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Efficient optical pumping of organic-inorganic heterostructures for nonlinear optics
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We theoretically consider a hybrid heterostructure made of an inorganic quantum well in close proximity
with an organic material overlayer whereby the latter is used to funnel excitation energy to the former in order
to exploit the optical nonlinearities of the two-dimensional Wannier excitons. On the one hand, the diffusion
length of Frenkel excitons in the organic medium is assumed to be comparable or larger than the corresponding
absorption length. On the other hand, the nonradiative energy transfer from the organic to the inorganic subsytem
can be very efficient when the Frenkel exciton energy is significantly higher than the band gap of the inorganic
semiconductor. We show in this regime that the resonant optical pumping of the Frenkel excitons can lead to
an efficient indirect pumping of the Wannier excitons (or electron-hole plasma) in the inorganic quantum well
turning on the corresponding nonlinearities.
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I. INTRODUCTION

The electronic states and the optical properties of hybrid
organic-inorganic nanostructures have attracted much interest
both theoretically and experimentally (we refer the reader
to the recent review Ref. 1, and references therein). It was
predicted, in particular, that a substantial enhancement of
the resonant optical χ (3) nonlinearity can be achieved in
strongly coupled hybrid structures in which the eigenstates are
coherent superposition of Wannier and Frenkel exciton states
of the inorganic quantum well (QW) and the organic overlayer
subsystem, respectively.2 To the best of our knowledge,
however, this regime of enhanced nonlinearity has not yet
been demonstrated experimentally. We focus here on the issue
of the optical nonlinearity in hybrid structures in the weak
coupling regime in which no hybrid excitons are formed, a
regime which is more easily accessible experimentally. The
optical nonlinearity of the inorganic QW is proportional to the
concentration of excitons and e-h pairs in the well.3 Nonlinear
effects on the QW exciton resonance are observed also at
room temperature and are large enough to be used for device
applications.4 We will argue below that an enhancement of
the nonlinearity of the semiconductor QW could take place in
the weak coupling regime as well and these systems may also
provide a possibility to vary the QW nonlinearity optically by
changing the pumping intensity of the organic overlayer.

The resonant absorption of light by a thin QW and the
direct creation of excitons and e-h pairs in the well is small.
However, the excitation density (and subsequent nonlinearity)
in a hybrid structure such as the one sketched in Fig. 1 can be
increased due to the strong absorption of incident light by the
organic overlayer (having large oscillator strength) followed by
nonradiative energy transfer to the inorganic QW. Such indirect
pumping of the QW can be very effective if the light from
the external pumping beam will resonantly generate Frenkel
excitons in the organic layer with energies significantly larger
than the exciton energy in the semiconductor quantum well
(i.e., at an energy at which the semiconductor already has a
large absorption). The overall light absorption in the organic

component of the hybrid structure can be much larger than the
direct absorption by a thin QW so that the organic component
plays in this case the role of a funnel of pumping radiation
energy. This scheme can be viewed as complementary to that
of pumping an organic medium via energy transfer from an
inorganic semiconductor, proposed earlier.5

The process considered here can be effective if the
absorption length of the organic material (i.e., the thickness
required to absorb light in the organic subsystem) is not larger
than the diffusion length of the Frenkel excitons, so that most
of them will be able to get close to the organic-inorganic
interface and to transfer their energy to the inorganic QW by
the Förster mechanism, a process which is known to be quite
efficient.1 Following this nonradiative energy transfer and
subsequent energy relaxation, the QW in the hybrid structure
can reach a state with a high excitation density and thus exhibit
a number of nonlinear optical effects which have attracted
much attention.4 The QW Wannier exciton line which can be
observed even at room temperature shifts6 and its oscillator
strength is suppressed7 while its linewidth broadens8 with
increasing pumping until the exciton saturation density is
reached and the Mott transition to an electron-hole plasma
takes place.9 Such optical nonlinearities would be relevant for
a probe beam of light resonant with the QW exciton transition.
As this probe beam has a frequency appreciably lower than
the Frenkel exciton frequency in the organic overlayer, it
would not be absorbed in the organic part of the hybrid
structure. Variations in the pumping intensity of the organic
component would produce, via nonradiative energy transfer to
the inorganic quantum well, variations in the concentration of
Wannier excitons in the QW, and thus optical control of the
QW nonlinearity can be achieved.

For a thin QW in close proximity with the organic overlayer,
this mechanism of indirect nonresonant pumping turns out to
be more efficient than the one via direct optical absorption in
the inorganic medium. We calculate here in detail the efficiency
of such indirect optical pumping assuming for illustrative
purposes values of material parameters appropriate for a hybrid

165204-11098-0121/2012/86(16)/165204(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.165204


V. M. AGRANOVICH, D. M. BASKO, AND G. C. LA ROCCA PHYSICAL REVIEW B 86, 165204 (2012)

FIG. 1. (Color online) Sketch of the hybrid heterostructure. In the
organic overlayer (having thickness L and absorption coefficient α)
Frenkel excitons are generated by optical pumping and diffuse (with
diffusion length LD) to the organic-inorganic interface, whereupon
they nonradiatively transfer (with effective Förster radius R0) to the
inorganic semiconductor subsystem of thickness W + a comprising
a quantum well and its barriers (a � W being the thickness of an
interfacial microscopic dead layer). The indirect pumping of the
quantum well is efficient provided a � R0 ∼ W � L ∼ α−1 < LD

(see text for details).

heterostructure based on II-VI inorganic semiconductors and
on anthracene at room temperature. In particular, we also
provide an analytical expression for the efficiency [see Eqs. (4)
and (5) below] which is very accurate for most cases of
practical interest and could be used for other materials as
well. While these results appear to be fairly simple, their
validity hinges on a rather technical scrutiny accounting for
the specific dependence on distance of the energy transfer.
For the sake of completeness, the appendix reports the details
of such analysis showing, in particular, how in the cases of
interest here the effects of the energy transfer can be described
in terms of an effective boundary condition for the steady-state
diffusion equation.

II. THE MODEL

The model hybrid heterostructure we study is shown in
Fig. 1. The highest efficiency of the process of indirect
optical pumping we consider here requires that the inorganic
semiconductor material be strongly absorbing at the energy
of the Frenkel exciton in the organics, and that the Frenkel
exciton diffusion length LD and the absorption coefficient α

of the organic material be such that α LD � 1. The Frenkel
excitons are described as point dipole excitations (incoherent
molecular excitons) in the diffusive regime (i.e., with a hopping
time much shorter than their lifetime τ ). For illustrative
purposes, we make use of material parameters typical of
anthracene10–14 for the organic overlayer and of a thin QW
of II-VI semiconductors for the inorganic subsystem.15,16 The
absorption coefficient of anthracene at the Frenkel exciton
energy of about 3.1 eV is α ∼ 3.2 × 105 cm−1 and the Frenkel
exciton diffusion coefficient is D = L2

D/τ ∼ 5 × 10−3 cm2/s,
being τ ∼ 5 ns and the diffusion length LD ∼ 500 Å. The
inorganic subsystem should have a band gap significantly
smaller than the Frenkel exciton energy and in the calculation
of the nonradiative energy transfer rate (i.e., of the effective
Förster radius R0), it will be considered as a homogeneous
medium described by a complex dielectric function. For a
Zn(Cd)Se-based quantum well (the ZnSe band gap is about

2.6 eV) at the Frenkel exciton energy the dielectric function is
ε̃ ≡ (n + iκ)2 ≈ (3 + i)2.

Under continuous pumping, the diffusion equation for the
Frenkel exciton density ρ in the organic overlayer reduces to

αI0e
α(z−L) − ρ

τ
+ L2

D

τ

∂2ρ

∂z2
− 	(z) ρ = ∂ρ

∂t
= 0, (1)

supplemented by the zero-current boundary conditions,

∂ρ

∂z

∣∣∣∣
z=0

= ∂ρ

∂z

∣∣∣∣
z=L

= 0. (2)

The first term in Eq. (1) represents exciton generation by the
light absorption, I0 being the photon flux which penetrates
the organic layer. The second term accounts for the decay of
excitons with the lifetime τ , as due to spontaneous emission,
or other quenching channels such as internal conversion
or trapping by an impurity. The third term describes the
diffusive transport. Finally, the last term in Eq. (1) represents
the Förster transfer of excitons from the organic layer to
the inorganic semiconductor quantum well with a rate 	(z)
strongly decreasing with the distance z from the interface.

The calculation of the transfer rate can be performed fol-
lowing the approach of Ref. 17. First, the electric field, which
is due to the oscillating polarization of the Frenkel exciton
and penetrates into the inorganic subsystem, is calculated
neglecting retardation. Then, the rate of nonradiative energy
transfer is obtained from the Joule losses proportional to the
imaginary part of the dielectric response of the inorganic
medium at the corresponding frequency. Taking into account
both the finite well width and the dielectric mismatch, the
result is

	(z) = 2 Im ε̃

h̄

∫ ∞

0
dk k2 e−2k(z+a)

(
d2

‖/2 + d2
z

)
sinh kW

× |ε̃ + εs |2ekW + |ε̃ − εs |2e−kW

|ε̃(ε + εs) cosh kW + (ε̃2 + εεs) sinh kW |2 . (3a)

Here, d‖ and dz are the in-plane and perpendicular components
of the transition dipole of the Frenkel exciton; ε, ε̃, and εs are
the dielectric functions of, respectively, the organic material,
the inorganic semiconductor, and the transparent substrate.
For the purpose of calculating the dielectric mismatch, the
dielectric function of the organic material has been here
considered isotropic. The effects of anisotropy on the energy
transfer process can also be calculated similarly, but do not
affect much the energy transfer efficiency.18 Finally, the length
a represents a short-range cutoff (a ∼ 10 Å), corresponding
physically to a microscopic distance being of the order of the
lattice constant if the organics is deposited directly on the
semiconductor, or, less optimistically, to the thickness of an
exciton dead layer at the semiconductor boundary. The latter
may also partly account for the presence of inhomogeneities
at the organic-inorganic interface the suppression of which
hinges on challenging technological issues.19,20

The result for the transfer rate given above differs from
those previously obtained1,17 mainly because the polariza-
tion source is here essentially pointlike (due to incoherent
molecular excitons) and in Eq. (3a) the integral is extended
over all values of the two-dimensional wave vector, whereas
in previous works the polarization source associated with
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Wannier excitons requires an integration over a thermal
distribution of wave vectors or, for localized excitons, over
a range limited by the inverse of the localization length. Yet,
we are unable to express the integral in Eq. (3a) in terms of
elementary functions, and we will not use in the following the
general expression in Eq. (3a). It turns out that, for most cases
of practical interest (namely, W � a, and |ε|,|ε̃| � εs), the
function 	(z) from Eq. (3a) can be well approximated by a
much simpler expression,

	(z) 	 Im ε̃

h̄ |ε + ε̃|2
d2

‖/2 + d2
z

(z + a)3
≡ 1

τ

R3
0

(z + a)3
. (3b)

We note that the z dependence in this expression can be
obtained by a straightforward integration of the usual Förster
rate 1/r6 over the half-space z < −a. It is convenient to
parametrize the strength of the Förster transfer by a length
R0, defined as the effective Förster radius by Eq. (3b). R0 can
be viewed as analogous to the usual Förster radius, adapted
for our particular situation. Its value can be taken to match the
full expression, Eq. (3a), at z = 0. In the following, we stick
to the simple model expression of Eq. (3b), which accurately
reproduces all the relevant physics of Eq. (3a) in the cases of
our interest.

It should be noted that Im ε̃ enters Eqs. (3a) and (3b) both
in the numerator (since the transfer rate is proportional to the
absorption in the semiconductor) and in the denominator (since
the electric field penetrating the quantum well is screened by
its dielectric constant). As in the denominator it enters squared,
too strong absorption in the quantum well actually suppresses
the transfer. In fact, the most advantageous situation is ε̃ ∼ ε.
In this case, assuming that the short-distance cutoff a is of
the order of the lattice constant of the organic material (the
smallest possible value), and taking into account the fact
that the diffusion coefficient in many organic materials at
room temperature is itself determined by the Förster transfer
between the organic molecules,21 one can obtain a simple
estimate of the effective Förster radius R0. Indeed, the diffusion
coefficient can be estimated as

D ∼
∫

|r|>a

d3r r2 Im ε

h̄ |ε|2
d2

r6
∼ Im ε

h̄ |ε|2
d2

a
∼ R3

0

τa
,

where in the last relation we have used Eq. (3b). This gives
R3

0 ∼ L2
Da. This should be considered the most optimistic

estimate of R0, since increasing the dielectric mismatch,
decreasing the absorption Im ε̃, or increasing a can only slow
down the transfer. In anthracene13 at the Frenkel exciton
frequency (3.12 eV) the dielectric constant along the strongly
absorbing axis is ε ≡ (n + iκ)2 	 (2.4 + 1.0i)2, while in II-VI
semiconductors16 such as Zn(Cd)Se at comparable frequen-
cies ε̃ ≡ (n + iκ)2 ≈ (3 + i)2. Thus, the estimate R3

0 ∼ L2
Da

seems to be reasonable.
To give an idea of the precision of Eq. (3b), we mention that

for ε = ε̃ = (3 + i)2, εs = 3.75, a = 10 Å, and W = 100 Å,
Eq. (3b) with R0, adjusted to reproduce 	(z = 0), gives less
than 10% error for z < 100 Å, and the precision increases
when increasing the dielectric contrast (i.e., ε 
= ε̃). Taking
d‖ = 3 D, dz = 0 (the anthracene exciton transition dipole12),
we obtain R0 ≈ 70 Å, while (L2

Da)1/3 ≈ 140 Å [for numerical
estimates it is convenient to keep in mind that (1 D)2/(1 Å)3 ≈

0.95 h̄/(1 fs)]. As expected, also in our configuration such
value of the efficient Förster radius indicates that the non-
radiative transfer process is not effective beyond a distance
∼100 Å, where the intrinsic relaxation in the organics takes
over. Thus, we can conclude that L � R0, so the dielectric
mismatch at the front surface at z = L, ignored in Eq. (3a),
does not affect the energy transfer rate. Most importantly, as
discussed below, we will also be able to provide an analytical
solution of Eq. (1) based on the fact that LD � R0. Finally, we
note the nearest-neighbor hopping rate due to the dipole-dipole
interaction is ∼ (1/h̄)(Im ε/|ε|2)(d2/a3) ∼ 1 ps−1.

III. TRANSFER EFFICIENCY

The transfer efficiency E (the ratio between the transferred
population and the total number of incident photons I0) can
be straightforwardly calculated from the stationary solution of
the diffusion equation (see the Appendix for details):

E = α2L2
D

α2L2
D − 1

× 1 − e−αL[cosh(L/LD) + (αLD)−1 sinh(L/LD)]

cosh(L/LD) + (z0/LD) sinh(L/LD)
, (4)

where the constant z0 is given by

1

z0
=

∫ ∞

0

τ 	(z)

L2
D

dz = R3
0

2L2
Da2

. (5)

One can distinguish two limiting cases. First, |z0| � LD

corresponds to very efficient transfer, so the limiting factor for
pumping the quantum well is the transport through the organic
layer. In the second case, z0 � LD , only a small fraction of
excitons created in the organics will ever notice the presence
of the semiconductor.

To illustrate our results, we plot in Fig. 2 the transfer
efficiency obtained from Eqs. (4) and (5), together with those
obtained by numerical solution of Eq. (1) with 	(z) given
by Eq. (3b). We use the material parameters corresponding
to anthracene: LD = 500 Å, α−1 ≡ (2κω/c)−1 ≈ 300 Å for
light wavelength 400 nm and κ ≡ Im

√
ε ≈ 1, a = 10 Å, and

the width of the quantum well W = 100 Å. As a function of

FIG. 2. (Color online) Transfer efficiency E as a function of the
organic layer thickness L from the numerical solution of Eqs. (1)
and (3b) (solid lines) and from Eqs. (4) and (5) (dashed lines, barely
distinguishable from the solid ones) for two values of R3

0/(L2
Da) =

1, 0.01 (upper and lower curves, respectively), corresponding to z0

about 20 Å and 2000 Å. Other parameters are α−1 = 300 Å, LD =
500 Å, a = 10 Å.
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FIG. 3. Transfer efficiency E at L = LD as a function of
R3

0/(L2
Da) from the numerical solution of Eqs. (1) and (3b) (solid line)

and from Eqs. (4) and (5) (dashed line). The rest of the parameters
are as in Fig. 2.

the organic layer thickness L, the efficiency has a maximum
at some optimal length Lopt, whose physical meaning is
quite transparent: When L is too small (especially, when
L � α−1), very few photons are absorbed, while when L

is too large (especially, when L � LD), many excitons are
lost in the organics and do not reach the organic-inorganic
interface.

Let us focus on the value of the efficiency at the maximum,
since the layer thickness usually can be chosen appropriately.
In Fig. 3 we plot the efficiency at L = LD (which approx-
imately corresponds to the maximum) as a function of the
dimensionless parameter R3

0/(L2
Da), governing the Förster

transfer strength. The maximum efficiency is reached at quite
small values of R3

0/(L2
Da). This can be easily understood from

Eqs. (4) and (5): The efficiency loses the sensitivity to the
transfer rate when z0 � LD , which occurs when R3

0/(L2
Da) �

2a/LD .
We also plot the maximum value of the efficiency, as

obtained from Eq. (4) with z0 = 0, and the corresponding
optimal length as functions of the only remaining dimension-
less parameter of the problem, αLD (see Fig. 4). The efficiency
can be arbitrarily close to unity for large αLD , and becomes
small for αLD � 1, as in this case there is no way to satisfy the
conditions α−1 < L < LD , which are necessary to combine
efficient generation of excitons and efficient transport to the
interface.

Finally, let us compare the obtained transfer efficiency E
with the efficiency Ẽ of the direct optical pumping of the
semiconductor quantum well in the absence of the organics.

FIG. 4. The maximal transfer efficiency Emax (solid line) and the
optimal organic layer thickness Lopt (in the units of LD) at which this
efficiency is reached (dashed line) as functions of αLD from Eq. (4)
with z0 = 0.

The latter is simply given by

Ẽ = 1 − e−α̃W , (6)

where α̃ = 2(ω/c)κ̃ , κ̃ = Im
√

ε̃. Taking again α̃−1 = 300 Å,
for W = 100 Å we obtain Ẽ ≈ 0.3, which is twice smaller
than the maximal efficiency of the transfer via the organic
layer, as calculated above. For a thinner quantum well, Ẽ will
be even smaller, while E changes very little as long as W > a.
The essential reason for this is the short-range nature of the
Förster transfer as compared to the optical absorption length in
the semiconductor. As a matter of fact, if a very thin
semiconductor subsystem (W � 50 Å) could be employed
on a transparent substrate, shining the pumping light from
below through the substrate (see Fig. 1) could lead to an even
higher efficiency of indirect pumping (which may depend on
the dielectric contrast of the QW/substrate interface).

IV. CONCLUDING REMARKS

We have considered a hybrid organic-inorganic heterostruc-
ture in which the organic subsystem is funneling the optically
absorbed excitation energy into the inorganic quantum well.
We have developed an analytical approach to calculate the
efficiency of such indirect pumping which is very accurate for
most cases of practical interest, and can be easily used for any
combination of materials. The relevant physical scales gov-
erning the process have been identified, the crucial role being
played by the adimensional parameters α LD and R3

0/(L2
D a).

For large values of α LD � 1 and R3
0/(L2

D a) ∼ 1, the effi-
ciency approaches 100%, while for the typical illustrative cases
here considered (based on material parameters appropriate for
II-VI semiconductors and anthracene) it is of the order of
60%. Finally, we remark that from the experimental point
of view the realization of such a hybrid organic-inorganic
heterostructure working in the weak coupling regime (i.e., not
requiring the formation of coherent hybrid Wannier-Frenkel
excitons) should be within the reach of state of the art
techniques.

In a typical nondegenerate pump and probe configuration
(the energy of the pump being significantly higher than that of
the Wannier exciton which is resonantly probed), this process
can efficiently turn on the QW exciton nonlinearities in the
inorganic subsystem, better than its direct optical pumping
and in a spatially selective way in the sense that it produces
a much stronger spatial concentration of excitations in the
inorganic subsystem close to the organic-inorganic interface.
These nonlinearities are proportional (at moderate pumping)
to the exciton population incoherently generated in the QW
following the nonradiative energy transfer, and have a recovery
time limited by the Frenkel exciton lifetime in the organ-
ics (typically several nanoseconds). The indirect pumping
here proposed could also be employed in a microcavity
configuration22 in which the QW excitons are strongly coupled
to the cavity photons and cavity polaritons are formed.23

In such systems much attention has recently been devoted
to many-body effects including the formation of a polariton
condensate and superfluidity.24
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APPENDIX: SOLUTION OF THE DIFFUSION EQUATION
AND EFFECTIVE BOUNDARY CONDITIONS

As the transfer occurs in the vicinity of the organic-
inorganic interface z = 0, the full diffusion equation with the
bulk Förster term, Eq. (1), sufficiently far from the interface
can be replaced by the same equation without the last term,

αI0e
α(z−L) − ρ

τ
+ L2

D

τ

∂2ρ

∂z2
= ∂ρ

∂t
= 0, (A1)

but with a modified boundary condition at the interface,(
ρ − z0

∂ρ

∂z

)∣∣∣∣
z=0

= 0. (A2)

The length z0 should then be determined as follows. On the
one hand, at small z � L,LD , the solution of Eq. (A1) can be
approximated by a linear function,

ρ(z) ≈ ρ(z = 0) + ∂ρ

∂z

∣∣∣∣
z=0

z. (A3)

On the other hand, at such small z we can neglect all terms in
the original Eq. (1), except the last two, which becomes

L2
D

τ

∂2ρ

∂z2
= 	(z) ρ, (A4)

considered in the half space z > 0, and supplemented by the
zero-current boundary condition at z = 0 [see Eq. (2)]. At
large z � a, the solution of Eq. (A4) is expected to have the
form,

ρ(z → ∞) = A + Bz, (A5)

where the coefficients A and B are not arbitrary, but have a
fixed ratio (since the boundary condition at z = 0 is fixed).
Since the region of validity of Eq. (A3), z � L,LD , and that
of Eq. (A5), z � a, overlap, one can match the solutions at
a � z � L,LD . This gives z0 = A/B, which thus should be
found from the solution of Eq. (A4).

Before finding z0, we give the explicit form of the stationary
solution of Eq. (A1) with the boundary condition (A2) at z = 0
and zero current at z = L:

ρ(z) = αI0τ

α2L2
D − 1

×
[
αLD sinh

L − z

LD

+ A cosh
z − z0

LD

− eα(z−L)

]
,

A ≡ αLDS + (z0/LD)C + (1 − αz0)e−αL

C + (z0/LD)S ,

C ≡ cosh
L

LD

, S ≡ sinh
L

LD

. (A6)

The exciton population, transferred to the inorganic semicon-
ductor quantum well per unit time, which for the full Eq. (1)

would be given by
∫

	(z) ρ(z) dz, is now simply determined
by the current at the interface:

E = L2
D

I0τ

∂ρ

∂z

∣∣∣∣
z=0

, (A7)

which gives Eq. (4).
Thus, all necessary information about the transfer is

encoded in the constant z0, or, more precisely, in the ratio
z0/LD . One can distinguish two limiting cases. First, when
|z0| � LD , the boundary condition is effectively ρ(z = 0) =
0. This corresponds to very efficient transfer, so the limiting
factor for pumping the quantum well is the transport through
the organic layer. Second, z0 � LD corresponds to the Förster
transfer being just a weak perturbation with respect to the
stationary solution of the diffusion equation in an isolated
organic layer, so the simple boundary condition ρ(0) = 0 is
incorrect. In the case of weak transfer, it is easy to find z0

by perturbation theory, starting from the zero-approximation
solution of Eq. (A4) with 	(z) = 0, which is just ρ(0)(z) = 1.
Substituting it in the right-hand side of Eq. (A4) and integrating
once over z, one obtains ρ(1)(z) with a finite slope at z → ∞:

1

z0
= ∂ρ

∂z

∣∣∣∣
z→∞

=
∫ ∞

0

τ 	(z)

L2
D

dz, (A8)

which gives Eq. (5) for the rate 	(z) given by Eq. (3b).
Focusing on Eq. (A4) with 	(z) given by Eq. (3b), one

may notice that the equation contains only one dimensionless
parameter, R3

0/(L2
Da). As discussed earlier, we expect it to be

of the order of unity in the most optimistic case, and smaller
if the Förster transfer is inefficient for some reason (large
dielectric mismatch, thick barrier, or weak absorption in the
quantum well). Equation (5) is valid when the transfer is weak,
that is, R3

0/(L2
Da) � 1. Now we make the crucial observation:

When R3
0/(L2

Da) ∼ 1, that is, when Eq. (5) ceases to be valid,
we already have z0 ∼ a � LD , so Eq. (4) is not sensitive to the
precise value of z0, and the boundary condition ρ(0) = 0 gives
the correct result. Only when z0 ∼ LD (or larger), the simple
boundary condition ρ(0) = 0 is wrong and the actual value of
z0 is important. Thus, Eqs. (4) and (5), in fact, correctly give
the transfer efficiency for all reasonable values of parameters.

For a scrupulous reader, we note that, strictly speaking, for
the rate 	(z) given by Eq. (3b), the boundary condition (A2)
is always incorrect, and the large-z asymptotics (A5), in fact,
never holds. The reasons for this are discussed in detail in the
rest of this appendix, the bottom line being that Eqs. (4) and (5)
turn out to give the practically correct result nevertheless. As
discussed above, in the limit R3

0/(L2
Da) � 1 the perturbative

treatment of Eq. (A4) with 	(z) given by Eq. (3b), starting
from the zero-order solution ρ(0)(z) = 1, gives the first-order
correction,

ρ(1)(z) = R3
0

L2
Da

z2

2a(z + a)
= R3

0

L2
Da

[
z

2a
+ 1

2
+ O(a/z)

]
.

(A9)

The first term in the square brackets provides the leading
contribution to the slope, the second term gives a correction
to the constant, and the rest does not contribute to the large-z
asymptotics. Let us proceed and calculate the second-order
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correction:

ρ(2)(z) = 1

2

(
R3

0

L2
Da

)2

×
[

z

3a
− ln

z + a

ae5/6
− a

z + a
+ a2/6

(z + a)2

]

= 1

2

(
R3

0

L2
Da

)2 [
z

3a
+ 5

6
− ln

z

a
+ O(a/z)

]
. (A10)

The last expression, besides the first and the second terms
which represent corrections to the slope and to the constant,
respectively, contains also a logarithmic term. Because of the
latter, the asymptotic form of Eq. (A5) does not hold, and
the derivation of the boundary condition, described above, is,
strictly speaking, invalid. Physically, the transfer rate 	(z) ∝
1/z3 turns out to be too long range, so that short-distance and
long-distance effects cannot be properly separated.

Expression (3b) gives a good approximation when the
majority of the excitations in the semiconductor quantum well
is created sufficiently close to the organic-inorganic interface
at z = 0. As will be seen later, this is true in the most important
case of W � a. The effect of the finite quantum well width
can be studied using the expression,

	(z) = 1

τ

[
R3

0

(z + a)3
− R3

0

(z + W )3

]
, (A11)

obtained by the integration of 1/r6 over the slab −W < z <

−a. Such a simple expression is valid only if one neglects the
dielectric constant mismatch between the organic layer, the
semiconductor quantum well, and the substrate, but contains
the relevant physics to discuss the validity of the effective
boundary conditions.

The finite width of the quantum well modifies the asymp-
totics of 	(z) at z � W , which becomes 	(z) ∝ 1/z4 [see
Eq. (A11)]. Thus, W provides the upper cutoff for the
logarithm and also determines the length scale at which the
effective boundary condition, Eq. (A2), can be used (namely, at
z � W ). However, the problem is back when the quantum well
is too thick, W � min{L,LD}, since then there is no window
W � z � L,LD where one could match the two asymptotic
forms. In this case, the logarithm should be cut off at

z ∼ min{L,LD}, and z0 is defined only with logarith-
mic precision [i.e., neglecting O(1) in comparison with
ln(min{L,LD}/a)].

In practice, however, the presence of the logarithm does not
spoil too much the validity of Eqs. (4) and (5) for the transfer
efficiency. Indeed, when R3

0/(L2
Da) � 1, the logarithm is

suppressed by a small factor. Even when R3
0/(L2

Da) ∼ 1,
the precise value of z0 affects Eq. (4) only when z0 �
LD , so the logarithm can spoil the final result only when
min{L,LD,W } � a exp(LD/a), which does not seem to be
realistic. As a consequence, for the cases of practical interest,
Eq. (3b) can be used rather than Eq. (A11) and, typically, the
most efficient transfer rate can be estimated using Eqs. (4) and
(5) (or even setting z0 = 0).

There is another formal problem, arising when the main
mechanism of exciton diffusion in the organic layer is the
Förster transfer between organic molecules. Then, strictly
speaking, the second spatial derivative in the diffusion equation
should be replaced by

∂2ρ

∂z2
→ a′

∫ ∞

0
dz′ θ (|z − z′| − a′)

ρ(z′) − ρ(z)

(z − z′)4
, (A12)

where a′ is a short-range cutoff of the order of the lattice
constant in the organics (which, generally speaking, does not
have to exactly coincide with a, responsible for the transfer
between the organics and the semiconductor), and θ denotes
the step function which excludes the region |z − z′| < a′
from the integral. Normally, one expands ρ(z′) around z′ = z

to the second order in z′ − z, and taking advantage of the
convergence of the integral, replaces the integral operator by
the differential one. However, a detailed inspection of Eq. (A4),
modified by replacement (A12), shows that it does not admit
an asymptotic solution in the form ρ(z → ∞) = A + Bz, and
thus is not equivalent to the differential equation. Still, in the
perturbative regime, R3

0 � L2
Da, we expect the estimate (5)

to be valid, as it ensures the overall particle conservation, and
the perturbative regime is the only one when the actual value
of z0 matters, as discussed above. In addition, we expect the
long-range nature of the transport across the organics only to
improve our estimates for the efficiency, so a detailed study of
effects of the replacement (A12) is beyond the scope of this
paper.
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