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Electronic and magnetic properties of Gd-doped EuO
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To study electron states and magnetism in Gd-doped EuO theoretically, we first calculate the spin-polarized
density of states (DOS) by applying the dynamical coherent potential approximation (dynamical CPA) for
two simple models: the s-f model of electron-doped EuO and a model of Eu1−xGdxO. On the basis of the
spin-polarized DOS, we calculate the total energy of electrons interacting with f spins through an exchange
interaction. Then, we obtain the magnetization as a function of the temperature T , by minimizing the free
energy. We discuss the mechanism of the electron-induced increase in the Curie temperature TC , the origin of
the anomalous magnetization curve, and the existence of a threshold Gd concentration for increasing TC . We
investigate the effect of on-site attractive potential that yields an impurity level when the Gd concentration is low.
We also discuss the relationship between the redshift of the optical absorption edge and the increase in the TC of
Gd-doped EuO.
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I. INTRODUCTION

Europium oxide (EuO) is a typical Heisenberg-type ferro-
magnetic semiconductor with a rock-salt crystal structure.1 It
has been known since the 1960s that the Curie temperature
TC of EuO increases when EuO is doped with Gd.2 Each
Gd3+ ion substituted for the Eu2+ ion in EuO acts as a
donor and donates one electron to the EuO conduction band.
Conduction electrons mediate and enhance the exchange
interaction between localized spins at the Eu site, resulting
in an increase in TC . Numerous studies have been carried
out to characterize and optimize the doping-induced magnetic
properties. Their results, however, vary appreciably. The
reported maximum TC of Gd-doped EuO ranges from 115 to
170 K.3–12 The temperature dependence of magnetization also
differs from one study to another. Many of these uncertainties
are probably caused by problems with stoichiometry.

For spintronic applications, research interest in Gd-doped
EuO has been renewed in recent years with modern techniques
and improved sample quality. In particular, the success of
preparing high-quality Gd-doped EuO samples over a wide
range of doping levels has revealed some specific properties of
Gd-doped EuO. The features of magnetic properties reported
by Sutarto et al. are summarized as follows.13 (a) With
increasing Gd concentration x, TC starts to increase and
reaches a maximum of 125 K at x � 7%. With further Gd
doping up to x � 20%, TC decreases. (b) The temperature
dependence of the magnetization of EuO follows the standard
magnetization curve derived by applying the molecular field
approximation (MFA) to the Heisenberg-type Hamiltonian
using a Brillouin function. Upon Gd doping, the magnetization
curve deviates strongly from the standard curve. For x � 7%,
the magnetization curve again approaches the standard curve.
Further doping with Gd up to x � 20% results in a complete
departure of the magnetization curve from the standard curve.
(c) Only a low x is needed to directly increase TC . TC increases
steadily as a function of x, reaching a maximum of 125 K. No
threshold behavior is observed for x as low as 0.2%.

A maximum TC for a certain dopant concentration x

and magnetization showing an anomalous curve have been
experimentally observed not only in Gd-doped EuO13 but

also in La-doped EuO,14 Ce-doped EuO,15 and Eu-rich
EuO.16 Therefore these phenomena are commonly observed
in electron-doped EuO.

However, Mairoser et al. raised a question regarding the
widespread assumption that every doped Gd ion donates one
electron to the EuO conduction band.17 They pointed out that
only a small fraction of introduced Gd may donate electrons
to the conduction band (i.e., n < x) and inferred that no
maximum TC as a function of n has been found, although TC

shows a maximum if plotted as a function of x. Furthermore,
they showed that a minimum electron density n is required to
increase TC , i.e., n ∼ 1 × 1019 cm−3.

A theoretical study of the magnetic properties of Gd-doped
EuO was performed by Mauger and coworkers.6,8,18 By
a treatment similar to the Ruderman-Kittel-Kasuya-Yosida
(RKKY) theory but taking into account some specific features
such as the spin-splitting of the band, Mauger and coworkers
showed TC as a function of the Gd concentration x. The theory
of Mauger and coworkers, however, does not explicitly include
the effect of magnetic impurity states. Regarding Gd impurities
with Anderson impurities with a local level below the chemical
potential, Arnold and Kroha studied the transport and magnetic
properties of Gd-doped EuO.19 The obtained results, however,
are restricted within a dilute-doping region.

In addition, the energy of the optical absorption edge of
a ferromagnetic (FM) semiconductor lowers with decreasing
temperature; this phenomenon is known as the magnetic
redshift. The total redshift of EuO is 0.27 eV.1 Upon Gd doping,
the total redshift of Gd-doped EuO decreases, although con-
flicting results have been reported for the dopant dependence
of the absorption edge in the paramagnetic (PM) state.5,10

The relationship between the increase in TC and the behavior
of the absorption edge of Gd-doped EuO has not yet been
clarified.

In the present study, therefore, we intend to answer the
following six questions consistently. (i) Is there an intrinsic
limit to the electron-induced increase in TC? If there is, what
are the conditions for determining the electron density nM

that gives the maximum TC? (ii) What causes anomalous
magnetization? (iii) Is there a minimum nc or xc for inducing
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a measurable increase in TC? (iv) How does the attractive
potential between the electron and the Gd donor center affect
the magnetic properties of Gd-doped EuO? (v) How does it
affect the magnetic properties of Gd-doped EuO when the
electron density n is smaller than the Gd concentration x?
(vi) How is the increase in TC related to the redshift of the
optical absorption edge in Gd-doped EuO?

In our previous work,20 we studied the magnetic properties
of electron-doped EuO by applying a virtual crystal approx-
imation (VCA) to the s-f model. The result indicated the
limitation of the VCA; the n dependence of TC calculated
by the VCA cannot explain the experimental observation. In
the present study, therefore, we study electron-doped EuO
by applying the dynamical coherent potential approximation
(dynamical CPA) to the s-f model. For Gd-doped EuO,
we propose a model Hamiltonian of Eu1−xGdxO that is
an extension of the s-f model but includes the term of
the nonmagnetic on-site potential introduced by randomly
replacing the Eu2+ ion with the Gd3+ ion in EuO. In
order to study the electronic and magnetic properties, we
first calculate the spin-polarized density of states (DOS) by
applying the dynamical CPA to the simple models above.
Assuming that the electrons are degenerate, we next calculate
the total energy of the electrons interacting with localized
spins through an exchange interaction to obtain the free
energy as a function of the normalized magnetization (〈Sz〉/S).
Then, we obtain the magnetization as a function of the
temperature T under the condition in which the free energy is a
minimum.

This paper is organized as follows. In Sec. II, we first explain
the s-f model for electron-doped EuO and propose a model
Hamiltonian for Eu1−xGdxO. Then, we briefly formulate
the dynamical CPA in the locator formula and explain the
calculation of the magnetization and TC . We present the results
separately for the two models. In Sec. III, we give the results
and discuss the electronic and magnetic properties of
electron-doped EuO. In Sec. IV, we present the results for
Eu1−xGdxO to study the effects of the on-site potential on
the Gd site. We first investigate the magnetic impurity state
and/or the magnetic tail that occurs in the dilute dopant region
in detail (see Sec. IV A). Next, we investigate the electronic
and magnetic properties over a wide range of Gd doping
levels (see Sec. IV B). We devote Sec. IV C to the relationship
between the optical absorption edge and the increase in the TC

of Gd-doped EuO. We present concluding remarks in Sec. V.

II. BASIC CONSIDERATION

A. Model Hamiltonian for electron-doped EuO

In pure EuO, localized magnetic spins (hereafter referred
to as f spins) are set at regular lattice sites, and the
exchange interaction between f spins is well described by
the Heisenberg-type Hamiltonian

Hf = −
∑
m,n

JmnSm · Sn . (1)

The notations here are conventional and the same as those in
previous papers.21,22 The application of the MFA to Eq. (1)

gives the Curie temperature of EuO as

T0 = 2zJS(S + 1)

3kB

. (2)

When an electron is injected into EuO, the electron enters
a broad conduction band.23 The conduction band consists
of 5d6s orbitals of the Eu2+ ion and the bottom of the
conduction band exists at X points of triple degeneration.24,25

In the simplified model, by disregarding the triplication and
anisotropy of the band, a single band is usually assumed for
the conduction band. Thus the conduction electron is referred
to as the selectron in the model. An selectron moves in the
crystal while interacting with localized f spins through an
s-f exchange interaction. The s-electron state in EuO is well
described by the s-f model Hamiltonian

Hsf =
∑
m,n,μ

εmna
†
mμanμ − I

∑
n,μ,ν

a†
nμσμν · Snanν + Hf . (3)

The first term of Eq. (3) represents the kinetic energy of an
s electron. In the second term, the s-f exchange interaction
between an s electron and localized spin Sn of Eu site n is
expressed in the simplest intra-atomic form; I is the exchange
constant and σμν is the matrix component of the Pauli matrix
of the s-electron spin. The model described by Eq. (3) is
sometimes referred to as the Kondo lattice model.26–32

B. Model Hamiltonian for Eu1−xGdxO

We regard Gd-doped EuO as Eu1−xGdxO; the mole fraction
x of Eu2+ ions in EuO is replaced at random with Gd3+ ions.
The Gd3+ ion has the same electronic configuration as the
Eu2+ ion and thus has the localized f spin of S = 7/2,12 but
donates one electron and acts as a donor center in EuO. In the
present model, we assume that both Jmn and εmn are unchanged
even if Eu2+ is replaced by Gd3+ at the mth and/or nth site
in EuO. Furthermore, we assume that, at the Gd site, the s

electron is subject to a local potential that involves not only
an s-f exchange interaction but also a Coulomb interaction.
Therefore, extending the s-f model for EuO, we study the
s-electron states in Gd-doped EuO using the total Hamiltonian

Ht = H + Hf , (4)

with

H =
∑
m,n,μ

εmna
†
mμanμ +

∑
n

un , (5)

where un is either uEu
n (at the Eu site) or uGd

n (at the Gd site)
depending on the ion species occupying the nth site:

uEu
n = −I

∑
μ,ν

a†
nμσμν · Snanν , (6)

uGd
n = −EC

∑
μ

a†
nμanμ − I

∑
μ,ν

a†
nμσμν · Snanν . (7)

Note that we assume the same exchange constant I for both
Gd and Eu sites. In brief, the difference between uEu

n and uGd
n

is the absence/presence of on-site potential EC . When x = 0
and/or EC = 0, the Hamiltonian Ht accords with Hsf .
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C. Dynamical coherent potential approach (CPA)

Here, we briefly outline the dynamical CPA using the
renormalized interactor formalism that we have employed in
the present study.21,33 We consider H instead of Ht to study
the s-electron states, because the magnetic excitation energy is
very small compared with the conduction bandwidth and s-f
exchange energy. Thus we treat the single-particle Green’s
function defined by

G(ω) = 1

ω − H
. (8)

Hereafter, the variable ω will sometimes be omitted from the
operators [G ≡ G(ω)].

The site-diagonal component of G in the Wannier represen-
tation 〈nμ|G(ω)|nμ〉 describes the hopping of an s electron
with a μ spin starting and ending at the nth site. Thus
〈nμ|G(ω)|nμ〉 depends not only on the species of occupant
at the nth site but also on the configuration surrounding
the nth site. An s electron moving in Gd-doped EuO is
subjected to disordered potentials that arise not only from
substitutional disorder but also from thermal fluctuations of
f spins through the s-f exchange interaction. Furthermore,
when magnetization arises, the effective potential for the
s-electron differs according to the orientation of the s-electron
spin. In the dynamical CPA using locator formalism, the
disordered potential is taken into account in terms of the
spin-dependent effective medium described by the coherent
potential �μ and the site-renormalized interactor Jμ, where Jμ

represents the transfer of an s electron with a spin μ between
the n-th site and the surrounding effective medium �μ. Jμ

depends on �μ but not on the occupation of the nth site itself.
It can be shown that the quantity Jμ is expressed as the change
in the energy of an s electron at the nth site owing to its
interaction with the surrounding effective medium.34,35

The spin-flip/spin-nonflip process of an s electron through
the s-f exchange interaction with the f spin at the nth site
is taken into consideration in the single-site approximation.
Hereafter, we express the site-diagonal elements of G as
〈n|GGd|n〉 when the real potential of uGd

n is embedded at site
n in the effective medium. Then, GGd is expressed by

GGd = 1

ω − uGd
n − ∑

μ Jμa
†
nμanμ

. (9)

Note that GGd is a 2 × 2 matrix in spin indices, whose matrix
element 〈μ|GGd|ν〉 is written as GGd

μν hereafter. The explicit
expression for GGd

μν is given in Eq. (A3) of Appendix A. Note
that the spin-diagonal element of GGd(Sz) takes the value of
GGd

μμ(Sz), where Sz is the eigenvalue of the z-component of the
f spin; Sz = −S, . . . ,+S. Thus the thermal average of GGd

μμ

over a fluctuating f spin, F Gd
μ (ω), is calculated by the MFA

using

F Gd
μ (ω) ≡ 〈

GGd
μμ

〉
=

S∑
Sz=−S

GGd
μμ(Sz) exp (λSz)

/ S∑
Sz=−S

exp (λSz) , (10)

where λ is determined so as to reproduce the given 〈Sz〉 as

〈Sz〉 =
S∑

Sz=−S

Sz exp (λSz)

/ S∑
Sz=−S

exp (λSz). (11)

Note that we assume the same λ(≡h/kBT ) for both Eu and Gd
sites in this study, where h is the effective field to which the
localized f spins are subjected; T is the temperature. Since
there is a one-to-one correspondence between 〈Sz〉 and the
parameter λ, we can describe the s-electron states in terms of
〈Sz〉 instead of λ.

Here, we suppose that the coherent potential �μ is set at the
n-th site in the effective medium. Then, the diagonal compo-
nent of the reference propagator in the Wannier representation
is simply obtained as (independent of n)

Fμ(ω) = 1

ω − �μ − Jμ

. (12)

The situation supposed here is equivalent to that an s-electron
is moving in the effective medium �μ. Thus Fμ(ω) is equal to
the diagonal component of P ≡ 1/(1 − K) in the Wannier
representation, where K is the reference Hamiltonian for
describing an s electron moving in the effective medium �μ.
Therefore Fμ(ω) is calculated as

Fμ(ω) = 〈nμ|P (ω)|nμ〉 =
∫ �

−�

D0(ε)

ω − ε − �μ

dε , (13)

where D0(ω) is an undisturbed DOS. Throughout this work,
we assume the model DOS of semicircular form with a half
bandwidth �,

D0(ε) = 2

π�

√
1 −

(
ε

�

)2

, (14)

as an undisturbed DOS. By using Eqs. (12)–(14), we obtain
the following simple relation between Jμ and Fμ:

Jμ = �2

4
Fμ . (15)

In accordance with the CPA, we determine Jμ self-
consistently. The dynamical CPA condition using the renor-
malized interactor formalism is finally given by

F↑(ω) = (1 − x)F Eu
↑ (ω) + xF Gd

↑ (ω) , (16a)

F↓(ω) = (1 − x)F Eu
↓ (ω) + xF Gd

↓ (ω) . (16b)

The procedure for the numerical calculation is as follows.
When Fμ is given, Jμ is simply calculated using Eq. (15). Then,
F Gd

μ is calculated using Eq. (10); F Eu
μ is also calculated in a

similar way. Consequently Fμ is again obtained using Eq. (16).
Therefore Fμ and Jμ are determined self-consistently. This
procedure is repeated until the calculation converges. It is also
worth noting that, in the calculations of F Gd

μ , both J↑ and J↓ are
used as a consequence that the spin flip processes are properly
taken into account. Therefore we need to solve Eqs. (16a) and
(16b) simultaneously. No other special methods/techniques
are needed to numerically solve the dynamical CPA equations
above. We have also calculated the t value of |t | ≡ |xtGd +
(1 − x)tEu| (see Ref. 21) and verified that the value is as small
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as |t | � 10−10�. The DOS with a μ spin, Dμ(ω), is calculated
using

Dμ(ω) = − 1

π
ImFμ(ω) . (17)

The advantage of the CPA using the renormalized interactor
formalism is that it is straightforward to determine the species-
resolved DOS, i.e., the local DOS associated with each type
of ion in the alloy. The local DOS with a μ spin at the Gd
site is denoted as DGd

μ (ω); xDGd
μ (ω) is referred to as the Gd-

component DOS.
Furthermore, to gain insight into the origin and mechanism

of the increase in TC , we also calculate the spin-coupling
strength Q(ω) at the Gd (Eu) site defined by

Q(ω) = 〈δ(ω − H )σ · S〉/S
〈δ(ω − H )〉

∣∣∣∣
Gd(Eu)−site

. (18)

The explicit expression for Q(ω) is given in Appendix B.
Roughly speaking, Q(ω) corresponds to 〈cos θ〉, where θ is
the angle between the spin of an s electron with energy ω

and the localized f spin. When Q(ω) ≈ 1, the s-electron
spin is strongly coupled parallel to the f spin, so that the
maximum energy gain due to the s-f exchange interaction is
obtained. The energy gain induces magnetization and increases
TC . In contrast, Q(ω) ≈ −1 means that the s-electron spin is
coupled antiparallel to the f spin, and Q(ω) ≈ 0 means that
the s-electron spin is independent of the direction of the f

spin. Therefore Q(ω) represents the manner and/or degree of
coupling between the s-electron spin and the f spin, and the
result for Q(ω) can give a clue to investigating the relationship
between the magnetism and s-electron states in electron-doped
EuO and/or Gd-doped EuO.

D. Magnetization and Curie temperature

Here, we show the present procedure for calculating
the normalized magnetization 〈Sz〉/S as a function of the
temperature T for various s-electron densities n. Throughout
this paper, we assume that s electrons are degenerate. Then,
we obtain the s-electron density n per site and the total energy
E(〈Sz〉) as

n =
∫ εF

−∞
[D↑(ω) + D↓(ω)]dω , (19)

E(〈Sz〉) =
∫ εF

−∞
ω[D↑(ω) + D↓(ω)]dω , (20)

respectively, as functions of the energy of the Fermi level
εF. Note that the dependence of E(〈Sz〉) on 〈Sz〉 is contained
in Dμ(ω), and that E(〈Sz〉) is the sum of the kinetic and
exchange energies. For a fixed 〈Sz〉/S, the total s-electron
density n (≡n↑ + n↓) has a one-to-one correspondence with
εF, and therefore E(〈Sz〉) can be obtained as a function of n.
Therefore the free energy per site of the system is given as

F (〈Sz〉) = E(〈Sz〉) − zJ 〈Sz〉2 − T S, (21)

where the entropy due to localized f spins is given by

S = kB log
S∑

Sz=−S

exp

(
h

kB

Sz

)
− h

T
〈Sz〉 . (22)

The effective field h is determined so as to minimize F (〈Sz〉)
through the condition

d

dh
F (〈Sz〉) = 0 . (23)

First, from condition (23), we obtain h as a function of 〈Sz〉;
h ≡ h1 + h2, where h1 is the molecular field induced by the
surrounding f spins and given by

h1 = 2zJ 〈Sz〉 = 3kBT0

S(S + 1)
〈Sz〉, (24)

and h2 is the effective field due to spin-polarized electron
density via an s-f exchange interaction and given by

h2 = − d

d〈Sz〉E(〈Sz〉) . (25)

Next, we obtain the normalized magnetization 〈Sz〉/S as a
function of T by varying 〈Sz〉 so as to give the minimum
F (〈Sz〉). In actual calculations, we calculated the values of
E(〈Sz〉) for 〈Sz〉/S = 0.00,0.01, . . . ,1.00 and interpolated
them to obtain h2 as a function of 〈Sz〉. We have verified that
〈Sz〉 = SBS(hS/kBT ) is satisfied, where BS(x) is the Brillouin
function.

E. Parameters for EuO and GdxEu1−xO

In this study, we put S = 7/2 for localized f spins and
T0 = 70 K for the Curie temperature of pure EuO.1 We take
the exchange energy IS = Idf × S = 0.1 × 7/2 = 0.35 eV,
which was estimated from the difference between the atomic
energy levels for a 5d electron parallel and antiparallel to
the 4f 7 state.1 For the conduction band, we assume a broad
bandwidth of 2� = 7.0 eV (i.e., IS/� = 0.1) so as to yield a
magnetic redshift of 0.27 eV (see the discussion in Sec. IV C).
Furthermore, we set the on-site potential EC = 0.5� for a Gd
ion so that, at PM temperatures, a shallow donor level appears
below the bottom of the conduction band of EuO (see the
discussion in Sec. IV A).

III. RESULTS AND DISCUSSION FOR
ELECTRON-DOPED EUO

In Figs. 1–6, we show the present results for electron-doped
EuO, which are calculated on the basis of the DOS obtained
by applying the dynamical CPA to the s-f model Hamiltonian
[see Eq. (3)]. In Fig. 1(a), the spin-polarized DOS of EuO is
presented for 〈Sz〉/S = 0.0,0.2,0.4,0.6,0.8, and 1.0. Note that
the present result for the DOS is different from the previous
result obtained by the VCA (i.e., Fig. 2 in Ref. 20). In the
VCA, the spin-polarized DOS is simply given by DVCA

μ (ω) =
D0(ω ± I 〈Sz〉). In the PM state (〈Sz〉 = 0.0), therefore, the
DOS obtained by the VCA agrees with the unperturbed model
band D0(ω), and the energy of the bottom of the band is given
by ω0 = −�. On the other hand, even in the PM state, the
DOS shown in Fig. 1(a) broadens owing to f spin fluctuation
through the exchange interaction.22 As a consequence, the
energy of the bottom of the band in the PM state is not ω0 =
−� but ωb = −1.0231�.36 The difference between the DOSs
obtained by the VCA and dynamical CPA may seem small, but
it results in a significant difference in the n dependence of TC ,
as shown below. With an increase in 〈Sz〉/S, the bottom of the
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ω <Sz>/S=1

<Sz>/S=0

ω/Δ

ω/Δ

(a)

(b)

FIG. 1. (Color online) Results for electron-doped EuO. (a)
Lower-energy part of the density of states (DOS) shown for
magnetizations 〈Sz〉/S = 0.0,0.2,0.4,0.6,0.8, and 1.0. The solid line
is for the up-spin band D↑(ω), and the dotted line is for the down-spin
band D↓(ω). Along the upper abscissa, the values of ω + � with
� = 3.5 eV are shown in electron Volts; note that the energy of
the bottom of the model band (ω0 = −�) is assigned to 0 eV. The
vertical lines indicate the Fermi level εF for electron densities n =
1.0,3.0,5.0,7.0,10,15, and 20%. Dots P and F indicate the impurity
levels when a Gd ion is used for doping at the paramagnetic and
ferromagnetic temperatures, respectively (see text). (b) Spin-coupling
strength Q(ω) at the Eu site shown for 〈Sz〉/S = 0.0 (dashed line) and
〈Sz〉/S = 1.0 (solid line). The Fermi levels εF for n = 1.0,7.0, and
15% are indicated by vertical lines; the dotted line is for 〈Sz〉/S = 0.0
and the solid line is 〈Sz〉/S = 1.0.

up-spin band stretches to the low-energy side, whereas the tail
of the down-spin band shrinks to the high-energy side. In the
completely FM state (〈Sz〉/S = 1), the up-spin DOS agrees
with D0(ω + IS), whereas the down-spin DOS does not agree
with D0(ω − IS); the down-spin band has a tail down to the
bottom of the band (i.e., −� − IS), because the s electron
with down spin can flip their spin under the condition that the
total spin (=S − 1/2) is conserved if the DOS with the up spin
is not zero therein.22

When electrons are doped into EuO, they preferentially
enter the lower-energy part of the band and occupy the states

ω

ε
Δ

Low temperatures

F

(a)

(b)

n=20%
n=15%
n=10%
n=7.0%
n=5.0%
n=3.0%
n=1.0%
n=0.0%

Δ

FIG. 2. (Color online) Results for electron-doped EuO with
electron densities n = 0.0,1.0,3.0,5.0,7.0,10,15, and 20%. (a) Fermi
level εF shown as a function of 〈Sz〉/S. Along the left ordinate, the
scale for εF/� is shown, while along the right ordinate, the scale for
the energy εF + � with � = 3.5 eV is shown in electron volts; the
bottom of the model band (ω0 = −�) is assigned to 0 eV. (b) Energy
shift of the Fermi level shown as a function of 〈Sz〉/S. Along the left
ordinate, the scale for [εF(〈Sz〉/S) − εF(0)]/� is shown, while along
the right ordinate, the scale for the energy εF(〈Sz〉/S) − εF(0) with
� = 3.5 eV is presented in electron volts.

from the bottom up to the Fermi level; the energy of the Fermi
level εF is related to the electron density n by Eq. (19). In
Fig. 1(a), we indicate the Fermi levels εF by the vertical lines.
Note that the dependence of εF on 〈Sz〉/S varies with n. To
show this difference clearly, in Fig. 2(a), we present εF as a
function of 〈Sz〉/S; εF = εF(〈Sz〉/S). To display the εF behavior
more clearly, in Fig. 2(b), we show the energy shifts, which
are defined as εF(〈Sz〉/S) − εF(0). From the figure, we find
that with an increase in 〈Sz〉/S, εF with n � 5% shifts to the
low-energy side, whereas εF with n � 10% slightly shifts to the
high-energy side. Since the total energy E(〈Sz〉) is defined by
Eq. (20), the lowering of εF is closely related to the decrease
in E(〈Sz〉). The decrease in E(〈Sz〉) with increasing 〈Sz〉/S
induces ferromagnetism and results in an increase in TC .

To gain insight into the mechanism of magnetism in
electron-doped EuO, in Fig. 1(b) we show the result for the
spin-coupling strength Q(ω) defined by Eq. (18). Note that
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FIG. 3. (Color online) Curie temperature TC calculated by apply-
ing the dynamical CPA for electron-doped EuO shown as a function
of the electron density n, together with TC obtained by the VCA or
Eq. (26). Black squares � and black dots • represent the values of TC

calculated by applying the dynamical CPA for Eu1−xGdxO assuming
n = x and 0.5x, respectively (see text).

Q(ω) �= 0 even when 〈Sz〉 = 0, because in the dynamical
CPA it is considered that the motion of the s-electron spin
follows the motion of f spins to a certain degree. When
〈Sz〉 = 0, Q(ω) has a finite positive value at energies ω near
the bottom of the band, and Q(ω) gradually decreases with
an increase in ω. In the FM state (〈Sz〉 = S), in contrast,
Q(ω) ≈ 1.0 in the energy range of −1.1 � ω/� � −0.9 (i.e.,
−IS − � � ω � +IS − �), and Q(ω) quickly decreases
with increasing ω(�− 0.9�). Q(ω) ≈ 1.0 means that the
electron spin and f spin are almost parallel and that the
gain of exchange energy is fully obtained. Note that the
energy of ω = +IS − � (=− 0.9�) is close to εF for n = 5%.
Therefore, when n is as small as n � 5%, εF decreases with
increasing 〈Sz〉/S, suggesting that TC increases as n increases.
In contrast, when n � 10%, Q(ω) for 〈Sz〉/S = 1 is somewhat
smaller than that for 〈Sz〉/S = 0. Therefore, when n � 10%,
εF slightly shifts to the high-energy side with an increase in
〈Sz〉/S, suggesting that the increase in n is accompanied by a
slight decrease in TC .

In Fig. 3, we present the result for the TC of electron-doped
EuO as a function of n. TC , starting from T0 = 70 K, increases
quickly with an increase in n up to 5 %; TC has a peak TC ≈
135K at n ≈ 7%, and then decreases gradually for n � 10%.
Therefore the discussion above on Q(ω) well explains the n

dependence of TC .
In Fig. 3, for comparison, we include the previous result for

the Curie temperature calculated by the VCA; T VCA
C is given

by20

T VCA
C = T0 + 2

3kB

(
1 + 1

S

)
(IS)2D0(εF) . (26)

(a)

(b)

FIG. 4. (Color online) Results for electron-doped EuO with the
electron densities n = 0.0,0.1,0.3,0.5,1.0,3.0, and 5.0%. (a) Nor-
malized magnetization 〈Sz〉/S shown as a function of the temperature
T . Points “P” represent “flexure points” indicating n↓ = 0.1n↑ (see
text). (b) Temperature derivative of magnetization, d(〈Sz〉/S)/dT ,
shown as a function of T .

Equation (26) shows that T VCA
C increases monotonically with

an increase in n. Therefore T VCA
C cannot explain the n

dependence of TC experimentally observed. A significant
difference of the VCA from the dynamical CPA is that, in
the VCA, the correlated motion between the electron spin and
the f spin is completely neglected [i.e., Q(ω)VCA = 0] at PM
temperatures; thus the energy gain due to the increase in 〈Sz〉
is overestimated.

In Figs. 4 and 5, we show the normalized magnetization
curve 〈Sz〉/S as a function of T . For n = 0 (or undoped
EuO), the magnetization curve follows the standard curve
with TC = T0 ≡ 70 K. With an increase in n, TC increases
from T0 = 70 K, while the shape of the magnetization curve
deviates strongly from the standard curve. In the magnetization
curve with a low electron concentration of n � 5%, two
successive superimposed dome shapes appear with increasing
temperature. For n � 5%, the magnetization curve again
becomes closer to the standard curve (see Fig. 5). To show the
features of the magnetization curve in more detail, we present
the temperature derivative of the normalized magnetization
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FIG. 5. (Color online) Result for electron-doped EuO. The
normalized magnetization 〈Sz〉/S with electron densities n =
0.0,5.0,7.0,10,15, and 20% is shown as a function of the temperature
T .

d(〈Sz〉/S)/dT in Fig. 4(b) as a function of the temperature T .
One can clearly see sharp peaks at T0 = 70 K for n = 0.0% and
at the corresponding values of TC for n � 5%. On the other
hand, for n � 5%, one can clearly distinguish two features:
a peak at the corresponding values of TC and a structure at
a temperature slightly above T0. Therefore the present result
for the magnetization curve well reproduces the previously
reported feature.13–17

To explain the origin of the anomalous magnetization, in
Fig. 6, we show the effective fields h1 and h2 as functions of
〈Sz〉/S. When n � 5%, h2 is proportional to 〈Sz〉/S; thus, the
magnetization curve becomes the standard curve. In contrast,
when n � 5%, h2 is initially proportional to 〈Sz〉/S and then
approaches a saturation value; the saturation value is somewhat
smaller than In, although it is estimated as h2 = In in the
VCA.20 The relationship between n and the magnetization
curve is roughly explained as follows. The spin-polarized band
shifts proportionally to ±〈Sz〉 depending on its spin direction.
When both up- and down-spin bands are populated, the transfer
of electrons from the down-spin band to the up-spin band
occurs accompanied by an increase in 〈Sz〉. The number of
electrons transferred is proportional to 〈Sz〉. Consequently, the
energy gain is proportional to 〈Sz〉2, so that h2 is proportional
to 〈Sz〉, indicating that the magnetization follows the standard
curve as in the case of n � 5%. In contrast, when n � 5%, the
situation differs depending on 〈Sz〉. If 〈Sz〉 is smaller than a
certain value, both the up- and down-spin bands are populated,
and then h2 becomes proportional to 〈Sz〉. If 〈Sz〉 is larger
than a certain value, however, no transfer of electrons from
the down-spin band to the up-spin band occurs because few
electrons occupy the down-spin states [see Fig. 1(a)]; thus the
energy gain is proportional to 〈Sz〉, so that h2 approaches its

FIG. 6. (Color online) Result for electron-doped EuO. Normal-
ized effective fields h2S/� with various electron densities n and
h1S/� are shown as functions of 〈Sz〉/S; h1 and h2 are defined by
Eqs. (24) and (25), respectively. Points “P” represent “flexure points”
indicating n↓ = 0.1n↑ (see text).

saturation value and acts as if it is an external field applied on
the f spins. Therefore the magnetization curve is composed
of two partial curves above and below a certain 〈Sz〉. In the
VCA, the condition for the flexure points is given by 〈Sz〉/S =
n/2ISD0(εF).20 In the dynamical CPA, however, it is difficult
to specify the condition, because the down-spin band has a tail
that reaches the bottom of the up-spin band even at T = 0.22

In Figs. 4(a) and 6, therefore, we plotted “flexure points P”
under the condition that n↓ = 0.1n↑, where n↑ and n↓ are the
electron densities with up and down spins, respectively. Note
that Mauger ascribed the unusual magnetization curve to the
means of electron occupation in the spin-splitting band.18

IV. RESULTS AND DISCUSSION FOR GD-DOPED EUO

In the present section, we consider the effects of the on-site
attractive potential EC at Gd sites by applying the dynamical
CPA to the model Hamiltonian for Eu1−xGdxO [i.e., Eq. (5)].
We treat the Gd concentration x and the electron density n

independently.

A. Nature and properties of magnetic impurity states
and/or impurity band tail

In Figs. 7 and 8, we show the lower-energy part of the DOS
of Eu1−xGdxO with a lower Gd concentration of x � 1.0%
in the PM and FM states, respectively. In the PM state,
when x → 0, a donor level appears at the energy level ωP =
−1.0314�, as shown by dot P in Fig. 7. The activation energy
is estimated as ωb − ωP = 0.0083� = 0.029 eV. Therefore
the present model is consistent with the shallow-donor picture
with an activation energy of 0.017 eV.1 With increasing x, an
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ω Δ

P

FIG. 7. (Color online) Lower-energy part of the DOS at paramag-
netic temperatures D(ω)[=D↑(ω) = D↓(ω)] shown for Eu1−xGdxO
with x = 0.0, 0.01, 0.05, 0.10, 0.50, and 1.0 %. The vertical lines
indicate the Fermi levels εF for n = x. Dot P indicates the impurity
level for x → 0. The Gd-component DOS xDGd(ω) is shown by
dashed lines. Along the upper abscissa, the ω + � values with
� = 3.5 eV are shown in electron volts; note that the energy of
the bottom of the model band (ω0 = −�) is assigned to 0 eV.

impurity band forms at approximately the donor level; the total
number of states of the impurity band is not 2x but 2x(S + 1)/
(2S + 1) = 1.125x (see discussion below). When x � 0.10%,
the impurity band merges into the host band, forming an
impurity band tail; the band tail stretches to the low-energy
side with a further increase in x. In Fig. 8, we show only
the up-spin DOS because the down-spin DOS is negligible at
energies in the FM state. Note that, for the present parameters,
the energy of the donor level is estimated by Eq. (C7) as
ωF = −1.1�, which is in agreement with the bottom of the
conduction band of EuO in the FM state (i.e., −� − IS, see
also Fig. 1); thus no impurity band forms separately. With
increasing x, the band tail stretches to the low-energy side.

In Fig. 9, we show how the change in 〈Sz〉/S accompanies
the change in the spin-polarized DOS of Eu1−xGdxO with
x = 0.05% as an example. In the PM state, an impurity band
separated from the host band forms. With the development
of magnetization, the impurity band soon merges into the
host band to form the band tail; the band tail stretches to the
low-energy side. Thus the impurity band and/or the band tail of
Eu1−xGdxO is strongly affected by magnetization. The result
shows that the shift in the Fermi level εF is approximately
proportional to 〈Sz〉. The controversy of whether or not a
minimum n or x is needed to increase TC is closely related
to such a low-x region of Eu1−xGdxO.

To elucidate the nature of the magnetic impurity band and
its effect on magnetism, here we investigate the case of deep

ω Δ

FIG. 8. (Color online) Lower part of the up-spin DOS at the
ferromagnetic state D↑(ω) shown for Eu1−xGdxO with x = 0.0, 0.01,
0.05, 0.10, 0.50, and 1.0 %. The down-spin DOS D↓(ω) is not shown
because it is negligible in the energy range used. The vertical lines
indicate the Fermi levels εF for n = x. Dot F indicates the impurity
level for x → 0. The Gd-component DOS xDGd

↑ (ω) is shown by
dashed lines.

impurity levels using EC = 0.8�; the other parameters are
the same as those for Eu1−xGdxO. In Fig. 10, the result
for a spin-polarized DOS with x = 0.10% is shown. In the
PM state, two impurity bands appear at approximately the
impurity levels indicated by dots P and A: ωP = −1.1821�

and ωA = −1.0542�. The parallel (antiparallel) spin-coupling
impurity band around dot P (A) is composed of electron
states in which an electron spin strongly couples parallel
(antiparallel) to the f spin; hereafter, we refer to the impurity
bands as the P and A subbands. The number of states of the
P subband is 2x(S + 1)/(2S + 1) = 1.125x and that of the A
subband is 2xS/(2S + 1) = 0.875x; thus the total number of
impurity states is 2x. With the development of magnetization,
the A subband shifts to the high-energy side and merges
with the host band. On the other hand, the P subband shifts
to the low-energy side by an amount proportional to 〈Sz〉,
causing it to separate from the host band. In the FM state,
the P subband is in agreement with the impurity band at
approximately the impurity level F; ωF = −1.2125�. The
impurity band is composed of up-spin and down-spin states
in the FM state; the number of up-spin states is x and that of
down-spin states is x/(2S + 1) = 0.125x. If some electrons
are injected into the band, the electrons preferentially occupy
the P subband. Note that the double occupation of electrons at
the same site is substantially prevented because the P subband
is only composed of electron states whose spin is coupled
parallel to the f spin at the impurity site. Then, if n � 1.125x,
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ω Δ

FIG. 9. (Color online) Lower part of the spin-polarized DOS of
Eu1−xGdxO with x = 0.05% D↑(ω) and D↓(ω) shown for various
〈Sz〉/S values. The vertical lines indicate the Fermi levels εF for
n = x = 0.05%. Dots P and F represent the impurity levels in the
paramagnetic and ferromagnetic states, respectively.

the total energy is estimated as

E(〈Sz〉) ∼= nωP − 〈Sz〉
S

n(ωP − ωF) . (27)

Thus the effective field due to electrons in the impurity band
is calculated as

h2 = − d

d〈Sz〉E(〈Sz〉) ∼= n

S
(ωP − ωF)

= n

S

�2IS

4EC[EC + I (2S + 1)]
. (28)

The meaning of h2 in Eq. (28) is clear. Electrons in the impurity
band induce an effective field h2 on f spins through the
exchange interaction; h2 is independent of 〈Sz〉/S.

Sutarto et al. reported that no threshold behavior is observed
at Gd concentrations as low as x ≈ 0.2%.13 Later, Mairoser
et al. referred to a minimum electron density needed to
induce a measurable increase in TC ; the minimum density is
approximately 1 × 1019cm−3 = 0.034%, which corresponds
to x = 0.25–1.0%.17 The present result is compatible with
the experimental results in both reports. There is a threshold
Gd concentration xc; xc � 0.1%. xc ≈ 0.1% is about one
order of magnitude smaller than the values of 1.2–1.5%
reported previously.3,4,7 When x � xc at PM temperatures,
an impurity band forms separately from the host band, so
that each electron is weakly bound to a different Gd site; the
electron spin strongly couples parallel to the f spin at the Gd
site. The semilocalized electron induces a local effective field
through the exchange interaction to polarize the f spins at the

ω Δ

Δ

FIG. 10. (Color online) Result obtained by using EC/� = 0.8;
the other parameters are the same as those of Eu1−xGdxO. The lower
part of the spin-polarized DOS D↑(ω) and D↓(ω) calculated with
x = 0.10% is shown for various 〈Sz〉/S values. Dots P and A indicate
the impurity levels in the paramagnetic state and dots F and D indicate
the impurity levels in the ferromagnetic state (see text). The dashed
straight lines between P and F and between A and D are visual guides.

surrounding Eu sites. This is the so-called magnetic impurity
state or trapped magnetic polaron.37 The existence of the
magnetic impurity state causes confusion in the measurement
of TC in such lightly Gd-doped EuO.

Here, we should emphasize that the magnetic impurity
band in EuO is very different from that in diluted magnetic
semiconductors (DMSs) such as Gd1−xMnxAs.38,39 In the
case of a magnetic impurity band in DMSs, the hopping of
carriers among magnetic sites causes ferromagnetism through
a double-exchange (DE)-like mechanism. The mechanism of
increasing TC in Gd-doped EuO, however, is not the DE-like
mechanism; the increase in TC is due to conduction electrons in
a broad band. The present picture of magnetic impurity states
is also very different from the splitting donor level picture in
an FM semiconductor proposed by Haas.40

B. Electronic and magnetic properties of Gd-doped EuO

In Figs. 11–13, we show the present results for Eu1−xGdxO
with x = 1.0,7.0, and 15%. When x = 1.0%, as shown in
Fig. 11(a), the band tail clearly exhibits the character of a
magnetic band tail. Q(ω) at the Eu site shown in Fig. 11(b) is
similar to that of EuO shown in Fig. 1(b). In contrast, Q(ω)
at the Gd site shown in Fig. 11(c) is somewhat different. In
the PM state, Q(ω) at the Gd site is very high at energies ω

of approximately ωP, but decreases rapidly at energies above
ωA. In the FM state, Q(ω) ≈ 1.0 at energies roughly over
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ω/Δ

<Sz>/S=1

<Sz>/S=0

ω

<Sz>/S=1

<Sz>/S=0

ω Δ

(a)

(b)

(c)

FIG. 11. (Color online) Results for Eu1−xGdxO with x = 1.0%.
In (a), the lower part of the spin-polarized DOS is shown for various
〈Sz〉/S values; the solid line is for D↑(ω) and the dotted line is for
D↓(ω). Each vertical line indicates the Fermi level εF for n = x =
1.0%. In (b) and (c), the spin-coupling strength Q(ω) at the Eu site
and Gd site are shown, respectively; the solid line is for 〈Sz〉/S = 1
and the dashed line is for 〈Sz〉/S = 0. Dots P, F, A, and D indicate
the impurity levels ωP, ωF, ωA, and ωD, respectively (see text). The
Fermi level εF is indicated by vertical lines; the dashed line is for
〈Sz〉/S = 0.0 and the solid line is for 〈Sz〉/S = 1.0.

the energy width 2IS from the bottom of the band; then
Q(ω) decreases rapidly, even becoming negative at energies
of approximately ωD. Note again that P and F are the parallel
spin-coupling impurity levels so that Q(ω) ≈ 1.0 therein; A
and D are the antiparallel spin-coupling impurity levels so
that Q(ω) ≈ −1.0 therein. At first glance, the DOSs shown in
Figs. 12(a) and 13(a) are similar to that shown in Fig. 1(a),
except that the band tail shifts to the low-energy side as a
whole. It should be emphasized that the behavior of Q(ω) is
also similar to that shown in Fig. 1(b); the energy width of
high Q(ω) does not substantially change. In Figs. 12 and 13,

ω Δ
ω

ω Δ

<Sz>/S=0

ω

<Sz>/S=1
<Sz>/S=0

<Sz>

(a)

(b)

(c)

FIG. 12. (Color online) Same as Fig. 11, but for x = 7.0%; the
vertical lines indicate the Fermi level εF for n = x = 7.0% and
n = 0.5x = 3.5%.

we include the Fermi levels not only for n = x but also for
n = 0.5x.

In Figs. 14 and 15, we show the present results for
Eu1−xGdxO calculated assuming that the electron density
is equal to the Gd concentration (i.e., n = x). Comparing
Fig. 14(a) with Fig. 2(a), the Fermi levels εF of Eu1−xGdxO
are much lower than that of electron-doped EuO. Compar-
ing Fig. 14(b) with Fig. 2(b), however, the energy shifts
εF(〈Sz〉/S) − ε(0) are very similar to each other. Thus the n

dependence of the TC of Eu1−xGdxO with n = x is similar
to that of electron-doped EuO with the same n, although the
TC of Eu1−xGdxO is lower than that of electron-doped EuO,
as is shown in Fig. 3. Comparing Fig. 15 with Fig. 4, both
magnetization curves are similar to each other, although the
feature of the unusual magnetization is so unclear that the
flexure points are difficult to recognize in Fig. 15. The reason
for the difference can be understood as follows. The attractive
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ω Δ

ω

ω Δ

/S=1 <Sz>/S=0

ω <Sz>/S=1
<Sz>/S=0

/S=1 <Sz>/S>> =0

(a)

(b)

(c)

FIG. 13. (Color online) Same as Fig. 11, but for x = 15%; the
vertical lines indicate the Fermi level εF for n = x = 15% and
n = 0.5x = 7.5%.

potential EC increases the number of electron states around
the donor level in the band tail irrespective of the magnetic
state. Thus EC operates so that the difference in the bands
between the PM and FM states becomes smaller, resulting in
a smaller increase in TC , and hiding the noticeable feature of
the anomalous magnetization.

As an example of the electron density n not being in
agreement with the Gd concentration x, we also investigated
the case of Eu1−xGdxO with n = 0.5x. The result showed
the high similarity of Eu1−xGdxO between n = x and 0.5x

(see TC included in Fig. 3). The reason for the similarity is
that the shapes of the spin-polarized DOSs calculated with
different values of x are very similar, although the band shifts
to the low-energy side depending on x. As a consequence,
the electron density n precedes the Gd concentration x for the
determination of the magnetization of Eu1−xGdxO.

ω

ε
Δ

+0.175eV

0.00 eV

-0.175eV

-0.35 eV

+0.35 eV

+0.525eV

F

n=x=20%
n=x=15%
n=x=10%
n=x=7.0%
n=x=5.0%
n=x=3.0%
n=x=1.0%
n=x=0.0%

Δ

(a)

(b)

FIG. 14. (Color online) Same as Fig. 2, but for Eu1−xGdxO
assuming n = x. Note that the scale in (a) is very different from
that in Fig. 2.

C. Relationship between the Fermi level
and the optical absorption edge

Here, we try to relate the present results for εF with the
experimental observation of the optical absorption edge of
undoped EuO and Gd-doped EuO on the assumption that the
absorption edge corresponds to the electron transition from the
4f state to the Fermi level εF. In this work, we have calculated
the 〈Sz〉 dependence of εF in three cases: electron-doped
EuO (see Fig. 2), Eu1−xGdxO with n = x (see Fig. 14), and
Eu1−xGdxO with n = 0.5x. Comparing these three cases, the
results for the energy shift of the Fermi level εF(〈Sz〉/S) −
εF(0) are very similar. When x = n = 0, the present result is
in agreement with that of EuO, suggesting that the bottom of
the band shifts as εF(〈Sz〉/S) − εF(0) = −Ieff〈Sz〉;22 IeffS =
ωb + � + IS = 0.0769� = 0.27 eV corresponds to the total
redshift of EuO. As shown in Fig. 2(b), the total redshift
decreases with increasing n and takes values of 0.188, 0.100,
and 0.034 eV for n = 1.0,3.0, and 5.0%, respectively; for
n � 10%, the present results even show a blue shift. As has
already been discussed, the behavior of εF(〈Sz〉/S) − εF(0) is
closely related to the n dependence of TC . For the total redshifts
of the absorption edge in Gd-doped EuO, the following values
are obtained experimentally: 0.188 and 0.124 eV for n = 0.54
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(a)

(b)

FIG. 15. (Color online) Same as Fig. 4, but for Eu1−xGdxO
assuming n = x.

and 2.04 %,1,5 and 0.20 and 0.12 eV for Eu1−xGdxO with
x = 1 and 5%, respectively.10 Therefore the present results
well explain the n and/or x dependence of the total redshifts
experimentally observed.

On the other hand, the present results for εF greatly differ
among the three cases. In addition, the results experimen-
tally reported are contradictory. According to Schoenes and
Wachter,5 the absorption edge of Gd-doped EuO in the PM
state appears at a lower energy than that of EuO. However,
according to Matsumoto et al.,10 it appears at a higher energy
than that of EuO. Therefore we cannot compare the present
results with the experimental ones. A systematic study of the
optical properties of high-quality samples of Gd-doped EuO
is strongly desired.

V. CONCLUDING REMARKS

In the present study, we have calculated spin-polarized
DOSs by applying the dynamical CPA to two models; we
employ the s-f model Hamiltonian (3) for electron-doped
EuO and the model Hamiltonian (5) for Eu1−xGdxO. On the
basis of the spin-polarized DOSs, we estimated the total energy
of electrons interacting with f spins through an exchange
interaction to obtain the free energy as a function of 〈Sz〉/S.

Then, we obtain the magnetization 〈Sz〉/S as a function of the
temperature T by minimizing the free energy. On the basis of
the present results, we try to answer the six questions presented
in Introduction.

(i) There is an intrinsic limit to the electron-induced
increase in TC . With increasing n, TC first increases rapidly
up to n � n1, then progressively saturates, giving rise to
a maximum at approximately nM , and decreases gradually.
The result for the spin-coupling strength Q(ω) shows that n1

corresponds roughly to the electron density at which the Fermi
energy εF reaches an energy 2IS higher than the bottom of
the band in the FM state. When n � n1, the energy gain of the
exchange interaction is so fully obtained that the increase in n is
accompanied by a rapid increase in TC . For the electron-doped
EuO, n1 ≈ 5%. nM is somewhat larger than n1 and estimated
as nM ≈ 7%.

(ii) The anomalous magnetization curve occurs in a sit-
uation that the down-spin band is hardly occupied by doped
electrons in the FM state.20 The situation occurs when n � 5%.
If 〈Sz〉 is smaller than a certain value, both the up- and
down-spin bands are populated, and then the magnetization
curve becomes a standard curve. If 〈Sz〉 is larger than a certain
value, however, few electrons occupy the down-spin states
[see Fig. 1(a)]; then the electrons in the up-spin band act as
an external field on the f spins. Therefore the magnetization
curve is composed of two partial curves above and below a
certain 〈Sz〉. This yields an anomalous magnetization. On the
other hand, the present models do not explain the departure
from the standard curve reported for x � 10%.13

(iii) There is a threshold of the Gd concentration xc for
increasing TC : xc � 0.1%. When x � xc at PM temperatures,
an electron weakly bound to Gd site forms the so-called
magnetic impurity state or trapped magnetic polaron. The
existence of the magnetic impurity state causes confusion in
the measurement of TC in the low-x region.

(iv) The attractive potential EC at the donor Gd site makes
the anomalous magnetization less clear and suppresses the
increase in TC . This is because the attractive potential EC

increases the electron states around the energy of the donor
level in the band tail irrespective of the magnetic state.
Thus EC reduces the difference in the bands between the
PM and FM states. However, an anomalous magnetization is
experimentally observed in Gd-doped EuO with 0.1% � x �
5%. One of the conventional explanations for the weakening
of the attractive potential is the screening effect. When the
impurity band merges into the host band (x � 0.1%), an
electron cloud gathers around the Gd donor center so as to
weaken the attractive Coulomb interaction; thus EC becomes
less effective.

(v) The electron density n mainly determines the magnetic
properties of Gd-doped EuO. Comparing the two cases of
Eu1−xGdxO with n = x and 0.5x, their results are very similar
for the same n. However, we have to add that the present result
does not clarify the cause of the low dopant activity reported
by Mairoser et al.17

(vi) A large redshift of the optical absorption edge is
closely related to the rapid increase in TC with increasing n.
The redshift corresponds to the gain of total electron energy,
because the optical absorption is assigned to the electron
transition from the 4f state to the Fermi level εF. Therefore
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the decrease in total redshift with increasing n observed
in Gd-doped EuO is consistently explained by the gradual
increase in TC as n approaches n1 ≈ 5%. The present result
even predicts a blue-shift of the optical absorption edge for
n � 10%, although no optical experiment has reported this yet
for such heavily doped EuO.

The present theory gives a consistent explanation for some
of the electronic and magnetic properties of Gd-doped EuO.
There are, however, some remaining issues for future study,
even in the framework of the present model. For example, 〈Sz〉
for the f spin at the Gd site may be different from that at the
Eu site, because electrons stay longer at the Gd site owing to
the attractive potential EC . The difference in 〈Sz〉 among the
different sites results in different effective fields h. Treating the
effect self-consistently assists the semilocalization of electrons
such as magnetic polarons.41 Furthermore, the nondegenerate
effect of electrons becomes important, particularly in lightly
doped EuO, although we assumed the electrons are degenerate
throughout the present work. Another issue is the effect of the
short-range order of f spins on electron states; with decreasing
temperature, the optical absorption edge does not decrease as
−Ieff〈Sz〉, but decreases in proportion to the spin correlation
function.5 Because the CPA is a single-site approximation,
incorporating the spin correlation effect into the present frame
is very difficult.42

Recently, many first-principles calculations have been
performed.43–48 Ingle and Elfimov43 and Altendorf et al.44

have calculated TC as a function of n to show a maximum in
TC . However, they have not calculated the PM band structure
for randomly oriented f spins; instead, they calculated it for
antiferromagnetic (AFM) spin configurations. They theoreti-
cally evaluated TC by comparing the energies of FM and AFM
configurations. Thus, in their approach, the multiple-scattering
effect is taken into account to a certain extent, whereas the
effect of thermal fluctuation of f spins on the electron states
is not considered. It has already been shown that the energy of
the bottom of the AFM conduction band has a similar IS/�

dependence to that calculated by the CPA for the PM state (see
Fig. 7 in Ref. 49). In their calculations, therefore, the energy
gain is considerably suppressed compared with the energy gain
obtained using the VCA, resulting in a maximum in TC . Wan
et al. have used the dynamical-mean-field-theory (DMFT) to
treat the thermal fluctuation.45 It has been verified that TC

obtained by DMFT is very similar to that obtained by the
dynamical CPA in the case of carrier-induced ferromagnetism
in diluted magnetic semiconductors (see Fig. 3 in Ref. 50).
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APPENDIX A: EXPLICIT EXPRESSIONS FOR GGd
μν

Here, for simplicity, the site-diagonal matrix elements of
GGd in the Wannier representation, 〈nμ|GGd|nν〉, are written
as GGd

μν . To obtain the explicit expressions for GGd
μν , we rewrite

Eq. (9) as

GGd

(
ω − uGd

n −
∑

μ

Jμa†
nμanμ

)
= 1 . (A1)

Equation (A1) is written in the spin-matrix-element expression
as

GGd
↑↑(ω + EC + ISz − J↑) + GGd

↑↓(IS+) = 1 , (A2a)

GGd
↑↑(IS−) + GGd

↑↓(ω + EC − ISz − J↓) = 0 . (A2b)

Here, Sz is the z component of the f spin: S+ = Sx + iSy

and S− = Sx − iSy . Equation (A2) comprises simultaneous
equations containing GGd

↑↑ and GGd
↑↓, which can be solved after

a somewhat complicated calculation using the commutation
relationships between the components of S (but with no further
approximations). The resulting expressions are

GGd
↑↑ = ω + EC − I (Sz + 1) − J↓

[ω + EC + ISz − J↑][ω + EC − I (Sz + 1) − J↓] − I 2
[
S(S + 1) − S2

z − Sz

] , (A3a)

GGd
↓↓ = ω + EC + I (Sz − 1) − J↑

[ω + EC − ISz − J↓][ω + EC + I (Sz − 1) − J↑] − I 2
[
S(S + 1) − S2

z + Sz

] , (A3b)

GGd
↑↓ = 1

[ω + EC + ISz − J↑][ω + EC − I (Sz + 1) − J↓] − I 2
[
S(S + 1) − S2

z − Sz

] (−IS−) , (A3c)

GGd
↓↑ = 1

[ω + EC − ISz − J↓][ω + EC + I (Sz − 1) − J↑] − I 2
[
S(S + 1) − S2

z + Sz

] (−IS+) . (A3d)

Note that the spin-diagonal matrix elements are written as GGd
↑↑(Sz) and GGd

↓↓(Sz) because they include Sz only. The expressions
for GEu

μν are obtained after simply setting EC = 0 in Eq. (A3).

APPENDIX B: SPIN-COUPLING STRENGTH Q(ω)

Here, we show the calculation for the spin-coupling strength Q(ω) defined by Eq. (18):51

Q(ω)|Gd−site = 〈δ(ω − H )σ · S〉/S
〈δ(ω − H )〉

∣∣∣∣
Gd−site

. (B1)
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The denominator of Eq. (B1) is simply calculated as

〈δ(ω − H )〉|Gd−site = DGd
↑ (ω) + DGd

↓ (ω) , (B2)

where DGd
μ (ω) is the the local DOS with a μ spin at the Gd site. The numerator of Eq. (B1) is expanded as

∑
μν

〈
δ(ω − H )σμν · S

S

〉∣∣∣∣
Gd−site

= − 1

πS
Im〈[GGd

↑↑(ω) − GGd
↓↓(ω)]Sz + GGd

↑↓(ω)S+ + GGd
↓↑(ω)S−〉 . (B3)

For the PM state (〈Sz〉 = 0), Eq. (B3) is simply expressed as

∑
μν

〈
δ(ω − H )σμν · S

S

〉∣∣∣∣
Gd−site

= 2

π
Im

I (S + 1)

[ω − J + EC − I (S + 1)][ω − J + EC + IS]
, (B4)

where J = J↑ = J↓. For the FM state (〈Sz〉 = S), Eq. (B3) is expressed as

∑
μν

〈
δ(ω − H )σμν · S

S

〉∣∣∣∣
Gd−site

= − 1

π
Im

1

ω − J↑ + EC + IS
+ 1

π
Im

ω − J↑ + EC + I (S + 1)

[ω − J↓ + EC − IS][ω − J↑ + EC + I (S − 1)] − 2I 2S
.

(B5)

Note that, in the classical spin limit (i.e., 1/S → 0), for the
FM state,

Q(ω)|Gd−site = DGd
↑ (ω) − DGd

↓ (ω)

DGd
↑ (ω) + DGd

↓ (ω)
. (B6)

In the classical spin limit, therefore, Q(ω)|Gd−site = 1 at
energies ω near the bottom of the band. In the present work,
in contrast, Q(ω)|Gd−site ≈ 1.04 near the bottom of the band
as a consequence of the quantum effect due to the finite spin
value S = 7/2. The expressions for Q(ω)|Eu−site are obtained
after simply setting EC = 0 in the expressions above.

APPENDIX C: ENERGY OF IMPURITY LEVELS

For the PM state (〈Sz〉 = 0), the dynamical CPA condition
Eq. (16) is written as

F (ω) = (1 − x)

[
p

ω + IS − J
+ a

ω − I (S + 1) − J

]

+ x

[
p

ω + EC+IS − J
+ a

ω + EC − I (S+1)−J

]
,

(C1)

where F = F↑ = F↓ and J = J↑ = J↓; p = (S + 1)/(2S +
1) and a = S/(2S + 1). When the Gd concentration tends to
zero (x → 0), Eq. (C1) reduces to the CPA condition for EuO:

F (ω) = p

ω + IS − J
+ a

ω − I (S + 1) − J
. (C2)

In the limit of x → 0, the second term of Eq. (C1) can have a
physical meaning only when the denominator is 0. This gives
the condition for the energy of the impurity levels. At PM

temperatures, two impurity levels appear at energies ω = ωP

and ωA:

ωP = −EC − IS + J , (C3a)

ωA = −EC + I (S + 1) + J . (C3b)

ωP(ωA) is the energy of an impurity electron whose spin is
parallel (antiparallel)-coupled with the f spin at the Gd site.
Substituting the ω = ωP of Eq. (C3a) into Eq. (C2), we obtain
F (ωP). Next, using the relation J = F�2/4 [see Eq. (15)] in
Eq. (C3a), we obtain the energy of a parallel spin-coupling
impurity level as

ωP = −EC − IS − �2[EC + I (S + 1)]

4EC[EC + I (2S + 1)]
. (C4)

The energy of an antiparallel spin-coupling impurity level is
also obtained as

ωA = −EC + I (S + 1) − �2(EC − IS)

4EC[EC − I (2S + 1)]
. (C5)

For the FM state (〈Sz〉 = S), the dynamical CPA condition
Eq. (16a) is written as

F↑(ω) = (1 − x)
1

ω + IS − J↑
+ x

1

ω + EC + IS − J↑
.

(C6)

By a similar consideration to that above, we obtain the energy
of an impurity electron with an up-spin at the Gd site as

ωF = −EC − IS − �2

4EC

. (C7)
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The energy of the impurity electron with a down spin, however, cannot be obtained. For Sz = S, Eq. (16b) is written as

F↓(ω) = (1 − x)
ω + I (S − 1) − J↑

[ω − IS − J↓][ω + I (S − 1) − J↑] − 2I 2S
+ x

ω + EC + I (S − 1) − J↑
[ω + EC − IS − J↓][ω + EC + I (S − 1) − J↑] − 2I 2S

.

(C8)

In Eq. (C8), F↓(ω) includes J↑, because the electron can flip its spin while the total spin (=S − 1/2) is conserved at the Gd site.
The spin-flip process is a quantum effect due to the finiteness of the f spin.22 As we cannot obtain the energy for a finite spin
S, we simply estimate the energy in the case of the classical spin limit [i,e., 1/S → 0, thus I 2S = (IS)2/S → 0]. The energy
of an impurity electron with a down-spin for a classical spin S is simply obtained by changing −IS to +IS in Eq. (C7):

ωD = −EC + IS − �2

4EC

. (C9)

For the parameters of Eu1−xGdxO (S = 7/2, � = 3.5 eV, IS = 0.1� = 0.35 eV, EC = 0.5� = 1.75 eV), we obtain ωP/� =
−1.0314, ωA/� = −1.0083, ωF/� = −1.1, and ωD/� = −0.9. For the parameters used in Fig. 10 (EC = 0.8� = 2.8 eV, the
others are the same as those for Eu1−xGdxO), ωP/� = −1.1821, ωA/� = −1.0542, ωF/� = −1.2125, and ωD/� = −1.0125.
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