biexciton states as well as the ground state, |x0〉,
to biexciton states couplings, V xx,x

k,0 . Details on the calculations
of these matrix elements in the Kang-Wise basis are given in
Appendix C.

In the weak Coulomb coupling limit of our interband
exciton scattering model, we account for the Born scattering
between the exciton and biexciton bands. This is equivalent to
the calculation of the eigenstates of the total Hamiltonian,
Eqs. (A1)–(A3), (i.e., dressed exciton |x̃a〉 and biexciton
|x̃xk〉 states) by using the first-order perturbation expansion
in VC ,93,94

|x̃a〉 = |xa〉 + �
x,xx
a,k |xxk〉, (A4)

|x̃xk〉 = |xxk〉 + �
xx,x
k,a |xa〉. (A5)

Here, �
x,xx
a,k = �

xx,x
k,a is given by Eq. (5) with the dephasing

rate γ
x,xx
a,k added to account for the level broadening.

The exciton/biexciton dipole coupling to the
time-dependent optical field is described by the Hamiltonian95

Ĥint(t) = −μ̂E(t). (A6)

Here, μ̂ is the dipole operator projected on the direction of the
linearly polarized pump pulse whose electric field amplitude is

E(r,t) = Epm(t)eikpm·r−iωpmt + c.c. (A7)

Epm(t) is the pump pulse time-depended envelope function
and ωpm (kpm) is the pulse central frequency (wave vector).

To find the pump induced (i.e., photogenerated) popula-
tions, one needs to solve the following Liouville equation:

˙̂ρ(t) = 1

ih̄
[Ĥ + Ĥint(t),ρ̂(t)], (A8)

for the density operator ρ̂(t). Throughout this Appendix,
brackets denote the commutator. By considering the
Hamiltonian, Hint(t), as a perturbation, the second-order
solution of Eq. (A8),

ˆ̃ρ(t) = 1

(ih̄)2

∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′

× θ (t − t ′)θ (t ′ − t ′′)[ ˆ̃H int(t
′),[ ˆ̃H int(t

′′),ρ̂eq]], (A9)

gives the lowest-order contribution to the photoinduced
populations.95 In Eq. (A9), ˆ̃ρ(t) = eiĤ t/h̄ρ̂(t)e−iĤ t/h̄ and
ˆ̃H int(t) = eiĤ t/h̄Ĥint(t)e−iĤ t/h̄ are the density operator and the

optical coupling Hamiltonian represented in the interaction
picture, respectively. The equilibrium density operator,
ρ̂eq = |x̃0〉〈x̃0|, is projection operator on the dressed ground
state defined in Eq. (A4) by setting a = 0.

According to Eq. (A9), the populations of the dressed
exciton and biexciton states at times longer than the pulse
duration calculated in the rotating wave approximation95 are

〈x̃a|ρ̂|x̃a〉 = 2

h̄2 |〈x̃a|μ̂|x̃0〉|2I
(
ωx

a − ωpm

)
, (A10)

〈x̃xk|ρ̂|x̃xk〉 = 2

h̄2 |〈x̃xk|μ̂|x̃0〉|2I
(
ωxx

k − ωpm

)
, (A11)

respectively. In Eqs. (A10) and (A11), the pulse self-
convolution function has the form given by Eq. (3) with the
time variable t1 = t ′ − t ′′, and the phenomenologically added
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dephasing rates γ x
a and γ xx

k . According to Eqs. (A4) and (A5),
the transition dipole matrix elements entering Eqs. (A10) and
(A11) become

〈x̃a|μ̂|x̃0〉 = μx
a0 +

∑
kl�1

�
x,xx
a,k μxx

kl �
xx,x
l,0 , (A12)

〈x̃xk|μ̂|x̃0〉 =
∑
l�1

μxx
kl �

xx,x
l,0 +

∑
a�1

�
xx,x
k,a μx

a0, (A13)

and depend on the intraband exciton and biexciton transition
dipole matrix elements μx

a0 and μxx
kl represented in the nonin-

teracting exciton and biexciton basis. Their further calculation
in the Kang-Wise basis set is outlined in Appendix C. We have
validated numerically that the contributions of the transition
dipoles between exciton and biexciton bands is negligible and
therefore, do not include the associated terms into Eqs. (A10)
and (A11).

Finally, the exciton, nx
a , and biexciton, nxx

k , populations used
in our numerical simulations can be obtained by transforming
Eqs. (A10) and (A11) back to the noninteracting exciton and
biexciton basis. Specifically,

nx
a =

∑
b�1

|〈xa|x̃b〉|2〈x̃b|ρ̂|x̃b〉

+
∑
k�1

|〈xa|x̃xk〉|2〈x̃xk|ρ̂|x̃xk〉, (A14)

nxx
k =

∑
a�1

|〈xxk|x̃a〉|2〈x̃a|ρ̂|x̃a〉

+
∑
l�1

|〈xxk|x̃xl〉|2〈x̃xl|ρ̂|x̃xl〉. (A15)

By calculating the transformation coefficients according to
Eqs. (A4) and (A5) and further inserting them into Eq. (A15),
one finds the lowest, second order in �

x,xx
a,k , contribution to

the biexciton population given by Eq. (4). The calculation
of the exciton population up to the second-order terms in
�

x,xx
a,k , can be done by accounting for the second-order

interband scattering events, [i.e., the second-order corrections
not included into Eqs. (A4) and (A5)].48 However, our
numerical calculations have shown that these terms provide
negligible contribution to the photogeneration QE and one can
safely use the leading term given by Eq. (2), which naturally
follows from Eq. (A14) as the zero-order contribution. Finally,
we have neglected the contributions of the density matrix
coherences, 〈x̃a|ρ̂|x̃b〉 with a �= b, 〈x̃xk|ρ̂|x̃xl〉 with k �= l, and
〈x̃a|ρ̂|x̃xk〉 to the photogenerated populations48 based on their
negligible contribution to the photogeneration QE as validated
numerically.

The photogenerated populations [Eqs. (2) and (4)] further
evolve on the longer time scale associated with the phonon-
assisted processes. This dynamics can be described by the
following Liouville equation:

˙̂ρ(t) = 1

ih̄
[Ĥ ,ρ̂(t)] + 
̂ρ̂(t), (A16)

where Ĥ is the Hamiltonian given by Eqs. (A1)–(A3) and 
̂ is
the Liouville space relaxation operator describing the phonon-
assisted dephasing and population decay processes.68,95

By taking the matrix elements of Eq. (A16) for the exciton,
nx

a = 〈xa|ρ̂(t)|xa〉, and biexciton, nxx
k = 〈xxk|ρ̂(t)|xxk〉, state

populations, one obtains the following set of equations:

ṅx
a = 1

ih̄

∑
m

V x,xx
a,m

(
ρxx,x

m,a − ρx,xx
a,m

)
−

∑
b

(

x

ban
x
a − 
x

abn
x
b

)
, (A17)

ṅxx
k = 1

ih̄

∑
b

V
x,xx
b,k

(
ρ

x,xx
b,k − ρ

xx,x
k,b

)
−

∑
m

(

xx

mkn
xx
k − 
xx

kmnxx
m

)
, (A18)

containing matrix elements, 
x
ba and 
xx

km, of the relaxation
operator, 
̂, standing for the phonon-assisted intraband popula-
tion decay rates, respectively. We have demonstrated that in the
weak electron-phonon coupling regime, the phonon-assisted
processes do not mix the exciton and biexciton bands48 and
therefore do not include these processes into Eqs. (A17) and
(A18).

Equations (A17) and (A18) should be complimented by the
equation for the interband coherences, ρ

x,xx
a,k = 〈xa|ρ̂(t)|xxk〉,

which according to Eq. (A16) read

ρ̇
x,xx
a,k + i

(
ωx

a − ωxx
k + iγ x,xx

a,n

)
ρ

x,xx
a,k = 1

ih̄
V

x,xx
a,k

(
nxx

k − nx
a

)
.

(A19)

Here, we dropped the terms containing the intraband exciton
and biexciton coherences giving negligible corrections to
ωx

a and ωxx
k . γ x,xx

a,n is the matrix element of the phonon-
assisted relaxation operator describing the pure dephasing
processes.95

Taking into account that the population decay dynamics
occurs on the time scale larger than the dephasing processes,
Eq. (A19) can be integrated using the Markovian approx-
imation. Further eliminating the coherences in Eqs. (A17)
and (A18), one finds the following set of kinetic equations
for the phonon-assisted intraband population decay accom-
panied by the impact ionization and Auger recombination
processes:

ṅx
a = −

∑
m

kx,xx
a,m

(
nx

a − nxx
m

)
−

∑
b

(

x

ban
x
a − 
x

abn
x
b

)
, (A20)

ṅxx
k = −

∑
b

k
x,xx
b,k

(
nxx

k − nx
b

)
−

∑
m

(

xx

mkn
xx
k − 
xx

kmnxx
m

)
. (A21)

Here, the interband population transfer rate in the limit
γ

x,xx
a,k → 0 is

kx,xx
a,n = 2π

h̄2

∣∣V x,xx
a,k

∣∣2
δ
(
ωx

a − ωxx
k

)
. (A22)

This rate gives rise to the impact ionization and Auger
recombination rates after the convolution with the biexciton
and exciton DOS, respectively.

165319-15



KIRILL A. VELIZHANIN AND ANDREI PIRYATINSKI PHYSICAL REVIEW B 86, 165319 (2012)

This rate gives rise to the impact ionization and Auger
recombination rates after the convolution with the biexciton
and exciton DOS, respectively.

APPENDIX B: VOLUME SCALINGS OF DOS, TRANSITION
DIPOLES, AND THE EFFECTIVE COULOMB

INTERACTION

In this appendix, we derive the volume normalization
prefactors entering Eqs. (11)–(16). The prefactors cancel out
the volume dependence of the latter quantities making them
intensive variables in the bulk (i.e., thermodynamic) limit.
To preserve the dimensionality of the intensive variables, we
use the V/v ratio instead of V , where v is the unit cell
volume. This ratio defines number of unit cells and goes to
infinity in the bulk limit. Here, we also use the relationships
derived in Appendix C that connect the transition dipole
movements and Coulomb matrix elements represented in the
single-particle Kanf-Wise basis set and in the exciton/biexciton
basis.

We start with the simple fact that in the bulk limit, the
single-particle DOS is proportional to the system volume
V .96 Defining the exciton (biexciton) DOS as a joint DOS
of uncorrelated electron and hole (uncorrelaed two electrons
and two holes), one immediately finds that they have V 2

(V 4) scalings. Therefore we introduced the v2/V 2 (v4/V 4)
prefactor into Eq. (11) [Eq. (12)].

To obtain the volume prefactors in the optically allowed
DOS given by Eqs. (13) and (14), we first notice that the tran-
sition dipole matrix element for a single carrier has no volume
scaling and accounts for the total momentum conservation,
i.e., Mij ∼ V 0Mki ,kj

δki ,kj
.97 Further using Eq. (C2), we find

that the optically allowed exciton DOS scales as∑
a

∣∣μx
a0

∣∣2
δ
(
ω − ωx

a

) ∼
∑
kp

∣∣Meh
kp,kp

∣∣2
δ
(
ω − ωe

kp
− ωh

kp

) ∼ V.

(B1)

Here and below, we use the same argument as in the DOS
analysis that for a fixed energy interval,

∑
kp

∼ V . Using the
first term in the expansion of the intraband biexciton dipole
moment given by Eq. (C3), one finds that the joint optically
allowed biexciton DOS scales as∑

kl

∣∣μxx
kl

∣∣2
δ
(
ω1 − ωxx

k

)
δ
(
ω2 − ωxx

l

)
∼

∑
kpkq

∑
kr ks

∣∣Mee
kp,kp

∣∣2
δ
(
ω1 − ωe

kp
− ωe

kq
− ωh

kr
− ωh

ks

)
× δ

(
ω2 − ωe′

kp
− ωe

kq
− ωh

kr
− ωh

ks

) ∼ V 4. (B2)

According to Eqs. (B1) and (B2), we introduced the prefactors
v/V and (v/V )4 into Eqs. (13) and (14), respectively.

To determine the volume scaling of the effective Coulomb
term [see Eq. (15)], we first evaluate the scaling of the
following auxiliary quantity:

K(ω1,ω2) =
∑
a,m

∣∣V x,xx
a,m

∣∣2
δ
(
ω1 − ωx

a

)
δ
(
ω2 − ωxx

m

)
. (B3)

According to Eq. (C10), the Coulomb matrix elements in the
free carriers basis scales as Vij,kl ∼ V −1Vkikj ,kkkl

δki−kl ,kj −kk
.

Then using Eq. (C6), one finds that

K(ω1,ω2) ∼ V −2
∑

kikj kkkl

∣∣V eehe
ki ,kj ,kk ,ki+kj +kk

∣∣2

× δ
(
ω2 − ωe

ki
− ωe

kj
− ωh

kk
− ωh

kl

)
× δ

(
ω1 − ωe

ki+kj −kk
− ωh

kl

) ∼ V 2. (B4)

By taking into account that K should be normalized by the
exciton and biexciton DOS and take square root, we introduce
the prefactor (V/v)2 into Eq. (15). The volume prefactor in
Eq. (16) can be obtained in the same way with the help of
Eqs. (C5), (C10), and (C11).

APPENDIX C: REPRESENTATION OF TRANSITION
DIPOLES AND INTERBAND COULOMB MATRIX

ELEMENTS IN KANG-WISE BASIS SET

In this appendix, we provide closed expressions for the
exciton and biexciton transition dipoles and the interband
Coulomb matrix elements used in the numerical calculations.
To derive these expressions, we follow the procedure outlined
in Appendices A–C of Ref. 48.

The second quantization is performed using the basis of
Kang-Wise states, {�i(r)} defined in Eq. (26), by introducing
the following field operators:

�̂(r) =
∑

i

[�(Ei)�i(r)ci + �(−Ei)�i(r)d†
i ],

(C1)
�̂†(r) =

∑
i

[�(Ei)�
∗
i (r)c†i + �(−Ei)�

∗
i (r)di],

where �(E) is the step function, ci and di (c†i and d
†
i ) are

conduction band electron and valence band hole annihilation
(creation) operators, respectively.

Using this representation and the definition of the exciton
and biexciton states given by Eqs. (27) and (28), it is
straightforward to show that the transition matrix elements
entering Eqs. (2) and (4) are

μx
a0 = 〈xa|M̂|x0〉 = Meh

qr , (C2)

μxx
kl = 〈xxk|M̂|xxl〉 = [δrr ′δss ′ − δrs ′δr ′s]

× [
Mee

p′pδqq ′ − Mee
q ′pδqp′ − Mee

p′qδpq ′ + Mee
q ′qδpp′

]
,

+ [δpp′δqq ′ − δpq ′δp′q]

× [
Mhh

s ′sδrr ′ − Mhh
s ′r δsr ′ − Mhh

r ′sδrs ′ + Mhh
r ′r δss ′

]
, (C3)

respectively. In Eq. (C2), the exciton index a = {q,r} and
Meh

qr is the interband electron-hole transition dipole matrix
element calculated in the Kang-Wise basis set. In Eq. (C3),
the biexciton indices are k = {p′q ′,r ′s ′} and l = {pq,rs} as
well as Mee

ij and Mhh
ij are the matrix elements of the intraband

transition dipole operator calculated using the electron and
hole Kang-Wise wave functions, respectively.

In the envelope function approximation, the Kang-Wise
transition matrix elements entering Eqs. (C2) and (C3) have
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the following generic form:57

Mij = M(1)
ij + M(2)

ij ,

M(1)
ij =

4∑
m=1

∫
dr

[
F i

m(r)
]∗

p̂F j
m(r),

M(2)
ij = Plz

∫
dr

{[
F i

1(r)
]∗

F
j

3 (r) + [
F i

3(r)
]∗

F
j

1 (r)

− [
F i

2(r)
]∗

F
j

4 (r) − [
F i

4(r)
]∗

F
j

2 (r)
}
, (C4)

where the indices i,j denote the electron and hole states,
and p̂ = −ih̄∇. Pl stands for the longitudinal dipole moment
component of the band-edge Bloch function um(r) and z is the
unit vector in 〈111〉 direction of the PbSe (PbS) lattice. Both
M(1) and M(2) can be evaluated analytically in the bulk limit,
where M(1) vanishes identically.101 Using the same approach
as above, one can show that the Coulomb matrix elements
entering Eqs. (5), (15), (16), and (B4) are

V
xx,0
l,0 = 〈xxl |V̂ |x0〉 = V eehh

pqrs − V eehh
pqsr , (C5)

V
xx,x
k,a = 〈xxk|V̂ |xa〉 = (

V eehe
q ′p′r ′q − V eehe

p′q ′r ′q
)
δs ′,r

+ (
V eeeh

q ′p′qs ′ − V eeeh
p′q ′qs ′

)
δr ′,r

+ (
V ehhh

q ′rs ′r ′ − V ehhh
q ′rr ′s ′

)
δp′,q

+ (
V ehhh

p′rr ′s ′ − V ehhh
p′rr ′s ′

)
δq ′,q . (C6)

These quantities depend on the long-range contributions whose
matrix elements in the Kang-Wise basis read

Vijkl =
∫ ∫

dr1dr2
e2

ε|r1 − r2|
4∑

m=1

[
F i

m(r1)
]∗

F l
m(r1)

×
4∑

n=1

[
F j

n (r2)
]∗

Fk
n (r2). (C7)

Here, ε denotes the screened dielectric function values
evaluated at the optical frequencies. For bulk PbSe and
PbS, we set εbulk = 23 and 17, respectively.57 The dielectric
constant in the nanocrystals has been evaluated using the
following expression:98

εNC(d) = 1 + (εbulk − 1)

(
Ebulk

g + �E
)2[

ENC
g (d) + �E

]2 , (C8)

where Ebulk
g + �E = 2.73 and 3.14 eV are the energy of the

first pronounced absorption peak in the bulk PbSe and PbS,
respectively.99,100

To derive the volume scaling of the Coulomb matrix
elements given by Eq. (C7), we assume the bulk limit in which
the envelope functions become plane waves, i.e., F i

m(r1) =
F i

meikir1/
√

V . In this basis, the Coulomb matrix elements can
be written as

Vijkl = e2

εV 2

∑
m,n

[
F i

mF j
n

]∗
F l

mF k
n

×
∫ ∫

dr1dr2
1

|r1 − r2|e
−ikir1−ikj k2+ikkr2+iklr1 .

(C9)

The integral evaluation leads to the final expression

Vijkl = 1

V 2
Vki ,kj ,kk ,kl

V δki−kl ,kj −kk
, (C10)

where

Vki ,kj ,kk ,kl
= e2

ε

∑
m,n

[
F i

mF j
n

]∗
F l

mF k
n

4π

|ki − kl|2 . (C11)

Equations (C10) and (C11) clearly demonstrate a general prop-
erty that the Coulomb matrix elements used in the numerical
calculations of the bulk limit scale inversely proportional to
the volume.97

The nonparabolicity in the employed k · p Hamiltonian
is crucial for the accurate evaluation of the above Coulomb
matrix elements. Specifically, summations over the spinor
components in Eq. (C7) imply that the interband Coulomb
scattering amplitudes vanish exactly if the nondiagonal terms
of the k · p Hamiltonian are set to zero, i.e., in the strictly
parabolic case.80 In the bulk, where the quasimomentum k is a
“good” quantum number, diagonal and off-diagonal matrix el-
ements of the k · p Hamiltonian scale as k2 and k, respectively.
At high energies, where the diagonal elements dominate over
the off-diagonal ones, the latter can be treated perturbatively
giving k−1 ∼ ω−1/2 as the contribution of the hole (electron)
states to a high-energy electron (hole) wave function.
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