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Coupled electron–heat transport in nonuniform thin film semiconductor structures
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A theory of transverse electron transport coupled with heat transfer in semiconductor thin films is developed,
conceptually modeling structures of modern electronics. The transverse currents generate Joule heat with positive
feedback through thermally activated conductivity. This can lead to instability known as thermal runaway, or
hot spot, or reversible thermal breakdown. A theory here is based on the optimum fluctuation method modified
to describe saddle stationary points determining the rate of such instabilities and conditions under which they
evolve. Depending on the material and system parameters, the instabilities appear in a manner of phase transitions,
similar to either nucleation or spinodal decomposition.
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I. INTRODUCTION

Various treatments of electronic transport in disordered sys-
tems typically concentrate on systems at a given fixed tempera-
ture. However, observations (see references below) often point
to the coupled electron-heat transport where local fluctuations
in electric current generate temperature fluctuations. When the
latter have positive feedback, as, for example, in the case of
thermally activated conductivity, an instability arises leading
to the current filamentation. “Weak spots” corresponding to
suitable disorder configurations promote such instabilities.
While this mechanism has long been known qualitatively,1 its
quantitative understanding remains insufficient, leaving open
questions about the role of material and structure parameters
and effects of static vs thermodynamic fluctuations.

This work attempts a theory of coupled electron-heat
transport concentrating on a rather representative case of
transverse conduction through thin-film structures. A model
structure consists of an active (heat-generating) conducting
layer between two identical electrically inactive thermally
insulating layers representing encapsulation always found with
electronic devices. The top half of the structure is depicted
in Fig. 1; the second half is symmetric with respect to
the bottom line of the diagram. The active layer can be a
single or multilayered semiconductor sandwiched between
thin metal electrodes. The electric potential along each of
the electrodes is constant; the potential difference V between
them is maintained by an external power source. The boundary
conditions are that the temperature T is fixed, T = T0, at
the top and the bottom (not shown in in Fig. 1) surfaces of
the structure where fluctuations are suppressed by thermal
exchange with ambient temperatures.

The disorder is introduced through the activated transversal
electric conduction with random Gaussian activation barriers
varying in the lateral (along the film) directions. The role of
insulating layers is that they affect the temperature distribution
and make the entire model more realistic. For simplicity, we
assume one of them to be totally insulating while another one
as having a finite thermal conductivity. Also, for simplicity,
thermal conductivities and specific heats of the active and
insulating layers are assumed the same.

The analysis below is aimed at finding the probability of
local temperature fluctuations and their radii associated with
locally increased current density vs the system dimensions,

material parameters, and ambient temperature. It is based
on the premise of localized rare lateral fluctuations that do
not overlap. These localized entities are similar to other
types of localized states in disordered systems, for which
a theoretical description known as the optimum fluctuation
method (OFM) has been developed long ago. OFM was
originally created to describe electronic states in band tails of
disordered semiconductors;2–6 it was applied later to localized
sound excitations in glasses,7 resonance electronic states
in disordered metals,8,9 fluctuation tail states in magnetic
semiconductors,10 random lasing in disordered dielectric
films,11 local fluctuations in thermal expansion of glasses,12

and nucleation in disordered media.13

The essence of OFM is in the optimization of configura-
tional probability of fluctuations under the additional condition
that the dynamical characteristic of a fluctuation satisfies the
appropriate differential equation (Schrödinger equation for
electronic state, elastic wave equation for sound excitations,
electromagnetic wave equation for optic modes, etc.). This
is achieved through the variational approach, in which the
dynamical characteristic is kept fixed (yet arbitrary) in the
course of optimization of the configurational probability,
after which it is optimized to additionally minimize that
probability. The details of OFM vary among different systems.
Here developed OFM is tailored to describe the temperature
fluctuations coupled with the electric current, so that the
dynamical characteristic (temperature) of fluctuations satisfies
the heat transfer equation.

The analysis below shows that hot spot instabilities evolve
in a manner of phase transformations, either by nucleation
or by a process similar to spinodal decomposition affecting
the entire area. The nucleation scenario of such instabilities
in uniform systems was established earlier, based on general
phenomenological analysis.1

One aspect of the hot-spot phenomenon is that it is
related to the underlying cylinder-shaped filament regions of
increased temperature and conductivity across the structure.
The possibility of current filamentation in semiconductors
has been long known; here we mention the seminal work
in Refs. 14 and 15 and comprehensive modern analysis in
Ref. 16 containing references to many other publications. A
number of straightforward dynamical models are based on the
coupled differential equations of heat transfer and electronic
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FIG. 1. (Color online) Sketch of the top half of the system of total
thickness 2h with a nonuniform power generation in the active layer
of thickness 2h0 (reddish columns). The top thermally insulating layer
is shown in gray.

transport, the latter possessing certain features conducive of
instabilities, such as, for example, nonlinear electron transport
related to electron system overheating, impact ionization, or
electroacoustic effects. While these models do not explicitly
describe nonuniform systems, some of their results will be
compared here to that of the present consideration in the
limiting case of very weak disorder.

This paper is limited to a general theoretical analysis;
possible applications of the coupled electron-heat trans-
port will be presented in more appropriate journals. We
refer to a recent monograph17 for many practically im-
portant cases. The relevant observations are found with
bipolar transistors,17–21 other metal-insulator-semiconductor
structures,22–27 nanoscale transistors,28 graphene transistors,29

and thin-film photovoltaics.30–33 In these applications, the
phenomenon under consideration was labeled as thermal
runaway, or hot spot, or (reversible) thermal breakdown. It can
be detrimental to the corresponding device operations leading
to their irreversible degradation in hot spots via local shunting,
burning, or melting, hence, significance for device reliability.

The paper is organized as follows. Section II introduces the
basic equations describing the coupled electron-heat transport
in a nonuniform system. To better explain the essence of
OFM and subsequent results, two toy models are considered in
Sec. IV. Relation to the theory of heat explosions is discussed
in Sec. V. Section VI presents a modification of OFM de-
scribing saddle points through which the system evolves into a
thermally nonuniform state. The OFM functional is optimized
in Sec. VII through direct variational procedure. The steady-
state rate of hot-spot nucleation is estimated in Sec. VIII.
Finally, Sec. IX presents general discussion and conclusions.

II. COUPLED ELECTRON AND HEAT TRANSPORT
IN A DISORDERED SYSTEM

The Joule power density is given by

P = P0 exp(−E/kT ), P0 = E2σ0 exp

(
− E

kT

)
. (1)

Here E = V/h0 is the electric field strength, where h0 is the
distance between the electrodes (see Fig. 1). σ0 is the pre-
exponential of conductivity,

σ = σ0 exp[−(E + E)/kT ],

with E being the average activation energy, k the Boltzmann’s
constant, and T the local temperature. The random part of
activation energy E has zero average 〈E〉 = 0 and a finite
dispersion 〈E2〉 = B. It is characterized by the correlation

function

〈E(r,z)E(r′,z′)〉 = Bvδ(r − r′)δ(z − z′). (2)

Here the radius vector r lies in the film plane, z is the transversal
(across the film) coordinate, and δ(r) is the two-dimensional
δ function implying zero correlation radius disorder. The
minimum volume v is determined by the physical nature
of fluctuations. For example, its characteristic linear scale
a0 ∼ v1/3 (likely in submicron range) can be given by the
screening radius or the grain size, or other length, below which
the system parameters do not vary significantly. v is introduced
to give B the dimensionality of the square of energy and the
meaning of the dispersion of random energies E.

Local elements of the system interact through heat transfer
described by the standard equation

χ∇2T + P (r) = 0, (3)

where χ is the thermal conductivity, the Laplacian ∇2 is
three dimensional, and χ is coordinate independent. The
power generation density is a sum of average and random
contributions,

P = 〈P 〉 + P (1), 〈P 〉 ≡ P0

〈
exp

(
− E

kT

)〉
,

where

P (1) = P0 exp

(
− E

kT

)
− 〈P 〉. (4)

Equation (3) assumes the steady-state heat transfer. The
assumption of stationary states is common to all known
cases of OFM. The problem under consideration, however, is
different with respect to the notion of stationary fluctuations.
Since the instability evolves in a fashion of phase transitions,
the stationary solutions of Eq. (3) can only describe saddle
points in the parameter space. The temperature fluctuation δT

becomes time dependent in the proximity of each of such point,
described by

−CδT/τ = χ∇2T + P (r) (5)

in the relaxation-time approximation, where C is the specific
heat. The fluctuation decay will correspond to positive values
of τ , while fluctuation growth (instability) to negative values
of τ ; this criterion is used in Sec. VII below.

III. LINEAR APPROXIMATION:
NO-BREAKDOWN REGIME

For completeness, consider briefly a trivial situation where
the disorder B and temperature fluctuations δT are small
enough to allow the linearization

P = P0

[
1 − E(r,z)

kT0
+ E

kT 2
0

δT (r,z)

]
, z < h0, (6)

where T0 is the average temperature. For simplicity, consider
the probabilistic distribution of temperature fluctuations aver-
aged over the film thickness,

δT̃ = 1

h

∫ h

0
δT (r,z)dz, (7)

which turns out to be almost identical to that of δT .
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Substituting the linear approximation of Eq. (6) and
performing averaging in Eq. (3) yields

∇2
r δT̃ − 1

r2
0

δT̃ = u(r). (8)

Here ∇2
r is the two-dimensional Laplacian,

1

r2
0

≡ P0Eh0

χkT 2
0 h

, u(r) ≡ P0

χkT0h

∫ h0

0
E(r,z)dz. (9)

The solution to Eq. (8) has the form

δT̃ (r) = (−1/4)
∫

d2ru(r′)H (1)
0 (i|r − r′|/r0), (10)

where H
(1)
0 is the Hankel function.

The quantity in Eq. (10) represents a sum of large number
of random contributions and, according to the central limit
theorem, is a random quantity itself with the Gaussian
probability distribution. Its dispersion 〈(δT̃ )2〉 is given by

1

16

∫ ∞

0
d2r ′d2r ′′H (1)

0

(
ir ′

r0

)
H

(1)
0

(
ir ′′

r0

)
〈u(r′)u(r′′)〉

= πP0Bv

4χEkh
. (11)

Here we have taken into account Eq. (2) and the value34 of the
integral

∫ ∞
0 [H 1

0 (x)]2xdx = 2.
We conclude that the temperature fluctuations are charac-

terized by the radii of r0 and the Gaussian distribution,

ρ(δT ) ∝ exp

(
−δT

2

δT 2
0

)
with δT 2

0 = πP0Bv

4χEkh
. (12)

A similar result can be obtained for the true (not z-averaged)
temperature fluctuations δT . The only difference is that the
Green’s function −H

(1)
0 (i|r − r′|/r0)/4 must be replaced by

a rather cumbersome series (see, e.g., Refs. 35, p. 144,
and 36) including z-dependent trigonometry functions in
combination with Bessel functions of r/r0. As a result, δT 2

0
remains the same parametrically with a numerical coefficient
approximately equal to 0.7 instead of 1/4 in Eq. (12).

The important point is that the above linear approximation
does not account for positive feedback of temperature fluctua-
tions on transversal conduction and thus the disorder remains
fixed and temperature independent. While this restriction
eliminates the possibility of thermal breakdown (which is
the main topic here), the results of this section can still be
applicable to the case of very small currents and fluctuations
used, for example, in thermography diagnostics.33,37

IV. TOY MODELS

Because the regular OFM below is mathematically cumber-
some, it is illustrated here with simplified (toy) models. One
of them concentrates on the case when there is no positive
feedback on conductivity by local heating. Another one deals
with a homogeneous system and concentrates on the positive
feedback.

A. Conductive filaments through an insulating film

Consider a two phase structure where transversal current
flows through conductive filaments in an insulating host of
thickness h0 sandwiched between two equipotential elec-
trodes. The structure is characterized by the average transversal
conductivity σ due to filaments of average concentration n per
area. Local fluctuations δn in their concentration result in the
corresponding conductivity fluctuations δσ = σδn/n. Since
the filaments generate Joule heat, they create fluctuations δT

in temperature; the tail of probabilistic distribution of δT is
found below.

Consider a cylinder-shaped region of radius a perpendicular
to the electrodes where the characteristic fluctuation in filament
concentration is δn. The Gaussian probability of such a
fluctuation is estimated as

exp

[
− (δn)2a2

n

]
= exp

[
− na2

(
δσ

σ

)2]
≡ exp(−S). (13)

S can be optimized with respect to a after δσ is expressed via
δT and a.

The heat flux through the cylinder base and side surfaces
is estimated as χ [(δT /h0)a2 + (δT /a)h0a] to within the
accuracy of numerical multipliers of the order of unity in
front of each of the terms. Equating it to the fluctuation of
power V 2a2δσ/h0 inside the cylinder yields the temperature
fluctuation

δT = V 2δσ

χ

a2

a2 + h2
0

. (14)

Expressing δσ from Eq. (14) and substituting it into Eq. (13)
yields

S = na2

(
δT χ

V 2σ

)2(
1 + h2

0

a2

)2

. (15)

Following the OFM approach, we optimize the exponent
S with respect to the fluctuation radius a, that is, dS/da = 0,
which gives a = h0. Substituting a = h0 back into Eq. (15)
yields the optimum exponent of probability,

Sopt =
(

δT

δT0

)2

, where δT0 ≡ V 2σ

χh0

√
n
, (16)

again to the accuracy of numerical multipliers.
The pre-exponential is roughly estimated by dividing the

entire area into elemental domains, each of area h2
0, and

noticing that exp(−Sopt) describes the probability of a desired
fluctuation with temperature excess δT in a given domain.
Therefore, the concentration of such fluctuations is estimated
as h−2

0 exp(−Sopt).
Two features should be noted. First, OFM concentrates

on the exponent of probability, largely neglecting the pre-
exponential factors (although they can be estimated as well).
Second, it optimizes that exponent in order to find the most
likely disorder configuration providing the desired fluctuation
characteristic of interest. Its applicability is limited to the
region of nonoverlapping fluctuations.

A possible application of this toy model might be a system
of multiple shunting metal chains formed in dielectric or solid
electrolyte films considered for nonvolatile memory (see, e.g.,
Refs. 38 and references therein).
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B. Homogeneous films

Consider, in the linear approximation, a relatively small
temperature fluctuation δT in a cylinder region of radius a and
height h0, setting

1

T
≈ 1

T0
− δT

T 2
0

. (17)

Neglecting (for simplicity) heat transfer through the cylinder
bases and using

δσ = σ exp

(
δT E

kT 2
0

)
,

Eq. (14) reduces to the form

δT = V 2σ

χ

a2

h2
0

exp

(
δT E

kT 2
0

)
. (18)

For a system in equilibrium, the probability of temperature
fluctuation δT in volume δV = πa2h0 is given by the
expression39

exp[−C(v)δV (δT )2/kT 2],

where C(v) is the specific heat per volume. Expressing a2 from
Eq. (18) gives the equilibrium distribution function f (δT ) ∝
exp[−S(δT )], with

S(δT ) = −πC(v)h3
0χ

2kT 2
0 V 2σ

δT 3 exp

(
− δT E

kT 2
0

)
. (19)

It follows from Eq. (19) that the equilibrium distribu-
tion is a minimum at δTc = kT 2/3E, where the product
δT 3 exp(−δT E/kT 2) is a maximum. On intuitive grounds,
that minimum can be interpreted as the result of increase
free energy at δT = δTc. This is tantamount to a barrier
in the system free energy at δT = δTc (see Fig. 2): The
probability of fluctuations first exponentially decreases as
δT grows below δT0 and then decreases when δT exceeds

FIG. 2. Effective barrier for nucleation of hot spots corresponding
to the numerical value α = EkT0 = 10. Arrows show a pathway of
hot-spot nucleation.

δTc. Such a behavior is obviously similar to that known in
nucleation phenomena39–41 (where the barrier is a function
of the nuclear radius) and small polaron collapse42 (where
the barrier is a function of dilation). The instability point
corresponds to a relatively very small temperature increase
δTc = (kT0/3E)T0 � T0 in systems with high-enough activa-
tion energies, say, δTc � 0.01T0 ∼ 3 ◦C.

Based on that analogy, the exponent of probability of the
thermal breakdown is given by S(δTc), that is, to the accuracy
of numerical multipliers,

S(δTc) = k2T 3
0 C(v)h3

0χ

E
3
V 2σ

. (20)

This approach is made more consistent in Sec. VIII.
Note that the probability exponent optimization here results

not in a minimum, but rather a maximum; it may turn into a
saddle point in a parameter space of higher dimensionality, as
is explicitly shown next. Another conclusion is that a positive
feedback alone makes the instability possible regardless of the
degree of disorder in the system.

V. DYNAMICAL MODELS AND HEAT EXPLOSIONS

In dynamical models15,16 the filament is described by the
system of coupled differential equations for heat transfer and
electronic transport. For the case under consideration and
assuming uniform systems, they reduce to a single equation,

−C∂δT /∂t = χ∇2T + P0 exp(γ δT ), γ = E/kT 2
0 , (21)

where t is time and we have used the linearization (17).
While this equation has not been often considered with
semiconductors, it has a long history describing thermal
explosions in combustion. Comprehensive reviews of earlier
work is given in Refs. 43 and 44; a short description included
in a canonical text (Ref. 45, p. 199), and a review of modern
applications46 is available.

With combustion, the instability takes place when the rate
of heat generation is faster than the rate of heat removal by the
cooling system, thus leading to a continuous rise in the reactor
temperature with a consequent acceleration of the reactions,
leading eventually to explosion. A concept of hot spots as local
regions quickly raised to high temperatures was developed47

(the production of such regions has been attributed to various
causes) that has some similarity to the present work. These
spots are characterized by the dimensionless local overheat

�0 = δT E

kT 2
0

(22)

and the criticality parameter

δc = h2P0E

χkT 2
0

, (23)

where h is the linear size of the spot. We note that the criticality
parameter δc appears with all known treatments of thermal
explosions.43,44,46

For the case of hot spots, δc was derived as a function of �0,
such that the hot spot with a given overheat �0 will grow when
δc exceeds the value of that function. The latter has different
shapes47,48 for different geometries (slab, cylinder, sphere:
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not limited to the electric connectivity condition specific
to the current analysis). For example, the slab geometry is
characterized by

ln �0 = δc

4
+ 1

2
ln

4π

δc

. (24)

It was found that the hot-spot instability occurs starting from
large-enough �0 ≈ 4–5; this translates into corresponding
inequality on δc. We see that our results below (see Sec. VII C)
are consistent with these finding of the heat explosion theory.

VI. OPTIMUM FLUCTUATION METHOD

The subtlety of the OFM is in how it treats the disorder-
induced distribution of temperature T (r) (or wave function for
the standard case of energy spectra in systems with random
potential energy). Namely, T (r) is considered a smooth “op-
timum” function approximating the temperature distribution
for the most likely disorder configuration responsible for
any desired temperature fluctuation. It remains arbitrary (yet
fixed) in the course of the analysis and is determined later
by the condition of the maximum of the probability. Such
optimization benefits from the known property of variational
techniques that any inaccuracy in the trial function translates
into a higher-order inaccuracy in the corresponding functional.

In what follows we take into account only exponentially
strong activation factor ignoring all possible pre-exponentials
found with temperature-dependent conductivity in semicon-
ductors. This simplification simultaneously determines the
accuracy of our analysis where all the pre-exponential factors
are replaced with their averages. In particular, this analysis is
limited to the case of strong-enough fluctuations beyond the
linear approximation for P [δT (r)].

A. OFM equations

The heat transport equation (3) can be treated as an
extremum of the functional

F =
∫

d3r

[
ξ

2
(∇T )2 − P (r)

]
, (25)

where the pre-exponential factor (E + E)/T 2 [generated by
variation of P in Eq. (1)] is approximated by its average,

ξ ≡ χ〈(E + E)/kT 2〉. (26)

The latter functional can be presented as

F =
∫

d3r

[
ξ

2
(∇T )2 − 〈P 〉

]
− Z, (27)

where T depends on coordinates and random variable Z is
defined by

Z =
∫

d3rP (1)(r). (28)

We note that the approximation of averaged pre-exponential
in Eq. (25) is justified when the exponent in P ∝ exp[(E +
E)/kT ] is large enough, (E + E)/kT � 1. This takes place
indeed for large activation energies assumed here. In addition,
we see that E/kT ∼ S � 1 in a significant range, where S is
the exponent of probability of filamentation exp(−S) [see the
remark after Eq. (60)].

OFM suggests that the dispersion of random variable Z can
be found as

D = 〈Z2〉 =
∫ ∫

d3rd3r ′〈P (1)(r)P (1)(r′)〉, (29)

where the average in the integrand is evaluated under the
condition of a fixed (yet arbitrary) function T (r). The integral
in Eq. (28) contains a large number of random contributions.
Therefore, according to the central limit theorem, Z is
described by Gaussian statistics, that is, its probabilistic
distribution,

g(Z) ∝ exp[−S(Z)], S = Z2

2D
. (30)

A comment is in order regarding the latter statement of
Gaussian statistics for random quantity Z. According to the
definition in Eq. (28), the kernel of Z is exponential in Gaussian
random variable E. That exponent exp[−E(r)/kT ] is by no
means a Gaussian variable. Yet, the values of that variable
at different points r are statistically independent due to the
property in Eq. (2). Also, it has a finite average,39

〈exp(E/kT )〉 = exp[〈(E/kT )2〉/2], (31)

and a finite dispersion exp[2〈(E/kT )2〉] − exp[〈(E/kT )2〉].
These properties are sufficient to state that a sum of large
number of such non-Gaussian random terms exp(E/kT )
representing the functional Z will obey Gaussian statistics.49

The maximum probability fluctuation corresponds to a
stationary point of S(Z) under the additional condition of
Eq. (27). Finding such a conditional extremum is tantamount
to finding an unconditional extremum of a functional,

 = Z2

2D
− λF, (32)

where λ is the undetermined Lagrange multiplier. λ is then
found from the additional condition of a certain predetermined
maximum temperature in the the optimum fluctuation region.

The functional  must be optimized with respect to the
disorder configuration E(r) and the field T (r). Because the
former appears only with the integral Z, the optimization can
be more conveniently conducted with respect to Z and T (r).
The corresponding equations are

Z

D
+ λ = 0 (33)

and

− Z2

2D2

δD

δT
+ λξ∇2T

+ λP0

(
E

kT 2
− 〈E2〉

k2T 3

)
exp

( 〈E2〉
2k2T 2

)
= 0. (34)

Here we have again taken into account the property in Eq. (31)
for a Gaussian random variable E/kT . Using Gaussian statis-
tics in combination with the concept of thermally activated
current assumes the inequality

E

kT
� 〈E2〉

k2T 2
. (35)
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Allowing the opposite inequality would lead to the physically
unacceptable feature that the typical fluctuation current expo-
nentially decreases with temperature.

Substituting Eq. (33) into Eqs. (30) and (34) yields the
equations determining the optimum fluctuation temperature
field T (r) and its corresponding probability exponent,

−λD

2

δD

δT
+ ξ∇2T +P0

(
E

kT 2
− 〈E2〉

k2T 3

)
exp

( 〈E2〉
2k2T 2

)
= 0,

(36)

S = Dλ2

2
. (37)

To evaluate δD/δT that is the variational derivative of the
integrand in Eq. (29), we use again the property of averaging
of a Gaussian random variable E(r). The integrand in Eq. (29)
becomes

P 2
0 exp

[ 〈E2〉
(kT )2

] ∫
d3r ′

{
exp

[ 〈E(r)E(r′)〉
k2T (r)T (r′)

]
− 1

}
.

For the case of δ correlated disorder in Eq. (2), the latter
expression can be approximated as

P 2
0 sh0 exp

[
2B

(kT )2

]
. (38)

Substituting the result of differentiation [together with
Eq. (33)] into Eq. (34) leads to a closed form single equation for
the optimum fluctuation T (r). That equation is not very useful
practically because of its rather complex form. The problem
becomes easier when presented in the form of functional
subject to direct optimization with respect to T (r). That
functional is given by

J =
∫

d3rF [T (r)], (39)

where

F = ξ

2
(∇T )2 − P0 exp

[
B

2(kT )2

]
− λP 2

0 v exp

[
2B

(kT )2

]
.

(40)

Note that, to the accuracy of the factor of −λ, the third term in
the functional J [corresponding to the third term in Eq. (40)]
is twice the probability exponent S.

B. OFM saddle points

While optimization of functional J remains to be imple-
mented, the nature of its stationary points can be determined
already here. Assuming a trial function T = T (r/a) and
changing variable r → r/a, J can be presented in the form

J = J1 + a2J2,

where J1 and J2 do not depend on a. Treating a2 as a variational
parameter, leads to the conclusion that d2J/d(a2)2 = 0 at
the stationary points, where J2 = 0. Hence, they represent
inflection points rather than minima. In a higher-dimension
parameter space including the temperature fluctuation ampli-
tude, these points can only be saddles.

The saddle point solutions require a different interpretation
of OFM results. From the physical standpoint, some (but not

all) of their related configurations should appear with certainty,
that is, with S = 0, since they are not steady state, and thus
are to be passed inevitably sooner or later. From that perspec-
tive, they are similar to the barriers of classical nucleation
theory39–41 or small-radius acoustic polaron formation.42 For
example, the OFM saddle points in the surface J (a,T ) can
physically describe critical radii a(T ) separating the regions
of spontaneous decay from that of spontaneous growth of
fluctuations. This similarity to the nucleation theory is made
explicit in Sec. VII.

Note that the fact of probability exponent S vanishing at
the OFM saddle points, does not compromise OFM as long
as the corresponding fluctuations remain strongly localized
and do not overlap. The latter conditions do not necessarily
invoke S � 1 (unlike the conclusion of Sec. IV where all the
fluctuations simultaneously coexist), since the saddle point
events are not steady state, taking place at different time
instances.

Consider the configurational probability exponent S in
a certain proximity of a saddle point S = 0. We denote
δT0(r) the temperature distribution in the optimum fluctuation
corresponding to S = 0. If the optimum fluctuation δT (r) is
different from δT0(r), one can extend

S =
∫

d3r

(
δ2S

2δT 2

)
0

[δT (r) − δTβ(r)]2, (41)

where the integrand is positive. The equilibrium distribution
function of such fluctuations is given by

f (δT ) = f 0 exp

{
− C(v)

2kT 2
0

∫
d3r[δT (r)]2 − S

}
. (42)

Here f 0 is the pre-exponential factor and we have taken
into account the expression for the probability of equilibrium
temperature fluctuation δT in volume δV mentioned in
Sec. IV B.

It is seen from Eq. (42) that f is a minimum at some
δT different from δT0. Following the Fokker-Planck approach
to nucleation (Zeldovich’s theory; see, e.g., Chapter XII in
Ref. 40) and in agreement with the qualitative analysis in
Sec. IV B, that minimum determines the nucleation barrier
and rate. This approach is implemented in Sec. VIII below
upon determining the parameters of OFM solutions δT (r).

VII. DIRECT VARIATIONAL PROCEDURE

A. Trial function and functional

Here we implement a direct variational procedure of
optimization of the functional J using the simplest trial
function,

δT

T0
= θ

(
1 − r

ãh

)(
1 − z

h

)
when δT > 0, (43)

that is zero outside of the domain r < ãh, z < h. Here r and z

are the radial and transversal (across the film) coordinates.
θ and ã are the two variational parameters, defined as
being dimensionless to make the resulting equations more
compact. In particular, θ is the amplitude excess temperature
in fluctuation measured in the units of the average temperature
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T0, and ã has the meaning of the fluctuation radius measured
in the units of structure thickness h.

Note that integration over the transversal (z) coordinate
extends over the entire structure thickness (2h) for the first term
in Eq. (40), while the second and third terms must be integrated
only over the active layer thickness (2h0 � h) where the
power is generated. The constraint t = 0 at z = h correctly
reflects the boundary condition of a constant temperature at
the interface (see Fig. 1). Furthermore, we assume fluctuation
to be relatively small, allowing the linearization in Eq. (17).
Also, we note that it would be more natural to use a trial
function quadratic in z, so dδT /dz = 0 at z = 0, reflecting
the system symmetry. We have checked, however, that such
a modification does not have any significant effect on the
functional and final results; for example, (ã2 + 2) in Eq. (44)
changes to [(2/3)ã2 + 1.6]. Such insensitivity is well known in
variational problems, leading, for example, to only ∼10% error
in the energy of harmonic oscillator evaluated with the trial
wave function linear in coordinate (see, e.g., Ref. 50, p. 95).

Substituting Eq. (43) and carrying out the integration
reduces J to the form

12α2J

ξT 2
0 πh

= (ã2 + 2)x2 − βã2(x) − λβ ′βã2

(
x

α′

α

)
, (44)

where

x = αθ and (x) = exp(x) − x − 1

x2
. (45)

Here we have introduced the parameters defined as

α = E

kT0
− B

(kT0)2
, α′ = 2

[
α − B

(kT0)2

]
≈ 2α,

β = 24hh0P0α
2

ξT 2
0

exp

[
B

2(kT0)2

]
, β ′ = P0v exp

[
3B

2(kT0)2

]
.

The inequality in Eq. (35) limits them to α � 1. In integrating
over z in Eq. (44), we have assumed a practically important
case when the semiconductor layer is very thin, αθh0/h � 1,
and calculations are simpler.

Because eventually we consider θ = x/α an independent
given variable, the optimization conditions ∂J/∂ã2 = 0 and
∂J/∂x = 0 must be used to solve for ã2 and λ. In agreement
with the conclusion of Sec. VI, the stationary points found
from the optimization are saddle points. This is seen from the
sign of the determinant,

∂2J

(∂ã2)2

∂2J

(∂θ )2
−

[
∂2J

(∂ã2)∂θ

]2

< 0,

identifying the stationary points as saddles.51

B. Regional approximations

Consider the results of optimization of the functional J for
three complimentary regions.

1. Weak fluctuations, x � 1

Assuming x � 1 reduces (x) in Eq. (44) to (x) ≈ 1/2 +
x/6 + x2/24, which significantly simplifies the optimization.
This leads to the physically unacceptable solution with ã2 =
−32/(8 + β) < 0.

2. Moderate fluctuations, x ∼ 1

It is straightforward to verify that the interpolation (x) =
1/2 + x2/6 holds to the accuracy of several percent for
intermediate x � 4. Using that interpolation, the optimization
of J results in the physically inconsistent solution as well,
ã2 = −[12 + 16(αθ )2]/(6 + 3β).

3. Strong fluctuations, x � 1

Acceptable solutions with a2 > 0 exist in the case of αθ �
1 (and yet αθh0/h � 1), where one can approximate (x) =
exp(x2)/x2. This yields

λ = (αθ )4 − β exp(αθ )

ββ ′ exp(2αθ )
,

(46)

ã2 = 4(αθ )3

2(αθ )4 − β exp(αθ )
,

S = S0
θ [(αθ )4 − β exp(αθ )]2 exp(−2αθ )

2(αθ )4 − β exp(αθ )
, (47)

where

S0 ≡ π (ξT 2
0 )2 exp[−2B/(kT0)2]

288P 2
0 vh0

(48)

and

θc1 < θ < θc2, (49)

with tc1 and tc2 being the two solutions of the transcendental
equation

2(αθ )4 − β exp(αθ ) = 0. (50)

The condition

(αθ )4 − β exp(αθ ) = 0 (51)

describes the points where S = 0 and thus nucleation of hot
spots takes place, according to the discussion in Sec. VI B.
These points all fall within the domain of physically acceptable
solutions in Eq. (49). Also, it follows from comparison of
Eqs. (50) and (51) that the radii of the corresponding stationary
fluctuation states remain finite as required by OFM.

Because (αθ )4 exp(−αθ ) is a maximum at αθ = 4, Eq. (51)
has solutions when

β � βc =
(

4

[e]

)4

≈ 4.7, (52)

where [e] stands for the base of natural logarithms. Close to
that threshold value, the dependence t(β) takes the form

αθ ≈ αθ0 = 4 +
√

βc − β, when βc − β � 1. (53)

Another branch of αθ with the minus sign before the square
root is ignored as belonging to the moderate fluctuation regime.

Alternatively, one gets from Eq. (51),

αθ ≈ αθ0 = ln(1/β) � 1, when β � βc. (54)

This behavior corresponding to the far right part of the solid
curve in Fig. 3 describes the low power regime.
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FIG. 3. Phase diagram for a thin film structure with transversal
current vs power density (parameter β) and local temperature increase
(parameter αθ ). Region to the left of the line αθ = 4 represents
the stable phase where local temperature fluctuations decay making
thermal breakdown impossible. The gray colored region below
the line of solution of Eq. (50), represents the metastable state
corresponding to the saddle points, through which thermal breakdown
nucleates locally. The solid curve in that region is a solution of
Eq. (51); it corresponds to the most likely nucleation events, for
which S = 0 in Eq. (46). The region above the line of solution of
Eq. (50) represents the globally unstable state of the system.

C. Phase diagram

The complementary region to the left of the line αθ = 4
in Fig. 3 was characterized by the physically unacceptable
solutions with ã2 < 0 (see Secs. VII B1 and VII B2). Here, we
argue that that region represents the state where the system
remains stable with respect to thermal fluctuations. A proof is
achieved by including in the above analysis the term −CδT/τ

from Eq. (5) describing the temporal behavior of fluctuation. It
is straightforward to see that the unacceptable negative ã2 turns
positive when τ > 0, that is, the corresponding fluctuations
decay.

Alternatively, for the region above the curve β =
2(αθ )4 exp(−x), adding the term with negative relaxation
time τ < 0 allows for positive ã2. Therefore, the states in
that region are globally unstable; that is, they evolve into
highly conductive high-temperature states without any barrier.
This is qualitatively similar to the phase transition scenario of
spinodal decomposition,52 which is not described in the OFM
framework.

Note the triple point O at (β = 2βc, αθ = 4) in Fig. 3,
where all three phases coexist. It is straightforward to show that
fluctuations δθ become increasingly strong in its proximity,
where

S = −S0β
2α

(αθ0)5
(αθ0 − 4)2(δθ )2 (55)

and |δθ | = |θ − θ0| � θ0. That property is similar as well to
that of the standard phase transition phase equilibria.39

We are now in a position to compare some of our results
with the findings of heat explosion theory (Sec. V) based on the
dynamical equation approach. The comparison is obviously
limited to the assumption of uniform systems (B = 0 in all
the above equations) underlying the heat explosion theory.
Also, we should take into account the above used technical
approximation h0 � h not immediately consistent with a
single scale theory of heat explosion. In order to make the

comparison possible we set in the above equations h0 = h

hoping that they remain valid in the order of magnitude.
With the above in mind, we find the following cor-

respondences. Our parameter β becomes, to the accuracy
of numerical multipliers equal the criticality parameter in
Eq. (23),

β = h2P0α
2

ξT 2
0

= δc,

where we have taken into account the definition of ξ in Eq. (26).
Our prediction that β needs to be higher than a certain value in
order to create instability is then consistent with that of thermal
explosion theory.

Next, the product αθ shown in Fig. 3 is related to the
parameter �0 in Eq. (22),

αθ = �0;

hence, our condition αθ > 4 becomes similar to the inequality
on �0 mentioned in Sec. V.

The latter relations make the coordinates (αθ,β) in Fig. 3
identical to (�0,δc) of the hot-spot description47 in thermal
explosion theory, although the shapes of the corresponding
phase diagrams do not coincide. Note in this connection that
the thermal explosion theory is not concerned at all with
filamentlike instabilities (since the requirement of electric
current flow is of no significance there) and that the shape
of diagram in Fig. 3 is strongly determined by its underlying
limitations, such as, for example, h0 � h.

D. Approximation of classical nucleation theory

The approximation of classical nucleation theory implies a
narrow boundary region between the two phases and its related
concept of surface energy. It can be attempted in the current
framework by choosing a trial function

δT

T0
= θ

⎧⎪⎨
⎪⎩

1 when r < a,

(a + d − r)/d when a < r < a + d,

0 when r > a + d,

(56)

with d � a. As a result, the gradient term in Eq. (40) is
determined by the contribution from a narrow layer of width
d analogous to nucleus interfacial energy in functional J of
Eq. (39). The procedure of optimization becomes even simpler
than that based on the trial function of Eq. (43). Omitting the
details, the result is that the functional J has no stationary
points when d � a. Hence, the approximation of interfacial
energy does not apply to the case under consideration; the
function in Eq. (43) remans more adequate.

VIII. STEADY-STATE TRANSITION RATE

Consider the probability of thermal breakdown at a given
power density P0 described in terms of the parameter β < βc.
Using δT (r,z) from Eq. (43) and expressions for ã and S from
Eq. (46), the equilibrium distribution function becomes

f (θ ) = f0 exp

[
−πC(v)h2h0θ

2ã2(αθ )

3k
− S(αθ )

]
. (57)

S(αθ ) is a maximum, S = 0, at the line shown in Fig. 3
and increases towards the boundary αθ = 4. However, given
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realistic parameters (see Sec. IX) that increase is not nearly as
significant as the increase of the first term in the exponent in
Eq. (57). As a result, f (θ ) has a sharp minimum at αθ ≈ 4.

Following the known approach of nucleation theory40

(mentioned in Sec. VI B above) consider a stationary Fokker-
Planck equation

j = −B
∂f

∂θ
+ Af = const (58)

for the “kinetic” temperature distribution function f (θ ). Here
j is the flux in the temperature fluctuation (θ ) space and D is
the diffusion coefficient in that space; A is connected with D

by a relationship which follows from the fact that j = 0 for
the equilibrium distribution f = f . Using the latter enables
one to present the flux as j = −Bf (∂/∂θ )(f/f ), and, hence,
f/f = −s

∫
dθ/Bf + const. Finally, applying the boundary

conditions f → 0 when t → ∞ and f = f when θ = 0 yields

1

j
=

∫ ∞

0

dθ

Bf
. (59)

The integral is determined by a narrow proximity of the
minimum of f that gives the exponent of the transition rate.

To roughly evaluate the pre-exponential factor (without any
knowledge of D) one can divide the entire area into a set of
cells of characteristic linear size of the optimum fluctuation
ãh. Then the pre-exponential must be of the order of the rate
of temperature variations κ/(ãh)2 in a cell where κ is the
thermal diffusivity. This yields the steady-state nucleation rate
(cm−2s−1),

j ∼ 16κ

h4
exp

[
−πC(v)h2h0θ

2ã2(4)

3k
− S(4)

]
(60)

where ã2(4) ≡ ã2(αθ = 4) and S(4) ≡ S(αθ = 4) are given
in Eq. (46) The power density enters this result through
the parameter β in Eq. (48). Note that S(4) � 1, which
inequality is consistent with the approximation of averaged
pre-exponential in Eq. (25).

This result becomes more explicit for the case of low-
enough power when β exp(4) � 4 in Eq. (46) and the absolute
value of the exponent in Eq. (60) is estimated as

S ≈ 8
C(v)h2h0

α2k
+ 7 × 10−6 (ξT 2

0 )2 exp[−2B/(kT0)2]

αh2
0sP

2
0

. (61)

This is similar to the exponent in Eq. (20) emphasizing the
important role of specific heat and rapidly decreasing with the
power density. However, it has a distinct feature of a lower
boundary beyond which it cannot be further reduced even for
very high power densities. It should be remembered, however,
that high-enough power densities are conducive to a different
type of instability similar to the spinodal decomposition
transformations, as reflected in Fig. 3.

IX. DISCUSSION AND CONCLUSIONS

A. Numerical estimates

Assuming the typical semiconductor values,53 one gets χ ∼
1 W/cm-grad and E/T ∼ 10–100 for activation energies E ∼
1 eV and T ∼ 100 K–500 K. This yields ξ ∼ 1–100 W/cm-
grad2, α ∼ 10–100.

For geometrical parameters, it is natural to assume
h0 ∼ 1 μm, s ∼ 1 μm2, and h ∼ 10−4–10−1 cm. The current
density in the range from 1 μA/cm2 to 1 A/cm2 and electric
fields E ∼ 103–105 V/cm are used in many device operations.
The corresponding power densities are in the range from
1 mW/cm3 to 105 W/cm3. The fluctuation strengths exponent
exp[−2B/(kT0)2] can be evaluated as ∼0.001–1 based on
the observations of transversal currents through nonuniform
Schottky barriers and thin film photovoltaics.54 Finally, we
use the thermodynamic parameters C ∼ 0.1–1 J/sm3-◦C and
κ ∼ 0.1–1 cm2/s. With the above parameters, the pre-
exponential factor in Eq. (60) is estimated as ∼105–1013

cm−2 s−1. Given that pre-exponential, the exponent in Eqs. (60)
and (61) can be then within the range of experimentally
important nucleation rates only for micron or submicron thin
devices. Assuming greater thickness, say, h � 1 mm, makes
the thermodynamic term proportional to C large enough to
practically rule out the possibility of thermal breakdown
mechanism under consideration.

However, semiconductor devices of modern electronics are
often 10–100 nm thick (unless intended thermal sinks are
used), and for them the thermodynamic fluctuation term in
the exponent is not too large. For such structures, the second
term in the nucleation rate exponents can be not terminally
large for powers in the range P0 � 100 W/cm3. Overall, this
makes the above considered mechanism realistic for structures
in submicron region.

Finally, the minimum power density corresponding to the
critical value of β in Eq. (52), above which the nucleation
mechanism turns into that of global instability, can be
estimated as P0 � 1011 W/cm3. This range of power density is
above practically all types of modern semiconductor devices,
except maybe some cases of power electronics.

B. Discussion

The above consideration is limited to a basic instability
triggered by Joule heat in combination with activated conduc-
tion. The instability is predicted to start under insignificant
local overheats of several degrees. However, this analysis does
not address the final parameters to which the instability can
grow.

The “stabilized” temperature excess δTH in the devel-
oped filament (beyond the present theory framework) can
be rather substantial. As pointed out in Ref. 1, it can
belong in the temperature range where the activated con-
duction saturates. That high-temperature limit should not
be mixed with the above-predicted transition-temperature
excess, δTc ≈ 4kT 2/E � δTH (corresponding to α� ≈ 4),
starting from which the instability evolves. This is illustrated
in Fig. 4.

Furthermore, it is conceivable that the steady-state high-
temperature local overheat δTH cannot be determined by any
extension of the present theory limited to noninteracting hot
spots, even if activated conduction is allowed to saturate.
The concentration of steady-state hot spots at δTH can
significantly depend on their interaction. Indeed, the present
theory predicts (Sec. VIII) that even at arbitrarily low rates,
the above-described instabilities will keep developing (maybe
beyond the practically significant time intervals) to take over
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FIG. 4. Probability g(δT ) of hot spots vs their excess temperature
δT . The Gaussian tail at low δT is described in Sec. IV B. The critical
overheat δTc corresponds to the condition α� = 4 illustrated in Fig. 3.
The high-temperature peak at δTH is determined by the processes
of saturation of activated conduction and interspot interactions as
explained in Sec. IX B; its width is due to disorder effects.

the entire structure area. This contradictory prediction is not
unique to the system under consideration. It is known in the
theory of phase transition where the nucleation stage is limited
by various internucleus interactions, such as competition for
material, elastic stresses, etc. Similarly limiting interactions
here will include competition of hot spots for the electric
current, thermal fields by other filaments, etc. This analogy
leads to the prediction of the growth and ripening stages of
thermal breakdown kinetics, similar to that of the standard
phase transitions;40 a theory of such later stages of hot-spot
transformation remains to be developed.

While not related to structural transformations, the pre-
dicted local temperature increase can accelerate such trans-
formations leading to permanent failures in the form of
conducting pathways. Therefore, this mechanism can serve
as a precursor to permanent structural failures. From that
point of view, the above results on low-temperature thermal
breakdowns δTc � T point to high sensitivity of the fatal
failure probability to the activation energy of conductivity
and thermodynamic variables, particularly, specific heat, thick-
ness, and thermal insulation.

The role of inactive (thermally insulating) layers expo-
nentially reducing the thermal breakdown rates is due to
the filament diameter increase with its length. As a result,
the thermal gradient in radial direction decreases, suppress-
ing the instability rate. This is consistent with the known
practical solutions using substantial heat sinks attached to
submicron electronic devices in order to minimize their failure
rates.

A more theoretical comment is in order regarding the
relevance of the above OFM modification aimed at “non-
traditional” saddle type of stationary points. The underlying
motivation was to relate localized temperature fluctuations
with other known localized states in disordered systems.
However, the same basic equations as derived in Sec. VI
could be obtained in the framework of an instanton approach
suitable for theoretical description of nucleation.55–57 That
approach would start with the time-dependent heat-transfer
equation leading to the variational problem for the exponent
of probability exp[−R(T ,t)], where t is time and R is
related to the functional in Eq. (25), R ∝ ∫ t

F [T (t)]dt . F

remains a random functional to be additionally optimized
to maximize the probability. That reduces the conditional
variational problem for R to that of unconditional ex-

tremum in Eq. (32), yielding final expressions of OFM
in Eq. (36).

The above theory has the following limitations. (1) There
is an assumption of fixed voltage V across the film implying
that the current I through the filament must be small enough,
IRsh � V , where Rsh is the sheet resistance of the conduc-
tive electrodes. (2) The simplification of uniform thermal
conductivity may have noticeable quantitative ramifications,
yet can hardly change the qualitative predictions. (3) There
is an approximation of δ-correlated disorder, according to
which the transversal conductivity must fluctuate across the
distances smaller than the filament radius. The opposite regime
of strongly correlated disorder can be readily described by the
above results reduced to the case of homogeneous structures,
in which then consider P0 or σ as a random quantity varying
over distances greater than the filament radius. (4) There is an
OFM per se with accuracy limited to the probability exponent.
(5) The inaccuracy of the direct variational procedure with a
simplistic trial function remains unknown. Based on many
similar examples, one can expect the results to be semi-
quantitatively correct. (6) The limitation of small temperature
fluctuations αθh0/h � 1 remains self-consistent as long as it
is consistent with the final results for θ as it takes place in the
above.

C. Conclusions

The following was shown.
(i) Thin film semiconductor structures with activated

transversal conduction are unstable with respect to reversible
thermal breakdowns in the form of hot spots and their related
current filaments.

(ii) The instabilities evolve in a manner of phase transitions
by either nucleation (at not-too-high power densities) or
absolute instability similar to spinodal decomposition (above
certain critical power density).

(iii) The OFM can be modified
(iv) The instabilities start with finite local temperature

fluctuations that are smaller than the average temperature T0

by the factor of kT0/E, with E being the average activation
energy of electric conduction. The initial fluctuation radii are
by the same factor smaller than the structure thickness.

(v) The stable, metastable, and unstable phases of a
thermally uniform system form a diagram (in variables
power density and temperature) similar to the standard phase
diagrams of phase equilibria, in particular, with fluctuations
diverging towards the triple point.

(vi) The steady-state nucleation rate of hot spots exponen-
tially depends on the material parameters, system geometry,
and disorder strength.

The author hopes that this consideration can form a theo-
retical basis to analyze system failures in various structures of
modern thin film devices; specific examples will be presented
elsewhere.
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16E. Schöll, Nonlinear Spatio-Temporal Dynamics and Chaos in
Semiconductors (University Press, Cambridge, 2001).

17V. A. Vashchenko and V. F. Sinkevitch, Physical Limitations of
Semiconductor Devices (Springer, New York, 2008).

18L. L. Liou, B. Bayraktaroglu, and C. I. Huang, Solid State Electron.
39, 165 (1996).

19Jorgen Olsson, Microelectron. Eng. 56, 339 (2001).
20G. Breglio and P. Spirito, Microelectron. J. 31, 735 (2000).
21P. E. Bagnoli and F. Stefani, IEEE Trans. Compon. Packag. Technol.

32, 493 (2009).
22O. Semenov, A. Vassighi, and M. Sachdev, IEEE Trans. Device

Mater. Reliab. 6, 17 (2006).
23W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and

C. R. Whitehouse, Appl. Phys. Lett. 80, 3207 (2002).
24J. Bolte, F. Niebisch, J. Pelzl, P. Stelmaszyk, and A. D. Wieck, J.

Appl. Phys. 84, 15 (1998).
25F. Alagi, Microelectron. Reliab. 51, 321 (2011).
26J.-M. Choi, S.-J. Choi, O. Yarimaga, B. Yoon, J.-M. Kim, and Y.-K.

Choi, IEEE Trans. Electron Devices 58, 1570 (2011).
27Xi Wang, Y. Ezzahri, J. Christofferson, and A. Shakouri, J. Phys.

D: Appl. Phys. 42, 075101 (2009).
28E. Pop and K. E. Goodson, J. Electron. Packag. 128, 102

(2006).
29M.-H. Bae, S. Islam, V. E. Dorgan, and E. Pop, ACS Nano 5, 7936

(2011).
30C. Radue and E. E. van Dyk, Sol. Energy Mater. Sol. Cells 94, 617

(2010).
31E. L. Meyer and E. E. van Dyk, Phys. Status Solidi A 201, 2245

(2004).
32T. J. McMahon, T. J. Berniard, and D. S. Albin, J. Appl. Phys. 97,

054503 (2005).

33Diana Shvydka, J. P. Rakotoniaina, and O. Breitenstein, Appl. Phys.
Lett. 84, 729 (2004).

34G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge, University Press, 1922).

35J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
36D. G. Duffy, Green’s Functions with Applications (Chapman and

Hall/CRC, New York, London, 2001).
37O. Breitenstein, W. Warta, and M. Langenkamp, Lock-in Ther-

mography: Basics and Use for Evaluating Electronic Devices and
Materials (Springer, Berlin, 2010).

38J. Y. Son and Y.-H. Shina, Appl. Phys. Lett. 92, 222106 (2008);
F. Zhang, X. M. Li, X. D. Gao, L. Wu, X. Cao, X. J. Liu, and
R. Yang, J. Appl. Phys. 109, 104504 (2011); J. J. T. Wagenaar,
M. Morales-Masis, and J. M. van Ruitenbeek, ibid. 111, 014302
(2012).

39L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed.
(Pergamon, Oxford, 1980).

40E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Elsevier,
Amsterdam, Boston, 2008).

41D. Kaschiev, Nucleation: Basic Theory with Applications
(Butterworth-Heinemann, Oxford, Amsterdam, 2000).

42Y. Toyozawa, in Polarons and Excitons, edited by C. G. Kuper and
G. D. Whitfield (Plenum, New York, 1962), p. 211.

43D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical
Kinetics, 2nd ed. (Plenum, New York, 1969).

44Ya.B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M.
Makhviladze, Mathematical Theory of Combustion and Explosion
(Plenum, New York, 1985).

45L. D. Landau and E. M. Lifshitz, Physics of Fluids, 2nd ed.
(Pergamon Press, Oxford, New York, 1987).

46T. Kotoyori, Critical Temperatures for the Thermal Explosion of
Chemicals (Elsevier, Amsterdam, Boston, 2005).

47P. H. Thomas, Combust. Flame 21, 99 (1973).
48A. G. Merzhanov and A. E. Averson, Combust. Flame 16, 89 (1971).
49O. Kallenberg, Foundations of Modern Probability (Springer-

Verlag, New York, 1997).
50E. Fermi, Notes on Quantum Mechanics, 2nd ed. (The University

of Chicago Press, Chicago, 1995).
51G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists

and Engineers: Definitions, Theorems, and Formulas for Reference
and Review, 3rd ed. (McGraw-Hill, Columbus, OH, 2000).

52J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958); 31,
688 (1960).

53S. M. Sze, Physics of Semiconductor Devices (Wiley, New York,
1981).

54L. E. Calvet, R. G. Wheeler, and M. A. Reed, Appl. Phys. Lett.
80, 1761 (2002); R. T. Tung, Phys. Rev. B 45, 13509 (1992); V. G.
Karpov, M. L. C. Cooray, and Diana Shvydka, Appl. Phys. Lett.
89, 163518 (2006).

55V. N. Smelyanskiy, M. I. Dykman, H. Rabitz, and B. E. Vugmeister,
Phys. Rev. Lett. 79, 3113 (1997).

56M. I. Dykman, H. Rabitz, V. N. Smelyanskiy, and B. E. Vugmeister,
Phys. Rev. Lett. 79, 1178 (1997).

57J. S. Langer, Ann. Phys. 41, 108 (1967); S. Coleman, Phys. Rev. D
15, 2929 (1977).

165317-11

http://dx.doi.org/10.1080/00018736400101061
http://dx.doi.org/10.1103/PhysRev.148.722
http://dx.doi.org/10.1103/PhysRev.153.802
http://dx.doi.org/10.1103/PhysRev.153.802
http://dx.doi.org/10.1103/PhysRev.148.741
http://dx.doi.org/10.1103/RevModPhys.64.755
http://dx.doi.org/10.1103/PhysRevB.48.12539
http://dx.doi.org/10.1103/PhysRevB.48.4325
http://dx.doi.org/10.1103/PhysRevLett.89.126601
http://dx.doi.org/10.1103/PhysRevLett.89.126601
http://dx.doi.org/10.1103/PhysRevB.49.4539
http://dx.doi.org/10.1103/PhysRevLett.89.016802
http://dx.doi.org/10.1103/PhysRevLett.89.016802
http://dx.doi.org/10.1103/PhysRevB.54.9734
http://dx.doi.org/10.1016/0038-1101(95)96867-N
http://dx.doi.org/10.1016/0038-1101(95)96867-N
http://dx.doi.org/10.1016/S0167-9317(01)00571-8
http://dx.doi.org/10.1016/S0026-2692(00)00052-5
http://dx.doi.org/10.1109/TCAPT.2008.2001193
http://dx.doi.org/10.1109/TCAPT.2008.2001193
http://dx.doi.org/10.1109/TDMR.2006.870340
http://dx.doi.org/10.1109/TDMR.2006.870340
http://dx.doi.org/10.1063/1.1473701
http://dx.doi.org/10.1063/1.368989
http://dx.doi.org/10.1063/1.368989
http://dx.doi.org/10.1016/j.microrel.2010.08.012
http://dx.doi.org/10.1109/TED.2011.2116025
http://dx.doi.org/10.1088/0022-3727/42/7/075101
http://dx.doi.org/10.1088/0022-3727/42/7/075101
http://dx.doi.org/10.1115/1.2188950
http://dx.doi.org/10.1115/1.2188950
http://dx.doi.org/10.1021/nn202239y
http://dx.doi.org/10.1021/nn202239y
http://dx.doi.org/10.1016/j.solmat.2009.12.009
http://dx.doi.org/10.1016/j.solmat.2009.12.009
http://dx.doi.org/10.1002/pssa.200404829
http://dx.doi.org/10.1002/pssa.200404829
http://dx.doi.org/10.1063/1.1856216
http://dx.doi.org/10.1063/1.1856216
http://dx.doi.org/10.1063/1.1645322
http://dx.doi.org/10.1063/1.1645322
http://dx.doi.org/10.1063/1.2931087
http://dx.doi.org/10.1063/1.3583669
http://dx.doi.org/10.1063/1.3672824
http://dx.doi.org/10.1063/1.3672824
http://dx.doi.org/10.1016/0010-2180(73)90011-4
http://dx.doi.org/10.1016/S0010-2180(71)80015-9
http://dx.doi.org/10.1063/1.1744102
http://dx.doi.org/10.1063/1.1730447
http://dx.doi.org/10.1063/1.1730447
http://dx.doi.org/10.1063/1.1456257
http://dx.doi.org/10.1063/1.1456257
http://dx.doi.org/10.1103/PhysRevB.45.13509
http://dx.doi.org/10.1063/1.2364136
http://dx.doi.org/10.1063/1.2364136
http://dx.doi.org/10.1103/PhysRevLett.79.3113
http://dx.doi.org/10.1103/PhysRevLett.79.1178
http://dx.doi.org/10.1016/0003-4916(67)90200-X
http://dx.doi.org/10.1103/PhysRevD.15.2929
http://dx.doi.org/10.1103/PhysRevD.15.2929



