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Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode
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A spin- and time-dependent electron transport has been studied in a paramagnetic resonant tunneling diode
using the self-consistent Wigner-Poisson method. Based on the calculated current-voltage characteristics in an
external magnetic field, we have demonstrated that under a constant bias both the spin-up and spin-down current
components exhibit the THz oscillations in two different bias voltage regimes. We have shown that the oscillations
of the spin-up (down) polarized current result from the coupling between the two resonance states: one localized
in the triangular quantum well created in the emitter region and the second localized in the main quantum well.
We have also elaborated the one-electron model of the current oscillations, which confirms the results obtained
with the Wigner-Poisson method. The spin current oscillations can lower the effectiveness of spin filters based
on the paramagnetic resonant tunneling structures and can be used to design the generators of the spin polarized
current THz oscillations that can operate under the steady bias and constant magnetic field.
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I. INTRODUCTION

Dilute magnetic semiconductors (DMSs) such as ZnMnSe
and GaMnAs are promising materials due to their potential
applications in spintronics.1–7 The recent homo- and het-
eroepitaxy methods8–15 allow the deposit of DMS layers with
thicknesses of a few nanometers, which enables us to fabricate
spintronic nanodevices with the spin polarization of the current
being controlled by the external magnetic and electric fields.

The spin filter based on the DMS was proposed by
Euges.16 The nanostructure studied in Ref. 16 consisted of a
paramagnetic semiconductor layer made from Zn1−xMnxSe
sandwiched between two nonmagnetic ZnSe layers. The
external magnetic field leads to the giant Zeeman splitting
of the conduction band minima in the paramagnetic layer,
which causes this layer to act as a potential well for spin-down
electrons and a potential barrier for spin-up electrons. As
a result, the total current flowing through the nanostructure
is dominated by the spin-down electrons. In such a spin
filter,16 the change of the spin polarization of the current
requires the change of the external magnetic field. In the
recently fabricated paramagnetic resonant tunneling diodes
(RTDs),17–19 the electrical control of the spin polarization
of the current has been achieved. The spin-polarized current
is controlled by the bias voltage in the presence of the
external magnetic field in paramagnetic RTDs17,18,20,21 or
even without the external magnetic field in ferromagnetic
RTDs.22–27 If the quantum well in the RTD is made from
the DMS, the spin splitting of the quasibound state energy
level gives rise to the resonant tunneling conditions for the
spin-up and spin-down electrons satisfied for different bias
voltages. This leads to the separation of both the spin current
components and consequently to the spin polarization of the
net current. The operation of the paramagnetic RTD based
on ZnSe/ZnBeSe/ZnMnSe heterostructure as a spin filter has
been experimentally demonstrated by Slobodskyy et al.17

and theoretically described by Havu et al.28 Recently, the
spin polarization of the current in the paramagnetic RTD
has been reported at zero magnetic field.18 All these studies
of the spin-polarized currents in the magnetic RTDs were
devoted to the stationary (steady) currents. The oscillations

of the spin-polarized currents in magnetic RTDs have not
been studied until now, although the intrinsic oscillations of
the current have been detected in the nonmagnetic resonant
tunneling structures.29–31

The intrinsic current oscillations occurring in the non-
magnetic RTDs are intensively studied due to their potential
application as THz generators. Recently, the THz oscillations
have been experimentally observed in the GaInAs/AlAs RTD
integrated with a slot antenna.29–31 The attempts undertaken
in order to explain the origin of these oscillations led to
contradictory conclusions. Ricco and Azbel32 argued that the
oscillations of the current in the nonmagnetic RTD result from
the fact that the system enters and leaves the resonant current
conditions. According to this model,32 the intrinsic oscillations
of the current should occur at the resonance bias that is
in contradiction with the experimental29–31 and numerical33

studies, which show that the current oscillations occur only
in the negative differential resistance (NDR) regime of the
current-voltage characteristics, i.e., above the resonance bias.
Woolard et al.34 suggested that the current oscillations in the
nonmagnetic RTD result from the charge fluctuations in the
potential well created between the emitter and the nearest
barrier. This proposition was extended by Zhao et al.,35–37 who
showed that the intrinsic oscillations are due to the coupling
between the quasibound state localized in the emitter-related
quantum well and the quasibound state in the main quantum
well. However, this model35–37 is based on the adiabatic
approximation, according to which the electron states are
slowly varying in time. This assumption is not valid in the
THz oscillation regime. Moreover, the explanation given by
Zhao et al.35–37 does not answer the question, why the current
oscillations do not decay in time as a result of the dissipative
factor corresponding to the imaginary part of the resonance
state energy. In our recent paper,38 we have shown that the
intrinsic oscillations of the spin-unpolarized current result
from the coupling between the two arbitrary quasibound states
in the nonmagnetic triple-barrier resonant tunneling structure.
We have found the intrinsic oscillations in two bias ranges.
We have interpreted the oscillations that occur at the bias
values below the resonance bias as resulting from the coupling
between the quasibound states in both the quantum wells,
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while the oscillations that occur in the NDR regime as resulting
from the coupling between the emitter-related quasibound state
and the quasibound state localized in the nearby quantum well.

In the present paper, we study the spin- and time-dependent
electronic transport in the paramagnetic double-barrier RTD
based on ZnSe/ZnBeSe/ZnMnSe. We show that—under cer-
tain well-defined constant bias and external magnetic field—
the intrinsic oscillations of both the spin current components
appear, which leads to the oscillations of the spin polarization
of the total current. Based on the analysis of the spin- and
time-dependent potential energy profiles and electron density
distributions, we demonstrate that the oscillations of the
spin polarized current result from the coupling between the
quasibound state localized in the triangular quantum well
created in the emitter (E) region with the spin-dependent
quasibound state localized in the main quantum well (QW).
The present results show that at certain bias voltages the spin
polarization of the current flowing through the paramagnetic
RTD is not constant but oscillates with the THz frequency. This
effect can be of crucial importance for the possible applications
of this nanodevice as a spin filter and THz generator.

The paper is organized as follows: in Sec. II, we describe
the theoretical model of the paramagnetic RTD and the time-
dependent Wigner-Poisson method. Section III contains the
results, Sec. IV the discussion, and Sec. V the conclusions and
summary.

II. THEORETICAL MODEL

We consider the spin-dependent electronic transport
through the paramagnetic RTD that consists of the paramag-
netic quantum-well layer made from Zn1−xMnxSe embedded
between the two barrier layers made from Zn0.95Be0.05Se
(Fig. 1). The active (undoped) region of the nanodevice
is separated from the n-doped ZnSe ohmic contacts by

FIG. 1. (Color online) Potential energy in the paramagnetic RTD
for the electrons with spin-up (solid, red) and spin-down (dotted,
blue). Coordinate z is measured along the growth direction, μE(C)

is the electrochemical potential of the emitter (collector). The active
(undoped) region consists of the paramagnetic quantum well made
from Zn0.92Mn0.08Se sandwiched between the two Zn0.95Be0.05Se
potential barriers and is separated from the n-doped ZnSe ohmic
contacts by the two ZnSe spacer layers.

the two spacer layers made from ZnSe. In the presence
of the external magnetic field B = (0,0,B) applied in the
growth (z) direction, the exchange interaction between the
conduction band electrons and the Mn2+ ions leads to
the giant Zeeman splitting of the conduction band minimum
in the paramagnetic quantum-well layer.1 In the external
magnetic field, the conduction-band electrons form the Landau
states with the wave functions spread over the x-y plane.
Therefore, the one-electron problem can be separated into
(x,y) and z coordinates and the electronic transport between
the emitter and collector can be described as the one-
dimensional motion of the electron in the z direction.

In order to simulate the electronic transport through the
nanostructure, we apply the time-dependent Wigner-Poisson
approach, according to which the conduction band electrons
are described by the spin-dependent Wigner distribution
function.39–41 The quantum kinetic equation takes on the
following form:39

∂ρW
σ (z,k,t)

∂t
+ h̄k

m

∂ρW
σ (z,k,t)

∂z

= i

2πh̄

∫ +∞

−∞
dk′ Uσ (z,k − k′,t)ρW

σ (z,k′,t), (1)

where ρW
σ (z,k,t) is the spin-dependent Wigner distribution

function, k is the z-component of the wave vector, m is the
electron conduction-band effective mass, and σ = (↑,↓) is the
spin index.

The nonlocal potential Uσ (z,k − k′; t) for spin channel σ is
given by the formula

Uσ (z,k − k′,t) =
∫ +∞

−∞
dz′[Uσ (z + z′/2,t)

−Uσ (z − z′/2,t)] exp [−i(k − k′)z′], (2)

where Uσ (z,t) is the spin-dependent potential energy, which
can be expressed as the sum of the two terms

Uσ (z,t) = Ucb
σ (z,B) + Uel(z,t). (3)

In Eq. (3), the first term denotes the spin-dependent potential
energy of the conduction-band bottom, while the second term
is the potential energy of an electron in the electric field acting
in the nanostructure and has the form

Uel(z,t) = UVb
(z) + UH (z,t), (4)

where UVb
(z) is the potential energy of an electron in the

electric field generated by voltage Vb applied between the
emitter and collector and UH (z; t) is the Hartree energy that
takes into account the electron-electron interactions. In Eq. (3),
we have neglected the exchange energy (see Sec. IV C).

The conduction-band potential energy profile has the form

Ucb
σ (z,B) =

⎧⎨
⎩

U0, if z1 � z � z2 and z3 � z � z4,

±EZ(B), if z2 � z � z3,

0, otherwise,

(5)

where z1 and z2 (z3 and z4) are the positions of the left
(right) potential barrier interfaces, U0 is the height of the
potential barrier, and EZ(B) is the Zeeman energy of an
electron in the paramagnetic quantum-well layer, which is
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positive (negative) for the spin-up (spin-down) electrons. For
a small concentration of Mn2+ ions the Zeeman energy can be
expressed by the formula1

EZ(B) = 1

2
N0αx S0 BS

(
gμBSB

kBTeff

)
, (6)

where N0α = 0.26 eV is the sp-d exchange constant, x is the
concentration of Mn2+ ions, BS is the Brillouin function for
spin S = 5/2 that corresponds to the spin of Mn2+ ion, g is
the effective Landé factor, μB is the Bohr magneton, S0 and
Teff are the phenomenological parameters corresponding to the
antiferromagnetic interaction between the Mn2+ ions and have
been taken on as S0 = 1.18 and Teff = 2.55 K for x = 0.083.42

Potential energy Uel(z,t) satisfies the Poisson equation

d2Uel(z,t)

dz2
= e2

ε0ε
[ND(z) − n(z,t)], (7)

where e is the elementary charge, ε0 is the vacuum electric per-
mittivity, ε is the relative static electric permittivity, ND(z) is
the concentration of the ionized donors, and n(z) = ∑

σ nσ (z)
is the total density of electrons with nσ (z) being the density
of the electrons with spin σ . The energy of the emitter
conduction-band bottom is taken as the reference energy and
set equal to 0.

In order to solve the system of nonlinear equations (1) and
(7) we apply the self-consistent time-dependent procedure43

with the boundary conditions Uel(0,t) = 0 and Uel(L,t) =
−eVb for the Poisson equation, where L is the length of the
nanodevice. For the quantum kinetic equation (1) we apply
the generalized form of the boundary conditions proposed by
Frensley44

ρW
σ (0,k,t)|k>0 = f E

σ (k),
(8)

ρW
σ (L,k,t)|k<0 = f C

σ (k).

Distribution function f ν
σ (k)(ν = E,C) is derived from the

Fermi-Dirac distribution function by summing over the Lan-
dau energy levels, which leads to

f ν
σ (k) = eB

h

Nmax∑
n=0

1

exp
[

1
kBT

(
h̄2k2

2m
− Eν

nσ

)] + 1
, (9)

where T is the temperature, Eν
nσ = μν − h̄ωc (n + 1/2) −

σμBB, μν = Fν − eVν is the electrochemical potential of
reservoir ν, Fν is the corresponding Fermi energy, Vν is the
voltage applied to contact ν, and ωc = eB/m is the cyclotron
frequency. In Eq. (9), Nmax determines the highest occupied
Landau state and is determined by the density of electrons in
the reservoirs.

The spin-dependent Wigner distribution function allows us
to calculate the spin-dependent electron density

nσ (z,t) = 1

2π

∫ +∞

−∞
dkρW

σ (z,k,t) (10)

and the spin-dependent current density

jσ (t) = e

2πL

∫ L

0
dz

∫ +∞

−∞
dk

h̄k

m
ρW

σ (z,k,t). (11)

The spin polarization of the current is defined as follows:

P (t) = j↑(t) − j↓(t)

j↑(t) + j↓(t)
, (12)

where j↑ and j↓ are the spin-up and spin-down current
densities, respectively.

In the present work, we focus on the oscillations of the
spin-polarized currents. In order to choose the nanostructure
parameters, for which the current oscillations are mostly
pronounced, we have performed a number of computational
runs that allowed us to establish the optimal values of the
parameters. The present simulations have been performed
for the following values of the nanostructure parameters: the
thickness of each contact is equal to 17 nm, the thickness of
each spacer layer is 3 nm, the thickness of the potential well
layer is 5 nm, the total length of the nanodevice L = 54 nm,
and the Mn concentration x = 8.3%. The barriers are assumed
to be symmetric with a thickness of 3 nm each. We have taken
on the height of both the potential barriers U0 = 0.115 eV.45

The contacts are made from the n-type ZnSe with the
homogeneous concentration of donors ND = 1018 cm−3. Due
to the small thickness of the double-barrier region we assume
the effective electron mass of the ZnSe conduction band, i.e.,
m = 0.16 m0, where m0 is the free electron mass. We take on
the relative electric permittivity of ZnSe ε = 8.6 for the entire
nanostructure. The present simulations have been carried out
for temperature T = 1.2 K on the computational grid with
Nz = 95 mesh points for coordinate z and Nk = 72 mesh
points for the z component of the wave vector. The z coordinate
increment was 
z = a, where a = 0.5667 nm is the lattice
constant of ZnSe.

III. RESULTS

The calculated current-voltage characteristics for spin-up
and spin-down components of the current in the presence
of the external magnetic field are displayed on Fig. 2. The
resonant current peaks for both the spin current components
are separated, which results from the fact that the resonance
conditions for the spin-up and spin-down electrons are satisfied
at different bias voltages due to the giant Zeeman splitting
of the quasibound state energy levels in the paramagnetic
quantum well. If the magnetic field increases the resonant
current peak for the spin-down electrons shifts towards the
lower bias, while the resonant peak for the spin-up electrons
shifts towards the higher bias [Figs. 2(a), 2(b), and 2(c)]. The
separation of these peaks is the basic property that can be
exploited to fabricate an effective spin filter, in which the spin
polarization of the current is controlled by the bias voltage.
Figure 3 shows the spin polarization of the current as a function
of the bias voltage for different magnetic fields. For all values
of the magnetic field the spin polarization of the current varies
from P = −1 for the low bias to P � +1 for the sufficiently
high bias. Moreover, for the higher magnetic field the transition
between the almost fully spin polarized currents occurs in a
narrower bias interval.

The current-voltage characteristics presented in Fig. 2 have
been calculated in the bias range from Vb = 0 to Vb = 0.2 V
with step δVb = 0.005 V. For each step, the bias voltage has
been changed to the next value by δVb if both the spin current
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FIG. 2. (Color online) Current-voltage characteristics for spin-up (curves with circles, red) and spin-down (curves with triangles, blue)
electrons and for the magnetic field (a) B = 2 T, (b) B = 4 T, and (c) B = 6 T. The hatched areas correspond to the bias regimes, in which the
oscillations of the spin-polarized current occur. The values of the current density in these regimes are calculated by averaging over one period
of oscillations. Inset (A) shows how the steady current is reached after several initial fluctuations for the bias denoted by arrow (A) on main
panel (a); inset (B) shows the formation of the stable oscillations of the spin currents that occurs in the bias regimes denoted by arrows (B) on
main panel (a).

components reach the steady state as shown in inset (A) of
Fig. 2(a). We have found that at certain bias voltages that
belong to the NDR regimes for the spin-up and spin-down
electron currents both the spin currents do not stabilize as the
steady currents but oscillate with the THz frequency [cf. inset
(B) in Fig. 2(a)].

In Fig. 4, we present the formation of the current oscillations
for the bias Vb = 0.092 V that corresponds to the NDR
regime for the spin-down current component [Fig. 4(a)] and
Vb = 0.112 V that corresponds to the NDR regime for the
spin-up current component [Fig. 4(b)]. In both the cases,
the spin-polarized current oscillates with constant frequencies
equal to fosc = 3.7 THz for Vb = 0.092 V and fosc = 3.2 THz
for Vb = 0.112 V. For the bias voltages, for which the current
oscillations have been found, the spin current polarization is
not well defined but also oscillates with the THz frequency.
Figure 5 displays the oscillations of the spin current polariza-
tion that occur in the NDR regime for the spin-down [Fig. 5(a)]
and spin-up [Fig. 5(b)] current component. We note that the

FIG. 3. (Color online) Spin polarization P of the current as a
function of bias voltage Vb for the magnetic fields B = 2,4,6 T. For
the oscillating current the spin polarization has been calculated by
averaging over one period of the oscillations.

spin current polarization exhibits the oscillatory behavior in
the bias regimes, in which it reaches the maximal values.

FIG. 4. (Color online) Spin-up (solid, red) and spin-down
(dashed, blue) current oscillations in the NDR regimes for (a) the
spin-down current component (Vb = 0.092 V) and (b) for the spin-up
current component (Vb = 0.112 V). The calculations have been
performed for B = 2 T.
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FIG. 5. (Color online) Oscillations of the spin current polarization
P in the NDR regime for (a) the spin-down current component (Vb =
0.092 V) and (b) spin-up current component (Vb = 0.112 V). Insets
display the regions marked by the rectangles on the main panels.

In order to get physical insight into the mechanism of
oscillations of the spin-polarized currents, we have calculated
the time- and space-dependence of the electron density in
the different regions of the nanostructure (Figs. 6 and 7).
Figure 6 shows the time dependence of spin-up and spin-down
electron densities in the emitter region and in the main quantum
well (QW) calculated for the bias corresponding to the NDR
regimes for spin-down and spin-up current components. We
see that both the spin-up and spin-down electron densities
oscillate with the constant frequencies that are equal to the
frequencies of the oscillations of the corresponding spin-
polarized current. Figure 6(a) shows that in the NDR regime
for the spin-down current component, the amplitude of the
spin-down electron density oscillations in the QW region is
much larger than the corresponding amplitude of the spin-up
electron density oscillations. At time instant t1, the spin-down
electron density reaches the maximal value in the QW region
and the minimal value in the emitter region. On the other hand,

FIG. 6. (Color online) Oscillations of the spin-up (red) and spin-
down (blue) density of the electrons localized in the emitter region
(dashed line, right scale) and the QW (solid line, left scale) calculated
for magnetic field B = 2 T and the bias voltage from the NDR
regimes for (a) spin-down current component (Vb = 0.092 V) and
(b) spin-up current component (Vb = 0.112 V). The density of
electrons localized in the QW reaches the maximum (minimum) at
time instant t1 (t2).

at time instant t2, the spin-down electron density is minimal in
the QW and maximal in the emitter region [cf. Fig. 6(a)]. The
similar behavior has been obtained for the spin-up electron
density in the corresponding NDR regimes for the spin-up
current component [Fig. 6(b)].

Figure 7 depicts the spatial distribution of the spin-up and
spin-down electron densities together with the corresponding
self-consistent potential energy profiles determined at time
instants t1 and t2 marked in Fig. 6. Figure 7(a) shows that the
density of the spin-down electrons in the QW is fairly large at
time instant t1 and much smaller at t2. These changes of the
spin-down electron density in the QW mean that the tunneling
conditions at time instants t1 and t2 are different. Therefore, the
spin-down current component approaches (at t1) and partially
leaves (at t2) the resonant tunneling conditions. At these time
instants, the density of the spin-up electrons in the QW is
considerably smaller and oscillates with smaller amplitude
[Fig. 7(a)]. In this case, the low-amplitude oscillations of the
spin-up electron density are induced by the high-amplitude
oscillations of the spin-down electron density [cf. Fig. 6(a)].
Similar results have been obtained for the spin-up electron
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FIG. 7. (Color online) Density of the spin-up (red) and spin-down
(blue) electrons and the corresponding profiles of the self-consistent
potential energy as a function of coordinate z at time instants t1 and
t2 marked in Fig. 6 for bias (a) Vb = 0.092 V and (b) Vb = 0.112 V.

density in the QW for the bias corresponding to NDR regime
of the spin-up current component [Fig. 7(b)]. At time instant
t1 the spin-up electron density in the QW is larger than at
time instant t2. At these time instants, the density of the spin-
down electrons in the QW is considerably smaller and changes
only slightly during the oscillations [Fig. 7(b)]. This indicates
that the spin-down polarized current is out of the resonance,
which explains the small values of the spin-down current in
the considered bias regime.

IV. DISCUSSION

The results of Sec. III show that—for the paramagnetic RTD
in the external magnetic field—we can expect two bias voltage
regimes, in which the spin polarization of the current is not well
defined but oscillates with the THz frequency. Figure 2 shows
that the oscillations of the spin-polarized current are generated
in the two following bias ranges: the first corresponding
to the NDR regime for the spin-down current component
and the second corresponding to the NDR regime for the
spin-up current component. The present results obtained for
the paramagnetic RTD resemble those for the nonmagnetic
RTD,33 according to which the current oscillations occur only
in the NDR regime of the current-voltage characteristics. The
previous studies29–31,35–37 of the current oscillations in the

nonmagnetic RTD allow us to conclude that the occurrence
of this phenomenon does not depend on the spins of electrons
flowing through the nanostructure. In the next subsections,
for simplicity and without loss of generality, first we propose
the model of the spin-independent current oscillations in
the nonmagnetic RTD and next extend this model to the
description of the spin-polarized current oscillations in the
paramagnetic RTD.

A. Model of current oscillations

In this subsection, we will analyze the current oscillations
using the one-electron approximation. In order to explain
the origin of the oscillations, let us consider the physical
processes occurring in the NDR regime. In this regime, the
system leaves the resonant tunneling conditions, which means
that the probability of the reflection of the electron from the
emitter barrier becomes fairly large. The interference between
incident and reflected electron wave functions together with
the bias-induced lowering of the electron potential energy
leads to the formation of a shallow triangular quantum well
in the emitter region (cf. Fig. 7), in which the quasibound
(resonance) state is formed. Let us consider the coupling
between the resonance state ψ1 ≡ ψE mainly localized in the
triangular quantum well in the emitter region and the resonance
state ψ2 ≡ ψQW localized in the QW. In the framework of
the proposed model, we will calculate the probability of
transition from state ψ1 to state ψ2 under influence of the
weak perturbation corresponding to the change of the bias and
show that this probability oscillates in time.

The one-electron wave function 
(z,t) evolves in time
according to the time-dependent Schrödinger equation

ih̄
∂

∂t

(z,t) = − h̄2

2m

∂2

∂z2

(z,t) + U [
(z,t)]
(z,t), (13)

where potential energy U [
(z,t)] is a functional of the wave
function, which results from the wave-function representation
of the electron density n = n[ψ(z,t)] that in turn determines
the potential energy via Poisson equation (7). Potential energy
U [
(z,t)] can be expressed as the sum of three terms

U [
(z,t)] = U 0(z) + δUVb
(z) + δUH [
(z,t)], (14)

where U 0(z) is the potential energy of the electron in the
steady state for the bias Vb = V res

b that corresponds to the
maximum of the resonant tunneling current. The Hamiltonian
with potential energy U 0(z) describes the unperturbed system.
The next two terms in Eq. (14) correspond to the perturbation,
where δUVb

(z) is the change of the electron potential energy
caused by varying the bias from Vb = V res

b to Vb = V res
b + δVb

(δVb > 0) and δUH [
(z,t)] is the corresponding change of the
Hartree potential energy.

The change of Hartree potential energy δUH [
(z,t)] results
from changing the potential energy of the electron in the
external electric field by amount δUVb

(z) and occurs with some
time delay with respect to δUVb

(z). Moreover, δUH [
(z,t)]
is much smaller than δUVb

(z), and therefore, in the first
approximation, it can be neglected when considering the
electron states at the bias Vb = V res

b + δVb.
In order to avoid the exponential divergence of the res-

onance wave function in Eq. (13), all the calculations will
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be performed using the complex-scaling theory of resonance
states.46 The complex-scaled Hamiltonian of the electron has
the form

H (zeiθ ) = −e−2iθh̄2

2m

∂2

∂z2
+ U 0(zeiθ ) + δUVb

(zeiθ )

= H0(zeiθ ) + δUVb
(zeiθ ), (15)

where θ is the scaling parameter46 and H0(zeiθ ) is the
Hamiltonian of the unperturbed system for the bias Vb = V res

b .
In the NDR regime, i.e., for Vb = V res

b + δVb, the resonance
states ψθ

1 (z) and ψθ
2 (z) are almost degenerate, i.e., E1 =

E2 + δE. Therefore, the one-electron wave function can be
expressed as a linear combination of the wave function ψθ

1 (z)
being localized in the emitter region and ψθ

2 (z) localized in the
QW


θ (z,t) = a1(t)ψθ
1 (z) + a2(t)ψθ

2 (z). (16)

Wave functions ψθ
n (z) (n = 1,2) are calculated using the

time-independent Schrödinger equation for the unperturbed
Hamiltonian

H0(zeiθ )ψθ
n (z) = Enψ

θ
n (z), (17)

where the energy of the resonance state En = εn − i�n/2
consists of the real part εn that determines the position of the
resonance on the energy scale and the imaginary part �n that
defines the width of the resonance and determines its lifetime.

After inserting (16) into the time-dependent Schrödinger
equation (13) we obtain

ih̄

(
da1(t)

dt
da2(t)

dt

)
=

(
E1 + W11 W12

W21 E2 + W22

) (
a1(t)
a2(t)

)
, (18)

where

Wnn′ = 〈
ψθ

n

∣∣δUVb

∣∣ψθ
n′
〉
. (19)

Finally, the wave function 
θ (z,t) takes on the form


θ (z,t) = (
a0

1e
− i

h̄
ξ+t + a0

2e
− i

h̄
ξ−t

)
ψθ

1 (z)

+ (
a0

1α
+e− i

h̄
ξ+t + a0

2α
−e− i

h̄
ξ−t

)
ψθ

2 (z), (20)

where a0
1,2 are the time-independent coefficients,

α± = W21

ξ± − W22
, (21)

ξ± = 1

2
(E1 + E2 + W11 + W22 ∓

√

), (22)

and


 = (E1 + W11 − E2 − W22)2 + 4|W12|2. (23)

If we take the resonance state ψθ
1 (z) as the initial state of the

system, i.e., the state for t = t0 and Vb = V res
b , the probability

of transition from state ψθ
1 (z) localized in the emitter quantum

well to state ψθ
2 (z) localized in the QW is expressed by the

formula

P1→2(t) = 4|W12|2



sin2 ωt, (24)

where

ω =
√




2h̄
. (25)

The probability of the electron transition from the QW to
emitter is given by

P2→1(t) = 1 − P1→2(t). (26)

Based on Eqs. (24) and (26) we state that the coupling
between the resonance states localized in the emitter and in
the QW (measured by W12) causes that the probabilities of
the electron transition between both resonant states oscillate
with frequency ω. As a consequence of this coupling, both
the electron density and the current density oscillate in certain
well-defined bias intervals in the NDR regime. Equations (23)
and (25) show that the densities of electrons localized in the
emitter and in the QW regions oscillate in antiphase, which
supports the results presented in Fig. 6.

B. Spin current oscillations in the paramagnetic RTD

Based on the results of Secs. III and IV A we argue that
the oscillations of the spin-polarized currents in the NDR
regimes result from the coupling between the spin-dependent
quasibound state localized in the emitter region with the
corresponding spin-dependent quasibound state localized
in the main QW. Now we will analyze the formation of
the oscillations of the spin-down polarized current in the
NRD regime of the current-voltage characteristics for this
current component [cf. Fig. 2(a)]. In this regime, the resonant
tunneling conditions for the spin-down electrons are no longer
satisfied and the reflection probability of these electrons from
the emitter barrier becomes fairly large. Due to the interference
and the bias-induced lowering of the potential energy, the
spin-down quasibound state of the electron is formed in the
triangular quantum well in the emitter region close to the left
barrier [cf. Fig. 7(a)]. We have estimated the energy of this
resonance state to be E

↓
E � −0.1 meV. This energy differs by

a few meV from energy E
↓
QW of the resonance state localized

in the QW. Therefore, these states can be treated as almost
degenerate, and we can apply the results of Sec. IV A. The
coupling between these two quasibound states leads to
the oscillatory transitions of the spin-down electrons between
the emitter and QW regions [cf. Fig. 6(a)] described by
Eqs. (24) and (26). The oscillatory changes of the spin-down
electron density in the QW causes that the bottom of the QW
oscillates in time, which gives rise to the oscillatory changes of
the tunneling conditions. Figure 8(a) shows the transmission
coefficient T as a function of incident electron energy E at
time instants t1 and t2 marked in Fig. 6(a). The positions
of the peaks of T (E) correspond to the energies of the
spin-up and spin-down resonance states localized in the main
QW. Figure 8(a) shows that at time instant t1 the resonance
tunneling condition is satisfied for the spin-down electrons,
which leads to the accumulation of these electrons in the QW
[Fig. 7(a)]. After ∼1 ps the system gets out of the resonance
and the density of the spin-down electrons in the QW decreases
reaching the minimal value at time instant t2 [cf. Fig. 7(b)].
As a consequence, the spin-down polarized current oscillates
[cf. Fig. 6(a)]. For this bias voltage, the oscillations of the
spin-up electron density are induced by the electron-electron
interactions with the oscillating spin-down electron density.

The same effect, i.e., the coupling between the two spin-up
resonance states, one localized in the emitter quantum well
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FIG. 8. (Color online) Transmission coefficient T as a function of
incident electron energy E at time instants t1 and t2 marked in Fig. 6
for the bias corresponding to the NDR regime for (a) spin-down
and (b) spin-up electrons. The position of the peak determines the
energy of the spin-up (E↑

QW , red line) and spin-down (E↓
QW , blue line)

resonance state localized in the main QW. μE is the electrochemical
potential of the emitter.

and the second localized in the QW, is responsible for the
oscillations of the spin-up polarized current that occur in
the NRD regime for this current component [cf. Fig. 2(a)].
This coupling leads to the oscillatory exchange of the spin-up
electrons between the emitter and the QW, which changes the
tunneling conditions in an oscillatory manner.

C. Effect of exchange interaction

The results presented in Sec. III have been obtained without
the exchange interaction [cf. Eq. (3)]. We have also studied the
effect of exchange interaction on the oscillations of spin polar-
ized currents. For this purpose we have estimated the exchange
energy in the QW using the formula47 Eex

σ = −(3nσ /π )1/3/ε,
which leads to Eex

σ � −6 meV for the time instant, for which
charge density nσ reaches the maximal value during the
oscillation cycle. Inserting this formula into Eq. (3) we have

calculated the spin-dependent current-voltage characteristics
and obtained very similar results to those presented in Fig. 2(a).
In particular, we have found two bias regimes in which
THz current oscillations appear. The estimated frequency of
these oscillations is smaller than that calculated without the
exchange interaction, but still remains in the THz range. We
conclude that the exchange interaction can lead to a slight
modification of the current-voltage characteristics, but does
not affect the predicted occurrence of the high-frequency spin
current oscillations.

V. CONCLUSIONS AND SUMMARY

In the present paper, we have shown that—in the para-
magnetic RTD under constant bias and external magnetic
field—the stable oscillations of the spin-polarized current can
occur in the NRD regimes for the spin-up and spin-down
current components. The analysis performed in Sec. IV reveals
that these oscillations result from the coupling between the
spin-up (spin-down) resonance state localized in the emitter
region with the spin-up (spin-down) resonance state localized
in the quantum well. This coupling leads to the oscillatory
changes of both the electron density and the current in the
nanostructure.

In the RTD under the fixed bias and external magnetic field,
we deal with the following two types of the spin-polarized
currents: (i) stationary (constant in time) current with the
well-defined spin polarization, (ii) oscillating current with the
oscillating spin polarization. We have demonstrated that at a
certain bias in the NDR regime, at which the spin polarization
of the net current reaches the maximum, the spin current
polarization oscillates with the THz frequency.

Until now the THz oscillations of the current have been
observed only in nonmagnetic resonant tunneling diodes29–31

but they should also occur in paramagnetic resonant tunneling
diodes. We hope that the present results will stimulate the
experimental search for this phenomena in the magnetic
resonant tunneling structures. We would like to mention
that the oscillations of the spin-polarized currents are fully
manifested only if the scattering on phonons and impurities is
negligibly small, i.e., this is the low-temperature effect. The
scattering processes will damp the oscillations and finally lead
to the steady current.

The oscillations of the spin-polarized currents, predicted
in the present paper, can have important implications for
spintronic devices based on the paramagnetic RTD. The
separation of both the spin components of the current is a
basis for a fabrication of an effective spin filter (selector), in
which the spin polarization of the current is controlled by the
bias voltage. However, if the paramagnetic RTD is designed
to operate as a spin filter, we have to avoid the bias regimes,
in which the current oscillations appear, in order to obtain
the well-defined spin polarization of the current. On the other
hand, the current oscillations obtained under the constant bias
can be applied to generate the spin-polarized current oscillating
with the THz frequency.

In summary, we have demonstrated that the spin-polarized
current flowing through the paramagnetic RTD under the
constant bias fixed in the NDR regime and in the constant
external magnetic field can exhibit the THz oscillations.
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The oscillatory behavior of the spin-polarized current leads
to important consequences for the operation of spintronic
devices. On the one hand, this phenomenon is disadvantageous
for the operation of spin filters as a parasitic effect that spoils
the operation of spin filters. On the other hand, it can be used to
design the generator of the spin-polarized currents oscillating
with the THz frequency.
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