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Theory of a quantum critical phenomenon in a topological insulator: (3 + 1)-dimensional quantum
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We study theoretically the quantum critical phenomenon of the phase transition between the trivial insulator
and the topological insulator in (3 + 1) dimensions, which is described by a Dirac fermion coupled to the
electromagnetic field. The renormalization group (RG) equations for the running coupling constant α, the speed
of light c, and electron v are derived. The almost exact analytic solutions to these RG equations are obtained to
reveal that (i) c and v approach to the common value with combination c2v being almost unrenormalized, (ii) the
RG flow of α is the same as that of usual QED with c3 being replaced by c2v, and (iii) there are two crossover
momentum/energy scales separating three regions of different scaling behaviors. The dielectric and magnetic
susceptibilities, angle-resolved photoemission spectroscopy (ARPES), and the behavior of the gap are discussed
from this viewpoint.
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I. INTRODUCTION

In solids, the electronic states are described by the Bloch
wave functions with the energy dispersion εn(�k) where
n being the band index and �k the crystal momentum.
The velocity of electrons given by �vn(�k) = ∂εn(�k)/∂ �k is
usually much smaller than that of light c. Therefore, the
Lorentz invariance is terribly broken and hence many of
the beautiful results in quantum electrodynamics (QED)1

are not applicable to the Bloch electrons in solids. The
smallness of the factor vn(�k)/c � 1 naturally leads to the
gauge choice (i.e., Coulomb gauge) where the scalar potential
gives the Coulomb interaction without retardation while the
electron-electron interaction through the transverse part of
the vector potential �A is often neglected. The latter is often
treated as the external electromagnetic field for the probe
of the electromagnetic response of the system. This gauge
choice is regarded as the “physical gauge.” For example, one
can discuss the physical meaning of the Green’s function
G(�k,ω) in this gauge where the quasiparticle corresponds its
pole structure. Angle-resolved photoemission spectroscopy
(ARPES) is also formulated in this gauge [i.e., ARPES
intensity is proportional to the electron spectrum function
−ImG(�k,ω)].2

While the nonrelativistic quantum mechanics is basically
justified for the electrons in solids, there are some cases where
the Dirac fermions appear in the electronic band structure.
A representative case is graphene, a two-dimensional sheet
of carbon network with hexagonal lattice, where the 2 × 2
Dirac spectrum near K and K ′ points describes the low-
energy physics.3 Another example is Bi, which is described
by 4 × 4 Dirac fermions and shows the enhanced orbital
diamagnetism.4 Recent advances in this field are the discovery
of the topological insulator and its associated quantum phase
transition.5,6 The relativistic spin-orbit interaction (SOI) rear-
range the spin states to yield the “twist” of the Bloch wave

functions in the first Brillouin zone. This twist is characterized
by the Z2 topological integer. In general, topological integers
can change only discontinuously when the gap closes, which
can be described by the local Hamiltonian in k space. When the
inversion symmetry exists, the effective Hamiltonian near this
quantum phase transition is the Dirac Hamiltonian expanded
around the time-reversal invariant momentum (TRIM) �k0 (�k0

is equivalent to −�k0). In this case, the orbitals and spins
are coupled to form the 4 × 4 Dirac Hamiltonian and the
sign change of the mass m corresponds to the quantum
phase transition between trivial insulator and topological
insulator. This story is actually realized in the materials such
as BiTl(S1−xSex)2 by changing the concentration x.7,8

The effects of the electron-electron interaction on the Dirac
electrons are also extensively studied.9–12 For graphene, it
has been revealed that the electron speed v is renormal-
ized to increase logarithmically by the long-range Coulomb
interaction, while the coupling α is marginally irrelevant.9

When the exchange of the transverse part of the vector
potential is taken into account, the velocity v saturates to
that of light c (i.e., the Lorentz invariance is recovered)
and α remains finite in the infrared limit. This leads to an
intriguing non-Fermi liquid state in (2 + 1) dimensions.10 For
the (3 + 1)-dimensional [(3 + 1)D] case, the Coulomb inter-
action also gives the logarithmic enhancement of the velocity
v and the coupling constant α is marginally irrelevant.11,12

The disorder potential is irrelevant perturbatively, while
the strong enough disorder drives the system toward the
compressible diffusive metal (CDM).11,13 However, the effect
of the transverse part of the vector potential in (3 + 1)
dimensions has not yet been studied to the best of our
knowledge.

In this paper, we study the quantum critical phenomenon
of topological phase transition in (3 + 1) dimensions. The
Coulomb interaction as well as the transverse current-current
interaction are considered.
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II. DIRAC FERMIONS IN (3 + 1) DIMENSIONS IN
ABSENCE OF LORENTZ INVARIANCE

A. Model

We start with the following Lagrangian:14

L = ψ̄(γ 0p0 − v �γ · �p − m)ψ + 1

2

(
ε �E2 − 1

μ
�B2

)

− eψ̄γ 0ψA0 − e
v

c
ψ̄γ αψAα, (1)

where α is a spatial index (α = 1,2,3) and γ αpα = −�γ · �p.
For the moment, we consider the critical point (i.e., m = 0).
The renormalization of the mass m will be discussed later.
The speed of light in material c and in vacuum cvacuum =
3 × 108 m/s are related through the permittivity ε and the
permeability μ by c2 = c2

vacuum/(εμ). We use a (+ − −−)
metric. The electric field and magnetic field are represented in
terms of the photon field Aμ as

�E = −1

c

∂ �A
∂t

− �∇A0, �B = 1

c
�∇ × �A.

The electron propagator G0(p), the photon propagator D
μν

0 (p)
and the vertex are given by

G0(p) = i

γ 0p0 + vγ αpα + i0
, (2)

D
μν

0 (q) = −igμν

ε
(
q2

0 − c2q2
α

) + i0
, (3)

vertex = −ieγ 0 or − ie
v

c
γ α. (4)

Here we employ the Feynman gauge because physical quanti-
ties are independent of gauge choice.

B. Perturbative renormalization group analysis

Calculations are performed by using dimensional regular-
ization not to violate the gauge invariance of the theory. We set
the space-time dimension d = 4 − ε to regularize divergences.
The self-energy 
(p), polarization �

μν

2 (q), and the vertex
correction δμ(p′,p) all to one-loop order (Fig. 1) are obtained
as follows:


(p) = e2/ε

4π2ε

1

(c + v)2c

[
1 − 3

(
v

c

)2]
γ 0p0

+ e2/ε

12π2ε

2c + v

(c + v)2cv

[
1 +

(
v

c

)2]
v �γ · �p, (5)

�
μν

2 (q) = (q2gμν − qμqν)

(
v

c

)2−δμ0−δν0 1

v3
�2(q), (6)

FIG. 1. Feynman diagrams considered here: (a) self-energy,
(b) polarization, (c) vertex.

where

�2(q) = − e2

6π2ε
+ O(ε0),

and

δ0(0,0) = − e2/ε

4π2ε

1

(c + v)2c

[
1 − 3

(v

c

)2
]

γ 0, (7a)

δα(0,0) = e2/ε

12π2ε

2c + v

(c + v)2cv

[
1 +

(v

c

)2
]

v

c
γ α. (7b)

Comparing the result of the vertex correction Eq. (7) with the
self-energy Eq. (5), we can confirm that the Ward-Takahashi
identity is satisfied to one-loop order.

The diverging quantities appearing through the calculation
of the one-loop diagrams are absorbed by rescaling some
quantities. We can write the renormalized Lagrangian in the
form

L = ψ̄(Z2t γ
0k0 + Z2svγ αpα)ψ + 1

2

(
Z3eε �E2 − Z3m

1

μ
�B2

)

− eZ1t ψ̄γ 0ψA0 − eZ1s

v

c
ψ̄γ αψAα. (8)

Then we obtain the following RG equations using a momentum
scale κ:

κ
dv

dκ
= −e2/ε

6π2

1

(c + v)2

[
1 + 2

(
v

c

)
+

(
v

c

)2

− 4

(
v

c

)3]
,

(9)

κ
dc

dκ
= e2/ε

12π2

c2 − v2

c3v
, (10)

κ
d(e2/ε)

dκ
= (e2/ε)2

6π2

1

c2v
. (11)

The coupling constant α is defined by α = e2/(εc2v). The
numerical solutions for the RG equations are shown in
Fig. 2 for the initial (bare) values of v0 = 0.01, c0 = 0.5,

and α0 = 1.
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(c2v)1/3

κ=κ1 κ=κ2

FIG. 2. (Color online) Solution to the RG equations for v, c, and
α. We set the initial values v0 = 0.01, c0 = 0.5, and α0 = 1. For
v, c, and α, the analytic solutions (solid lines) show a very good
agreement with the numerical solutions (points). The dashed line for
c2v, obtained numerically, is almost constant for all momentum scale.
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The result shows some important features. First, we can
see that the quantity c2v is almost constant for all momentum
scales and remains c2

0v0. This fact enables the approximate but
accurate analysis of the scaling functions as described below.
Second, the speed of electron v and that of photon c approach
to the same value c∞ = (c2

0v0)1/3 in the infrared (IR) limit.
Third, the coupling constant α becomes small in the IR region,
which justifies our perturbative RG analysis. Therefore, the
quantum critical phenomenon of 3D topological insulator is
an ideal laboratory to study the QED in a solid, even though
the Lorentz invariance is broken to a large extent in the original
(bare) Lagrangian.

C. Analytic solutions

Now we study the solution to the RG equation in more
detail. The approximate relation c2v = c2

0v0 makes the analysis
much easier, and we can obtain the analytic solution. By
replacing c2v by c2

0v0, the RG equation for e2/ε [Eq. (11)]
is exactly the same as in the conventional QED. Therefore, the
RG equation for the coupling constant α is

κ
dα

dκ
= α2

6π2
, (12)

and its solution is obtained as

α(κ) = α0

1 + α0
6π2 ln

(
κ0
κ

) , (13)

where κ0 is the momentum cutoff. This approximate solution
fits the numerical solution very well as shown in Fig. 2. The
precision of the analytic solution is discussed in Appendix.

With α(κ) being obtained, one can solve the RG equation
(10) for c as

c6(κ) − c4
0v

2
0 = (

c6
0 − c4

0v
2
0

)[
1 + α0

6π2
ln

(
κ0

κ

)]−3

. (14)

and v(κ) = c2
0v0/[c(κ)]2. These analytic solutions are again

compared with the numerical solutions in Fig. 2, and a good
agreement is obtained.

Here we can identify the two momentum scales, κ1 and
κ2. κ1 is defined as the scale where the renormalization effect
becomes appreciable [i.e., α0

6π2 ln( κ0
κ1

) ∼= 1]. The second one κ2

is defined as c(κ2) ∼= v(κ2) (i.e., the two velocities approaches
to each other). These two scales are estimated as

κ1 = exp

[
− 6π2

α0

]
κ0, (15a)

κ2 = exp

[
− 6π2

α0

(
c0

v0

)2/3]
κ0, (15b)

and κ2 � κ1 � κ0, assuming α0/(6π2) � 1 and v0/c0 � 1.
These two momenta separate the three regions: (i) perturbative
region κ1 � k � κ0, the renormalization effect is small and
perturbative; (ii) nonrelativistic scaling region κ2 � k � κ1,
the renormalization effect is large, while c(κ) � v(κ) still
holds; and (iii) relativistic scaling region k � κ2, c ∼= v and
the Lorentz invariance is recovered.
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FIG. 3. (Color online) Analytic solutions to the RG equations
for the permittivity ε and the permeability μ. The characteristic
momentum scales are different for ε and μ.

D. Electromagnetic properties

Let us discuss the permittivity ε(κ) and the permeability
μ(κ) = 1 + 4πχ (χ : magnetic susceptibility). The analytic
solutions obtained from Eq. (11) and μ = 1/(εc2) are shown
in Fig. 3. The momentum scale κ can be regarded as the
temperature T by T ∼= v(κ)κ . As noted above, the velocity
v(κ) is the function of the momentum scale, hence the energy
dispersion E(k) = v(k)k is a nonlinear function of k. From
the definition of κ1 and κ2, v(κ1) ∼= v0 and v(κ2) ∼= c∞,
and the corresponding temperatures are estimated as T1 =
T (κ1) ∼= v0κ1 and T2 = T (κ2) ∼= c∞κ2. In Fig. 3, it can be
seen that the permittivity ε(κ) grows logarithmically below
T1 while the permeability μ(κ) decreases below T2. The
orbital magnetic susceptibility χ without the electron-electron
interaction logarithmically diverges as a function of T , but in
our analysis the logarithmic divergence is canceled due to the
renormalization of v. These contrasting behaviors of ε and μ

facilitate the identification of T1 and T2 experimentally. In the
zero-temperature limit ε diverges while μ goes to zero (i.e.,
the perfect diamagnetism χ = −1/(4π ) is accomplished).

E. Spectral function

For the physical interpretation of the electron Green’s
function, we should consider the self-energy in Coulomb
gauge as discussed above. In Coulomb gauge,15 the electron
self-energy is


(p) = − e2/ε

2π2ε

v2

c3(c + v)2
γ 0p0 + e2/ε

6π2ε

1

v(c + v)2

×
[

1 + 2

(
v

c

)
+

(
v

c

)2

−
(

v

c

)3]
v �γ · �p. (16)

In principle, ARPES can measure the energy dispersion
E(k) = v(κ = k)k, which shows crossovers at κ1 and κ2.
For the spectral function of electrons, the electron field
renormalization is required, which is given by

γ2(v,c,e2/ε; κ) = 1

2
κ

d ln Z2t

dκ
= e2/ε

4π2

v2

c3(c + v)2
. (17)
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From the Callan-Symanzik equation, the electron Green’s
function is modified by the momentum-scale-dependent func-
tions v(k), α(k), and γ2(k), then we obtain

G(�k,ω) = G(α(k))

ω2 − v2(k)�k2
exp

[
2
∫ k

�

d ln

(
k′

�

)
γ2(α)

]
, (18)

where k′ = (ω′,v �k′) is a four-momentum, � is the energy
cutoff, and G is a function determined from a perturbative
renormalization calculation.

In region (i), γ2 = 0, so the Green’s function is unchanged.
In region (ii), κ dependence of γ2 is rather complicated to
calculate G(�k,ω), so we only consider the relativistic scaling
region (iii), where v approaches c and the original QED regime
is applicable. When we put c = v = c∞, γ2(k) is expressed as

γ2(k) = α(k)

16π2
= α0

16π2

1

1 + α0
6π2 ln

(
�
k

) , (19)

and the perturbative correction for G is

G(α(k)) = 1 + α(k)

16π2
ln

(
eγ

4π

)
+ O(α2). (20)

Then, the Green’s function becomes

G(�k,ω) = G(α(k))

ω2 − c2∞�k2

1[
1 + α0

12π2 ln
(

�2

ω2−c2∞�k2

)]3/4 . (21)

By substituting ω with ω + i0, the imaginary part of the
Green’s function −ImG(�k,ω) gives the electron spectral
function. The electron spectral function has finite value for
|ω| < |�k|, while −ImG(�k,ω) = 0 outside that region. As
depicted in Fig. 4, the perturbative correction for G gives
very small contribution, so we put G = 1 in the following
analysis. When the bare coupling constant α2

0 is small enough,
the spectral function has the approximate form

−ImG(�k,ω) ∼ aδ
(
ω2 − c2

∞�k2
) + α0

32πc∞|�k|
×

(
1

c∞|�k| − ω
+ 1

c∞|�k| + ω

)
, (22)

-2 -1  0  1  2

− Im G(ω)

ω /(c∞k)

FIG. 4. (Color online) Frequency dependence of the density of
states in region (iii) with α0 = 1. The vertical axis is in linear but
arbitrary scale. The solid line denotes the result with the perturbative
correction in G, while the dashed line depicts the result for G = 1.

where the residue a is a constant determined from the sum rule.
The δ function peak with finite a means that the system remains
a Fermi liquid in sharp contrast to the (2 + 1)D case,10 while
the continuum state for |ω| < c∞k comes from the interaction
as shown in Fig. 4.

F. Energy gap

Up to now, we have focused on the critical point (m = 0),
but the mass m is a relevant parameter. Experimentally, the
bare mass m0 can be controlled by the concentration x or by
pressure P .7,8 The RG equation for mass m(κ) is

κ
dm(κ)

dκ
= −3α(κ)

8π2
m. (23)

Then, the mass at momentum scale p is

m(p) = m(�)

[
1 + α0

6π2
ln

(
�

p

)]9/4

. (24)

When we neglect the weak singularity with log log m0, the
solution to Eq. (24) is given by m = m0[1 + α0

6π2 ln( �
m0

)]9/4,
which describes the critical behavior of the gap as a function
of m0 ∝ (x − xc) or m0 ∝ (P − Pc) with xc (Pc) being the
critical concentration (pressure).

III. DISCUSSION AND SUMMARY

Now we discuss the relevance of the present results to the
real systems. The velocity v0 is estimated at v0

∼= 106 m/s
from the ARPES measurement of the energy dispersion,7

hence cvacuum/v0
∼= 300. As the dielectric constant, we

take the typical value ε0
∼= 102 for BiSb alloys.16 Since

c0 = cvacuum/
√

ε0, c0/v0
∼= 30, (c0/v0)2/3 ∼= 10, and α0 =

(cvacuum/v0) × 1/137 ∼= 3 are obtained. These values give the
estimates for κ1

∼= 10−8κ0 and κ2 being extremely small.
Unfortunately, it would be difficult to observe the effect of
electron-electron interaction and the scaling behavior at the
experimentally accessible temperature in the materials at hand.
However, there are many candidates for the correlated topolog-
ical insulators recently proposed and partly synthesized.17–28

The smaller value of v0 rapidly (exponentially) increases κ1,
which gives the clue to look for the appropriate materials to
study the scaling behavior of the quantum criticality.

In summary, we have studied the (3 + 1)D Dirac electrons
coupled to electromagnetic field as the model for the quantum
critical phenomenon of the transition between topological in-
sulator and trivial insulator. The RG equations are derived and
the two scaling regions are identified (i.e., the nonrelativistic
and relativistic scaling regions). The Lorentz invariance is
recovered in the latter case. The physical properties such as
the the permittivity, the permeability, and the electron spectral
function have been discussed based on the RG equations.
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APPENDIX: PRECISION OF THE ANALYTIC SOLUTIONS

In the appendix, we consider the precision of the analytic
solutions to the RG equations, especially the validity of the
relation c2v = const. In this section, we define x = 1 − v/c,
y = c2v. The RG equations for x, y and e2/ε are

κ
dx

dκ
= e2/ε

12π2

1

y
f (x), (A1)

κ
dy

dκ
= −e2/ε

6π2
g(x), (A2)

κ
d(e2/ε)

dκ
= (e2/ε)2

6π2

1

y
, (A3)

where

f (x) = x(1 − x)(24 − 34x + 12x2 − x3)

(2 − x)2
, (A4)

g(x) = x2(1 − x)2

(2 − x)2
. (A5)

From Eqs. (A2), (A3), we obtain

e2/ε

y

dy

d(e2/ε)
= −g(x). (A6)

We assume v � c, i.e. 0 � x � 1, so that 0 � g(x) � 17 −
12

√
2 ∼= 0.03. The RHS of Eq. (A6) is small, so the relative

difference of y is

y(κ)

y0
∼

[
(e2/ε)(κ)

e2
0/ε0

]−g(x)

. (A7)

The maximum value g(x) ∼= 0.03 is rarely observed. Thus,
y = c2v can be regarded as a constant to a large extent.
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