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Magnetic-field-induced dimensional crossover in the organic metal α-(BEDT-TTF)2KHg(SCN)4
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The field dependence of interlayer magnetoresistance of the pressurized (to the normal state) layered
organic metal α-(BEDT-TTF)2KHg(SCN)4 is investigated. The high quasi-two-dimensional anisotropy, when
the interlayer hopping time is longer than the electron mean-free time and than the cyclotron period, leads to a
dimensional crossover and to strong violations of the conventional three-dimensional theory of magnetoresistance.
The monotonic field dependence is found to change from the conventional behavior at low magnetic fields to an
anomalous one at high fields. The shape of Landau levels, determined from the damping of magnetic quantum
oscillations, changes from Lorentzian to Gaussian. This indicates the change of electron dynamics in the disorder
potential from the usual coherent three-dimensional regime to a new regime, which can be referred to as weakly
coherent.

DOI: 10.1103/PhysRevB.86.165125 PACS number(s): 72.15.Gd, 74.70.Kn, 73.43.Qt

I. INTRODUCTION

Highly anisotropic layered conductors in a strong magnetic
field may undergo a dimensional crossover from three-
dimensional (3D) to almost two-dimensional (2D) electron
dynamics when the interlayer transfer integral t⊥ becomes
smaller than the other relevant parameters: the scattering rate
and the cyclotron frequency. This crossover may change the
electronic transport properties in various layered compounds:
organic metals, heterostructures, intercalated compounds, su-
perconductive cuprates and pnictides, cobaltates, etc. Scatter-
ing by crystal disorder is one of the most frequently discussed
mechanisms of breaking the interlayer band transport in
layered metals. If the scattering rate τ−1 is larger than the
interlayer hopping rate, τ−1

h ∼ t⊥/h̄, the quasiparticle momen-
tum and Fermi surface are only defined within conducting
layers, i.e., become strictly 2D. However, the interlayer
electron tunneling may still be “coherent” and conserve
the in-plane electron momentum. The corresponding regime
was called “weakly incoherent.”1,2 In the literature there has
been a long-time discussion, supported by theoretical2–13 and
experimental13–19 arguments, whether this weakly incoherent
regime can be distinguished from the usual three-dimensional
(3D) electron transport. Up to now, no considerable qualitative
differences between 3D and weakly incoherent regimes have
been suggested or observed. The only significant predicted
change in the weakly incoherent regime is the absence of
the narrow “coherence peak” on the angular dependence of
magnetoresistance when the magnetic field is directed along
the conducting layers.1,2 However, the absence of even this
subtle feature in the weakly incoherent regime has not received
a sound proof yet. Hence, for a long time it was believed1,2,8,9,20

that in this regime the interlayer resistivity ρ⊥(T ) is nearly
identical to that in the fully coherent 3D case.

Another possible mechanism of dimensional crossover
is associated with external magnetic field B.21 Indeed, the
behavior of magnetic quantum oscillations (MQO) is sub-
stantially modified7,22–28 when the cyclotron frequency ωc =
eB/mc becomes larger than the interlayer hopping rate τ−1

h .
However, the existing theories predict no significant changes
in the electron dynamics at weak (but coherent) interlayer

electron hopping unless additional mechanisms of interlayer
electron transport such as interlayer hopping via the resonance
impurities3,9,13 or boson-assisted4,6 tunneling are concerned.29

In this work we show that the parameter b∗ ≡ h̄ωc/t⊥ drives
a transition between two qualitatively different regimes of
electron dynamics. There are several principal distinctions
in the field dependence of interlayer magnetoresistance at
b∗ � 1, originating from the qualitatively different influence
of disorder on electronic properties. These changes cannot
be explained by a simple extension of the formulas in
Refs. 24 and 26 to the case b∗ � 1, which unambiguously
separates this regime from b∗ � 1. We refer to this new
regime as “weakly coherent”: it implies a conservation of the
in-plane electron momentum by the interlayer tunneling term
in the Hamiltonian; on the other hand, the time scale of this
tunneling is much larger than the cyclotron period. Note that
the parameter b∗ ≡ h̄ωc/t⊥ is completely different from the
parameter h̄/t⊥τ , which was used1,2 to separate the coherent
and weakly incoherent regimes. The proposed weakly coherent
regime imposes no limitation on the value of parameter h̄/t⊥τ .
Therefore, strictly speaking, there is no direct relation between
the weakly incoherent and the newly defined weakly coherent
regimes. On the other hand, the compounds satisfying the
condition of the weakly incoherent regime are automatically
driven to the weakly coherent regime by a strong magnetic
field such that ωcτ > 1.

Here we present a joint theoretical and experimental
study of the weakly coherent regime, on the example of
the layered organic metal α-(BEDT-TTF)2KHg(SCN)4. The
title compound has a strong anisotropy with the interlayer
transfer integral17 t⊥ ∼ 30 μeV at ambient pressure. It un-
dergoes a charge-density-wave transition at ≈8.5 K, which
can be suppressed by applying an external pressure P >

Pc ≈ 2.5 kbars.32,33 To avoid complications related to the
zero-field and magnetic-field-induced charge-density-wave
states,34,35 a pressure of 6 kbar, considerably exceeding Pc,
and temperatures above 1 K were used, so that the compound
was in the fully normal metallic state in our experiment.
The corresponding Fermi surface consists of a cylinder
(quasi-2D band) and a pair of weakly warped open sheets
(quasi-1D band). The interlayer transfer integral at P = 6 kbar,
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estimated from the width of the coherence peak in the angular
dependence of the interlayer magnetoresistance,36,37 is slightly
higher than at ambient pressure, t⊥(6 kbar) 	 45 μeV. Still,
the weakly coherent criterion b∗ � 1 is satisfied at an easily
accessible field Bz � t⊥mc/eh̄ 	 0.5 T, where mc ≈ 1.3me

is the relevant cyclotron mass. As will be shown below, the
interlayer conductivity in fields above 2 T is largely determined
by the quasi-2D carriers, so we will restrict our analysis to the
case of a cylindrical Fermi surface.

II. THEORETICAL BACKGROUND

The first step in the theoretical analysis of the weakly
coherent regime was made recently in Refs. 10–12, where
it was shown that in the regime where weakly coherent
and weakly incoherent criteria overlap the earlier theoretical
conclusion1,2,8 that the interlayer resistivity ρ⊥(T ) is identical
to that in the fully coherent three-dimensional (3D) case
is not valid. The new analysis, going beyond the constant
relaxation time approximation used in the earlier works,1,2,26,27

has predicted several qualitatively new features of interlayer
magnetoresistance in the weakly coherent regime.

The first prediction is a monotonic growth of the magnetore-
sistance, averaged over MQO, with an increase of magnetic
field, parallel to the current and perpendicular to the conducting
layers.10–12 This increase, contradicting the classical theory of
magnetoresistance even for quasi-2D metals,24,26 is due to the
enhancement of the effect of short-range impurities caused
by a magnetic field and follows directly from the monotonic
growth ∝ √

Bz of the Landau-level (LL) broadening due to the
short-range impurity scattering.38 It is not related to the low
crystal symmetry. The field dependence of the nonoscillating
component of the interlayer conductivity is given by10–12

σ̄zz(B) ≈ σ0[(αωcτ )2 + 1]−1/4. (1)

The numerical coefficient α ≈ 2 before ωcτ is not universal
and slightly depends on the shape of LLs.11

The second prediction for the weakly coherent regime10 is a
modification of the angular dependence of magnetoresistance
due to a decrease of the effective mean scattering time τ

with an increase of the interlayer component Bz = B cos θ

of magnetic field [see Eqs. (36) and (37) of Ref. 10]. An
accurate comparison of this effect with experiment on α-
(BEDT-TTF)2KHg(SCN)4 requires elimination of the angular
dependence associated with the quasi-1D parts of the Fermi
surface which is beyond the scope of this work.

The third prediction of the theory in Refs. 10–12 is the
growth of the Dingle temperature of MQO with an increase of
magnetic field and, hence, the stronger damping of MQO.
Naively, since the LL width � ≡ h̄/2τB in the single-site
approximation38 grows at ωcτ � 1 as τ/τB ≈ [(2ωcτ )2 +
1]1/4 ∝ √

Bz, one would expect the similar square-root growth
of the Dingle temperature TD(Bz). However, this simple
conclusion is incorrect for two reasons: (i) the square-root
growth of the LL width appears only for a short-range impurity
potential, while in organic and many other layered metals the
main contribution to the LL broadening often comes from a
long-range disorder potential,25 and (ii) the MQO damping
factor is determined not only by the width of LLs, but also by
their shape.

To check this we substitute the density of state (DoS)

ρ(ε) =
∑
n�0

D [ε − h̄ωc(n + 1/2)] (2)

to the expression for the interlayer conductivity, obtained as a
linear response from the Kubo formula [see Eq. (14) of Ref. 11
and note that ρ(ε) = −ImGR(ε)/π ]:

σzz = πσ0�0h̄ωc

∑
s=↑,↓

∫
dε[−n′

F (ε)]|ρs(ε)|2. (3)

As long as the shape and width of LLs do not change with
temperature, the temperature harmonic damping factor RT is
described by the usual Lifshitz-Kosevich expression: RT (k) =
kX/ sinh(kX) , where X ≡ 2π2kBT /h̄ωc. Now substituting
the DoS from Eq. (2) to Eq. (3) and applying the Poisson
summation formula, we obtain at NLL � 1

σzz

σ̄zz

=
∞∑

k=−∞
(−1)k exp

(
2πikμ

h̄ωc

)
RD(k)RT (k)RS(k), (4)

where the averaged over MQO interlayer conductivity σ̄zz is
given by Eq. (1), the spin-splitting damping factor22 RS(k) =
cos(πkgm∗/2), μ is the Fermi energy, m∗ ≡ mc/me is the
effective cyclotron mass normalized to the free-electron mass,
and the Dingle factor

RD(k) = 2π�

∫ ∞

−∞
exp

(
2πikE

h̄ωc

)
|D(E)|2dE. (5)

The traditional Lorentzian shape of LLs with the half
width �, DL(E) = (π�)−1/[1 + (E/�)2], after substitution
into Eq. (4) gives the Dingle factor

RDL(k) = exp (−2πk�/h̄ωc) (1 + 2πk�/h̄ωc) . (6)

As was shown in Refs. 24,26, and 39, it differs from the
standard Dingle factor, valid in the case t⊥ � h̄ωc:

RDL(k) ≈ exp (−2πk�/h̄ωc) . (7)

However, this difference does not considerably change the
Dingle plot, i.e., the field dependence of the logarithm of the
Dingle factor:

ln RDL = −2π�/h̄ωc + ln (1 + 2πk�/h̄ωc)

= −B0/B + ln (1 + B0/B) , (8)

where B0 = 2πk�mc/h̄e. In a strong field, when ωcτ � 1 the
ratio B0/B is small and the correction ln(1 + B0/B) � 1. In
the opposite limit, ωcτ � 1 or B � B0, the field dependence
coming from the first term in Eq. (8) is much stronger than
weak logarithmic dependence from the second term. Hence,
the factor (1 + 2πk�/h̄ωc) gives only a small correction to the
field dependence of the MQO amplitude [see Fig. 3 below for
comparison of Eqs. (6) and (7)], and one usually can apply
Eq. (7) for the analysis of the Dingle plots.

If one assumes � to be independent of B, Eq. (7) gives the
standard result:

RDL(k) ≈ exp (−const · k/Bz) , (9)

while if � ∝ √
Bz as in the self-consistent Born

approximation,38 Eq. (7) gives

R∗
DL(k) ≈ exp(−const · k/

√
Bz). (10)
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The Gaussian shape of LLs, DG(E) =
(
√

π�)−1 exp(−E2/�2), gives the Dingle factor

RDG(k) =
√

π/2 exp[−(πk�/h̄ωc)2/2]. (11)

The theory predicts the Gaussian shape of the Landau levels
(for a review see, e.g., Ref. 40) for a physically reasonable
white-noise or Gaussian correlator of the disorder potential
U (r):

Q(r) = 〈U (0)U (r)〉 ∝ exp(−r2/2d2). (12)

For a long-range disorder potential, when d � lB ≡ √
h̄/eB,

the LL width � is independent of B [see, e.g., Eq. (2.9) of
Ref. 40]. Then even the magnetic-field dependence of the
Dingle factor is different from the 3D case:

RDG(k) =
√

π/2 exp
[ − const · k2/B2

z

]
. (13)

For a short-range impurity potential d � lB , one obtains the
white-noise correlator Q(r) ≈ const · δ(r). Then the depen-
dence of the level width on magnetic field, in a strong field, at
NLL � 1, � ∝ √

Bz is in agreement with Refs. 38 and 41. The
Dingle factor Eq. (11) in this case has a similar to the 3D case
magnetic-field dependence, but a stronger damping of higher
harmonics:

R∗
DG(k) =

√
π/2 exp[−const · k2/Bz]. (14)

Equations (9), (10), (13), and (14) suggest that it is possible
not only to distinguish experimentally between the Lorentzian
and Gaussian shapes of LLs but also to obtain information
about the range of scatterers and the physical origin of the
LL broadening. For the Gaussian shape of LLs the higher
harmonics of MQO are much stronger damped than for
Lorentzian LL shape because the exponent contains k2 instead
of k. The Dingle plot, i.e., the plot of the logarithm of the
MQO amplitudes as a function of inverse magnetic field, gives
additional information about the origin of the LL broadening.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Nonoscillating magnetoresistance

Plotted in Fig. 1 are the raw data on the field dependence
of interlayer magnetoresistance Rzz(B) of α-(BEDT-TTF)2-
KHg(SCN)4, (dashed gray curve) in a field perpendicular
to layers, B‖z, along with its monotonic background part
RB

zz (solid black curve), obtained by filtering out the MQO
component. Note that due to the very high amplitude of the
oscillations comparable to the monotonic background, the
data should be treated in terms of conductivity σzz(B) ∝
1/Rzz(B) rather than resistivity. Hence, for extracting the
background, the as-measured resistance was first inverted, then
the oscillations were subtracted using a Fourier filter and the
result was again inverted to obtain RB

zz(B) shown in Fig. 1.
The theory10–12 predicts that the background magnetore-

sistance changes proportional to
√

B in the weakly coherent
regime when ωcτ � 1; see Eq. (1) above. To compare this
prediction with the observed dependence Rzz(B), in Fig. 2 we
plot the data on Rzz as a function of

√
B. From this plot one

can see that background magnetoresistance is indeed perfectly
linear in this scale in the range 1.5 < B < 16 T. One can fit
the data in this range by modeling the resistance as a sum

FIG. 1. Interlayer magnetoresistance of α-(BEDT-TTF)2

KHg(SCN)4 measured as a function of magnetic field perpendicular
to the layers at T = 1.6 K (dashed gray line) and its monotonic
component RB

zz(B) (solid black line) obtained by filtering out the
MQO (see text).

of a term R̄zz(B) ∝ 1/σ̄zz(B), determined by Eq. (1), and
a field-independent term comparable to R̄zz(B = 0). The fit
shown as a dashed-dotted line in Fig. 2 yields an estimation
for the zero-field scattering time τ = 4.3 ps (using α = 2). The
B-independent term included in the fit appears due to scattering
on dislocations and/or phonons, which does not depend on
magnetic field and contributes to the total scattering rate 1/τ .

At fields below 1.5 T the strong-field criterion is not fulfilled
for this crystal, which leads to a deviation from the linear

√
B

dependence. Additionally, one has to take into account the
influence of carriers on the quasi-1D part of the Fermi surface
contributing about the same density of states as the quasi-2D
carriers considered here. The part of σzz originating from the

FIG. 2. (Color online) The same data as in Fig. 1 plotted vs
√

B

(dashed gray and solid black lines). At fields between 1.5 and 16 T
the magnetoresistance is linear in this scale. The fit to Eq. (1) in this
field range (dashed-dotted red line) yields the transport scattering
time τ = 4.3 ps.
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FIG. 3. Dingle plot, i.e., the logarithm of the MQO amplitude,
divided by the temperature damping factor RT , as a function of inverse
magnetic field 1/B. The dashed line is a fit of the data at fields below
12 T to Eq. (7) with field-independent �/kB = 12.9 K, and the solid
line is the fit to Eq. (6).

quasi-1D Fermi surface rapidly (approximately quadratically)
decreases with increasing field at all field orientations except
the vicinity of commensurate directions, when the field is
aligned along one of the crystal lattice translation vectors
(so-called Lebed magic angles).28,42,43 Due to the low crystal
symmetry of α-(BEDT-TTF)2KHg(SCN)4, the nearest com-
mensurate direction is considerably, by ≈13◦, tilted away
from the z axis.44 Therefore, the contribution of quasi-1D
carriers to σzz is strongly suppressed under a magnetic field
B � B0 = h̄/(eτvF az tan 13◦) applied perpendicular to layers.
Substituting the scattering time τ = 4.3 ps, Fermi velocity
on the quasi-1D Fermi sheets45 vF = 1.2 × 105 m/s, and
the interlayer lattice parameter44 az = 2.0 nm, we estimate
B0 ≈ 2.7 T. Therefore, we attribute the steeper slope of the
magnetoresistance observed at low fields with the “freezing-
out” of quasi-1D carriers. At fields above ∼2 T the conductivity
is believed to be dominated by the carriers on the quasi-2D
Fermi surface.

At fields B > 16 T, when the amplitude of the oscillations
becomes of the same order as the background component
RB

zz(B), the terms quadratic in the amplitude of MQO give an
additional contribution to the monotonic part of conductivity
in a way similar to that described by Eqs. (19) and (21)
of Ref. 24. This additional contribution can be estimated
as �σzz ∝ R2

D∗ ≈ exp(−2π/ωcτ ), where the Dingle factor
RD∗ is determined by only short-range scattering. Substituting
τ = 4.3 ps and the effective electron mass m∗ = 1.3 we obtain
�σzz ∝ exp(−B∗/B), where B∗ ≈ 11 T. This explains the
small deviation of the background resistivity from the linear
dependence at B > 16 T in Fig. 2. Thus, on the whole, the
data in Fig. 2 are considered as firm evidence of the weakly
coherent interlayer transport regime in this compound.

B. Field-induced crossover in magnetic quantum oscillations

Figure 3 shows the Dingle plot for the first harmonic of
MQO. One can see that, contrary to the predictions of the

FIG. 4. The same data as in Fig. 3 plotted against 1/B2. For
fields B > 12 T the data is nicely fitted by a straight (dashed) line in
agreement with Eq. (13), implying a Gaussian LL broadening with
the half-width �/kB = 10.5 K determined by a long-range scattering
potential.

3D theory of MQO, this plot is not linear in high magnetic
field. This excludes the theoretical possibilities, leading to the
Dingle factors given by Eqs. (9), (10), and (14). As was argued
in Sec. II, and follows from the comparison between the dashed
and solid lines in Fig. 3, the difference between Eqs. (7) and (6)
on the Dingle plot is negligible and cannot explain the observed
deviation from the linear behavior. On the other hand, the same
logarithm of the MQO Dingle factor plotted as a function
of 1/B2 gives a very nice linear dependence (see Fig. 4) at
field B > 12 T, which supports the scenario represented by
Eq. (13). The LL width � for B > 12 T is field-independent,
suggesting that the main contribution to the LL broadening
comes from the long-range random potential, which changes
on the length d � lB and gives local variations of the Fermi
energy. This long-range potential only damps the MQO but
it does not affect the background (averaged over MQO)
conductivity because it does not produce a significant electron
scattering and relaxation of electron momentum. This situation
is similar to that observed in Ref. 25, where the long-range
disorder potential only damped the fast MQO but did not damp
the slow oscillations of magnetoresistance. Hence, Eq. (1)
remains valid, because � = h̄/2τ is determined by short-range
impurities and increases in strong magnetic field ∝ √

B. The
fact that LL broadening is Gaussian is also very important: it
means that electron dynamics in α-(BEDT-TTF)2KHg(SCN)4

under a strong field is indeed substantially different from
that in 3D metals where the impurity scattering leads to
a finite electron lifetime and produces the Lorentzian level
broadening.

At fields B < 12 T the dependence in Fig. 4 deviates from
linear, suggesting a crossover from the high-field Gaussian
LL shape to another shape at lower field, probably, to the
Lorentzian shape with a field-independent width �. The linear
fit of the Dingle plot in Fig. 3 at 9.5 < B < 12 T gives the
LL width �/kB = πTD ≈ 12.9 K, which is 15 times greater
than one would naively expect from the transport relaxation

165125-4



MAGNETIC-FIELD-INDUCED DIMENSIONAL CROSSOVER . . . PHYSICAL REVIEW B 86, 165125 (2012)

time τ ≈ 4.3 ps determined by short-range scattering. This
means that the LL broadening is determined by the long-range
disorder potential, which does not produce electron scattering.
Fitting of the high-field Dingle factor in Fig. 4 by Eq. (11)
gives a comparable LL width �/kB ≈ 10.5 K.

Now we use the obtained values of � to analyze the damping
of MQO harmonics and to compare the theoretical predictions
for the harmonic amplitudes for both LL shapes with the
experimental data. We remind the reader that, taking into
account the large amplitude of the oscillations, the analysis
is performed for inverse resistance 1/Rzz(B) ∝ σzz(B).

Figure 5 shows the fast Fourier transform (FFT) of the
oscillatory component of inverse resistance normalized to
the field-dependent nonoscillating background. The data are
taken in the field window 16 < B < 28 T, as shown in the
inset in Fig. 5. One can see that the Fourier spectrum is
almost completely dominated by one fundamental harmonic.
The amplitude of the second harmonic only slightly exceeds
the noise, while the third harmonic is not resolved within
the present accuracy. The ratio of the FFT amplitudes of
the first and second harmonics averaged over the given field
window is A2/A1 ≈ 150, while the first harmonic amplitude
normalized to the nonoscillating background increases from
A1 ≈ 0.1 at B = 16 T to A1 ≈ 0.5 at B = 28 T (see the
inset in Fig. 5). For the analysis we take the average (in
the 1/B scale) value Ba = 20.4 T, where the experimen-
tally obtained normalized amplitudes are A1,exp ≈ 0.25 and
A2,exp ≈ 1.7 × 10−3. The temperature in the experiment is
T ≈ 1.6 K, and the electron effective mass at pressure
6 kbar is m∗ ≈ 1.3. This gives X ≡ 2π2kBT /h̄ωc ≈ 1.50 at
Ba = 20.4 T, and the temperature damping factors of the
first and second harmonics are RT (1) = 0.70 and RT (2) =
0.30. The experimental error bar in determination of the
electron effective mass gives the possible errors in the
temperature damping factor ∼5 and ∼15% for the first and
second harmonic, respectively. The spin reduction factor RS

can be evaluated from spin-zero experiments. So far, such
experiments have been done for α-(BEDT-TTF)2KHg(SCN)4

only at ambient pressure (at high magnetic fields, where the

FIG. 5. (Color online) FFT spectrum of the oscillations in the
interlayer conductivity in the field range 16 < B < 28 T, as shown in
the inset.

charge-density-wave gap is strongly suppressed), yielding46,47

gm∗ = 3.65 ± 0.02. Making a correction to the pressure-
dependent effective mass, which changes from m∗ ≈ 2.0 at
ambient pressure to 1.3 at 6 kbars, and assuming a pressure-
independent g factor we substitute gm∗ = 2.37 in the spin
reduction factor to obtain a rough estimate RS(1) 	 0.8 and
RS(2) 	 0.4.

For the Lorentzian LL shape with field-independent
�/kB = 12.9 K one obtains from Eq. (7) at Ba = 20.4 T the
Dingle factors RDL(1) ≈ 0.022 and RDL(2) ≈ 0.00047. The
predicted harmonic amplitudes for the Lorentzian LL shape are
A1,th = RDL(1)RT (1)RS(1) ≈ 0.022 × 0.70 × 0.8 = 0.012
and A2,th = RDL(2)RT (2)RS(2) ≈ 0.00047 × 0.30 × 0.4 =
5.6 × 10−5, which is much smaller than the experimental
values. The smaller value �/kB = 10.5 K obtained for Gaus-
sian LL shape gives the Dingles factors RDL(1) ≈ 0.044 and
RDL(2) ≈ 0.0020, and the harmonic amplitude A1,th = 0.025
and A2,th = 0.00024, which still by an order of magnitude
differs from the experimental data. Thus, the observed
harmonic amplitudes are inconsistent with the traditional 3D
Dingle factor, corresponding to the Lorentzian LL shape.

For the Gaussian LL shape with field-independent
�/kB = 10.5 K one obtains from Eq. (11) at Ba =
20.4 T the Dingle factors RDG(1) ≈ 0.37 and RDG(2) ≈
0.0099. Then the calculated harmonic amplitudes for
the Gaussian LL shape are A1,th = RDG(1)RT (1)RS(1) ≈
0.37 × 0.70 × 0.8 = 0.22 and A2,th = RDG(2)RT (2)RS(2) ≈
0.0099 × 0.30 × 0.4 = 0.0012, which nicely agrees with the
experimental values A1,exp ≈ 0.25 and A2,exp ≈ 0.0017. This
analysis gives an additional substantiation that the standard
3D formulas for electron scattering are not applicable at high
magnetic fields. The observed electron interaction with a dis-
order potential corresponds to the 2D theoretical models40,41

rather than to the 3D electron dynamics.
The crossover between the low- and high-field behaviors

of the MQO amplitude can be understood qualitatively in the
following way. At low fields, h̄ωc < �, adjacent LLs overlap
and any impurity may scatter an electron from one level
to another. This leads to a finite lifetime of an electron on
the energy level and to the imaginary part of the electron
self-energy, which gives the Lorentzian LL shape. In this
respect, the situation is analogous to a conventional 3D case,
when the LLs always overlap due to a large energy dispersion
along the field direction. In strong magnetic fields and in
very anisotropic compounds, when h̄ωc � �,t⊥, the LLs do
not overlap. Then the new eigenstates of 2D electrons in a
magnetic field and in an impurity potential are superpositions
of the initial electron states on the same Landau level. The
distribution of energies of these new eigenstates is close to
Gaussian, leading to the Gaussian LL shape, as follows from
numerous theoretical calculations, restricted to one Landau
level in static impurity potential.40,41

In our experiment, the crossover in the MQO behavior
occurs at B ∼ 12 T, which is considerably higher than the field
of the crossover in the B-dependent nonoscillating component
of magnetoresistance RB

zz(B). This is because the strong-field
criteria, which are formally similar for both crossovers,
h̄ωc/� = 2ωcτ � 1, in fact, involve different scattering
parameters � (or, equivalently, 1/τ ): as shown above, the
short-range impurity scattering rate, which determines RB

zz(B),
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is considerably lower than that coming from the long-range
disorder and dominating in the LL broadening.

IV. CONCLUDING REMARKS

In conclusion, we note that the above dimensional,
coherent – weakly coherent crossover is an incomplete 3D-2D
transition, because a small but finite rate of coherent interlayer
hopping 1/τh is important to prevent electron localization
even if the electron phase decoherence time τφ becomes very
large at low temperatures. In a strong magnetic field, the 2D
electron localization length48 ξ ∼ Rc exp(π2g2

0), where the
dimensionless conductivity g0 = (h/e2)σxx ≈ (2NLL + 1)/π
in the MQO maxima,49 NLL is the number of occupied Landau
levels, and Rc = kF l2

B is the cyclotron (Larmor) radius with
kF being the in-plane Fermi momentum. For the electron
localization to take place, the electrons must be able to travel
(diffusively) on the distance ξ without loosing the phase or
jumping to the next layer even at the DoS maxima. This gives
the condition ξ 2/D < min{τφ,τh} with D ≈ R2

c /2τ being the
2D diffusion coefficient, or, equivalently, min{τφ,τh}/τ >

exp(4N2
LL). This condition is too strict to be fulfilled at any

temperature (i.e., no matter how large τφ is) in organic metals
or other known bulk conductors with a quasi-2D electronic
structure, where NLL � 1 in magnetic fields below 100 T.
Hence, bulk layered conductors can only have an incomplete
3D-2D crossover. In particular, this is why the quantum Hall
effect is not observed in these materials.50

At increasing temperature, the conductivity due to di-
rect tunneling decreases and other conduction mechanisms

associated, e.g., with small polarons4,6 or resonant impu-
rity tunneling3,9,13 may come into play. This may lead to
a crossover from a low-temperature metallic to a high-
temperature, apparently, nonmetallic T dependence of ρzz

which was reported for various layered materials.
To summarize, we have proposed and substantiated the

field-induced dimensional crossover in strongly anisotropic
quasi-2D layered compounds. In high magnetic field, when
ωc > t⊥/h̄,1/τ , a qualitatively new, weakly coherent regime
of interlayer magnetotransport emerges. In this regime the
monotonic part of interlayer magnetoresistance Rzz(B) and the
harmonic damping of MQO show the behavior, completely
different from that predicted by the traditional 3D theory
generalized to the quasi-2D case.2,24,26 The experimental
results on Rzz(B) in α-(BEDT-TTF)2KHg(SCN)4 agree very
well with the new theoretical predictions and provide valuable
information about scattering processes in the crystal.
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