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Dimensional crossover of spin chains in a transverse staggered field: An NMR study

F. Casola,1,2,* T. Shiroka,1,2 V. Glazkov,3 A. Feiguin,4 G. Dhalenne,5 A. Revcolevschi,5 A. Zheludev,6

H.-R. Ott,1 and J. Mesot1,2

1Laboratorium für Festkörperphysik, ETH Hönggerberg, CH-8093 Zürich, Switzerland
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Heisenberg spin-1/2 chain materials are known to substantially alter their static and dynamic properties
when experiencing an effective transverse staggered field originating from the varying local environment of
the individual spins. We present a temperature-, angular- and field-dependent 29Si NMR study of the model
compound BaCu2Si2O7. The experimental data are interpreted in terms of the divergent low-temperature
transverse susceptibility, predicted by theory for spin chains in coexisting longitudinal and transverse staggered
fields. First, our analysis employs a finite-temperature density matrix renormalization group (DMRG) study of
the relevant one-dimensional Hamiltonian. Next, we compare our numerical with the presently known analytical
results. With an analysis based on crystal symmetries, we show how the anisotropic contribution to the sample
magnetization is experimentally accessible even below the ordering temperature, in spite of its competition with
the collinear order parameter of the antiferromagnetic phase. The modification of static and dynamic properties
of the system due to the presence of a local transverse staggered field (LTSF) acting on the one-dimensional
spin array are argued to cause the unusual spin reorientation transitions observed in BaCu2Si2O7. On the basis of
a Ginzburg-Landau type analysis, we discuss aspects of competing spin structures in the presence of magnetic
order and of the enhanced transverse susceptibility.

DOI: 10.1103/PhysRevB.86.165111 PACS number(s): 75.10.Pq, 76.60.−k, 75.40.Cx

I. INTRODUCTION

In systems of reduced dimensionality, thermal and quantum
fluctuations are the source of physical phenomena without
analogues in ordinary 3D materials. Since the original studies
of Mermin and Wagner on the role of thermal fluctuations,1

it is known that in the isotropic spin-S Heisenberg model the
divergent number of low-energy thermal excitations (i.e., spin
waves) suppresses any long-range ordered phase for dimen-
sions d � 2. Due to the reduced dimensionality, the magnetic
properties of spin arrays such as spin chains and ladders
are further influenced by quantum effects that are masked in
common 3D materials. At T = 0, despite quantum corrections
present in the antiferromagnetic case, magnetic order develops
in the ground state of the 2D bipartite Heisenberg model.
Due to the statistical analogy of a quantum d-dimensional
antiferromagnet at zero temperature with a purely classical
magnet at finite temperature in d + 1 dimensions,2 quantum
effects, particularly effective in the antiferromagnetic case,
imply the absence of long-range order in quantum Heisenberg
antiferromagnets for d = 1.

In real bulk materials, however, the same concept of
one-dimensionality is ill defined. For instance, it has often been
shown that the effective dimensionality of certain materials can
strongly change upon variations of temperature,3 magnetic
field,4 or energy scale5,6 being probed. As a consequence,
the interpretation of the experimental observations requires
an interpolation between limits of different effective degrees
of freedom. This is particularly true for the specific case of
spin-1/2 antiferromagnetic (AF) Heisenberg chains realized

in well-known model materials such as KCuF3,3 Sr2CuO3,7

or copper pyrazine dinitrate.8,9 Their high-temperature disor-
dered phases, well described by the strictly one-dimensional
Luttinger Liquid concept,10 are at low temperatures replaced
by a magnetically ordered state induced by weak interchain
interactions. The need to interpolate between different dimen-
sionalities suggested the introduction of the class of so-called
quasi-1D materials. The degree of one dimensionality is
usually measured in terms of the ratio between the Néel
temperature, marking the onset of the 3D magnetic order, and
the intrachain exchange interaction.11–13 Values of this ratio
much below one signify the preservation of the 1D character
of the system. Nevertheless, 1D quantum fluctuations continue
to be effective in the 3D domain too, i.e., below the Néel
temperature. This is evident from both the strongly reduced
saturation moment in the ordered state as well as from the
deviations with respect to excitations predicted by the standard
spin-wave theory.14,15 Observations of the evolution of the
properties of a physical system across the phase diagram, in
regions characterized by different effective dimensionalities,
have motivated a number of theoretical and experimen-
tal studies, dedicated to the phenomenon of dimensional
crossover.

The physics of an assembly of isolated spin-1/2 quantum
chains upon increasing the interchain couplings is rather
well understood.14,16 The impact of such a perturbation on
chains experiencing a local transverse staggered field (LTSF),
however, is still an open question.17 A spin-1/2 quantum chain
in a uniform field and a concomitant LTSF is usually modeled
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by the Hamiltonian:18

H = J
∑

i

Si · Si+1 − gμBH
∑

i

Sz
i + (−1)iμBH⊥

∑
i

Sx
i ,

(1)

where i is the site index along the chain direction, J is
the intrachain exchange coupling constant, μB is the Bohr
magneton, g is the electronic gyromagnetic ratio, z and x

are the directions parallel and perpendicular to the externally
applied field H , respectively. The locally induced transverse
staggered field is H⊥ = cH , with c as a constant.

The interest in spin chains with an LTSF was first
triggered by experimental studies on copper benzoate
Cu(C6H5COO)2·3H2O,19 probing the compound’s magnetism
via susceptibility, nuclear magnetic resonance (NMR) and
electron-spin resonance (ESR) measurements. In zero mag-
netic field (H = 0), copper benzoate was known to be just
another realization of a spin-1/2 Heisenberg chain, with an
exchange constant J/kB ∼ 18 K and the onset of a canted
antiferromagnetic order at ∼0.8 K.20 Due to the relatively
small intrachain exchange coupling, copper benzoate was con-
sidered as a favorable material for studying the field-dependent
properties of the 1D spin-1/2 quantum Heisenberg model.
However, the field-dependent bulk properties were soon found
to be incompatible with corresponding theoretical results.21

Incommensurate soft modes at field-dependent reciprocal
space positions of the excitation spectrum are expected for
spin-1/2 antiferromagnets in an applied field. The first inelastic
neutron scattering (INS) experiment, intended to verify these
theoretical predictions, was performed on copper benzoate.22

Field-driven incommensurate modes were indeed found at the
expected positions in reciprocal space. Due to an unexpected
field- and orientation-dependent spin-gap �, scaling as H

2
3 ,

these modes were not soft, however.22 This surprising INS
observation was soon interpreted as the result of the particular
character of the g tensors and of Dzyaloshinskii-Moriya (DM)
interactions. Along the chain direction, the nondiagonal tensor
components change sign from one Cu site to the next, and the
same is true for the DM D vector. Both can be mapped onto an
effective LTSF and thus to Eq. (1). Formally it turns out that,
in the absence of interchain perturbative terms, the effective
low-energy theory of the LTSF Hamiltonian is given by the
quantum sine-Gordon (SG) model.23,24 The SG model is one
of the few nonlinear problems that benefits from an exact
solution. Hence, the low-energy theory provides analytical
expressions for the physical quantities in the temperature range
� < T � J when gμBH � J .

In the last 15 years, the magnetic properties of a large
number of both organic and inorganic compounds have
successfully been described by the LTSF model. Specifically,
NMR and ESR studies focused mostly on the joint detection of
the temperature-dependent longitudinal [∝〈Sz

i 〉(T )] and trans-
verse [∝〈Sx

i 〉(T )] local magnetization. Examples are the cases
of copper pyrimidine dinitrate25,26 and of BaCu2Ge2O7.27

Quite generally, any real material, unless directly excluded
by symmetry arguments, will develop an arbitrarily small
LTSF, captured in the H⊥ term of Eq. (1), when an external field
H is applied. This field-induced LTSF is expected to compete
with that developing due to interchain interactions below

the Néel temperature (T < TN). The resulting physics in the
limit where both effects are of similar magnitude is currently
not clear.17 One of the few experimental studies where
both perturbations on the 1D spin-1/2 Heisenberg model
were strong enough to be experimentally visible is an INS
experiment on CuCl2 · 2(dimethylsulfoxide) (CDC).28 Spin
excitations measured at 40 mK showed that the competition
leads to the opening of a gap at a nonzero value of the staggered
field H⊥, rather than in zero field, as the scaling relation
� ∝ H

2
3 would imply. Besides the particular case of CDC, all

other ESR and NMR studies of materials modeled by Eq. (1)
were usually limited to the range T > TN.

By exploiting the high sensitivity of nuclear magnetic res-
onance to local magnetic fields, we present a 29Si NMR study
of BaCu2Si2O7. We demonstrate how the local magnetization
in a chain, adequately modeled by Eq. (1), develops above
TN and how it evolves when T � TN. The latter evolution
could be monitored thanks to the complete decoupling of the
local field-induced magnetization from the order parameter
which is related to the onset of a standard, temperature-driven
second-order magnetic phase transition.

In Sec. II, we briefly summarize relevant results of previous
research on BaCu2Si2O7. Our NMR data are presented in
Sec. III, while a detailed discussion of the analysis is reported
in Sec. IV. Finally, Sec. V offers a summary and the main
conclusions of this work.

II. BaCu2Si2O7: SUMMARY OF PREVIOUS RESEARCH

BaCu2Si2O7 crystallizes in the orthorhombic space group
Pnma (D16

2h) with lattice constants a = 6.862 Å, b =
13.178 Å, and c = 6.897 Å.29 Each unit cell contains eight
Cu2+ ions, which determine the material’s magnetic proper-
ties, and eight silicon atoms, each family being equivalent
by local symmetry. Both types of atoms, together with the
respective closest-oxygen-atom configurations, are depicted
in Fig. 1. The copper-ion spins form zigzag chains along
the crystallographic c axis. Early zero-field INS studies of
BaCu2Si2O7 at T > TN revealed a gapless spinon continuum.
A fit to the lower boundary of the spectrum provided an
intrachain exchange value J = 24.1 meV.30 At the same time,
elastic neutron-scattering measurements found evidence of a
long-range antiferromagnetic order below TN = 9.2 K, with
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FIG. 1. (Color online) Schematic view of the crystalline unit cell
of BaCu2Si2O7. Red and black numbers identify the copper and
silicon atom sites, respectively. The small red spheres indicate the
oxygen sites. Zigzag Cu2+ spin chains run along the c axis.
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an ordered Cu2+ moment at saturation of 0.15μB, collinear
with the c axis.13,30 These results qualify BaCu2Si2O7 to be
among the best realizations of a spin-1/2 Heisenberg chain
system, characterized by a low ordering temperature and by a
large intrachain exchange coupling. For a global overview of
the materials’ classification, the reader is referred to Table 1
in Ref. 11. Over the years, studies of BaCu2Si2O7 proceeded
along two main directions, both related to the present work:
(i) the study of the spin-reorientation transitions31–34 and
(ii) the investigation of the 1D-to-3D crossover.35

Regarding the first topic, experiments employing neutron
scattering,31,32 ESR,33 and ultrasound techniques,34 were
carried out in externally applied magnetic fields of varying
strengths and orientations. These studies provided evidence
of a number of phase transitions related to the realignment of
spins (and spin-flop transitions for an externally applied field
H ‖ c) at T < TN.36 In spite of serious efforts, the cause for
these transitions is not yet clear.33,36 In the following, we show
that NMR data provide direct evidence of the presence of an
enhanced transverse susceptibility below TN, offering a simple
explanation for the observed spin reorientations. We suggest
that nontrivial phase diagrams below the magnetic ordering
temperature may appear naturally in anisotropic quasi-1D
antiferromagnets exhibiting a strong reduction of the ordered
moment.

As for the second topic, early studies have shown that
BaCu2Si2O7 is also a model spin-chain compound for in-
vestigating the crossover from quantum-spin 1D dynamics to
semi-classical 3D (spin-wave) dynamics.5,13 Zero-field INS
experiments probing the range below the Néel temperature
revealed how the presence of weak interchain interactions
J⊥ � J , produce an effective LTSF originating from neigh-
boring chains, which leads to a confinement of massless spinon
excitations at T < TN. Therefore the situation is not equivalent
to that of non interacting 1D chains in a staggered field.

The additional J2 interactions induce dispersive excitations
with a momentum transverse to the chain direction. Their
energy vanishes at well defined positions in reciprocal space,
coinciding with the Bragg peaks of the ordered structure. For
BaCu2Si2O7 in an applied magnetic field, intrinsic anisotropies
lead to a field-induced LTSF causing a spin gap to be present
already above TN. The possibility of directly measuring the
field-induced gap via INS is slim, but important consequences
are expected for the local static magnetization. Since the latter
is accessible via NMR, we took advantage of this unique
opportunity to study the 1D-to-3D crossover in a quantum-spin
chain with an LTSF modeled by Eq. (1).

III. NMR EXPERIMENTAL RESULTS

The NMR measurements were carried out on a 4 × 2 ×
2 mm3 single crystal of BaCu2Si2O7. Since the a and c lattice
parameters are roughly the same, the correct identification
of the two crystallographic directions is not trivial. Field-
dependent magnetization measurements on the same sample
with H ‖ c could detect the two expected spin-flop transitions,
hence confirming the correct identification of the crystal axes.

The 29Si NMR lines were measured as a function of
temperature at two different magnetic fields, with the external
field being applied along the crystallographic a or b axis.
Spectra above the antiferromagnetic transition were recorded
with a standard spin-echo technique, while at lower tempera-
tures the line intensities were established by a superposition
of frequency sweeps as described in Ref. 37. The NMR
spectra reported in Fig. 2(a) show the height-normalized
shapes versus temperature, measured at 7 T for both crystal
orientations. In the paramagnetic phase (T > TN), single lines
are observed, which split into two in the ordered regime. While
the results are qualitatively the same for both field directions,
quantitative differences are obvious. With the field along the
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FIG. 2. (Color online) (a) Temperature dependence of NMR 29Si resonances with an applied field H of 7.02 T along the crystallographic b

and a axes. (b) Relative shift of the peak positions as a function of temperature. (c) Direct measure of the order parameter of the antiferromagnetic
phase, reflected in the difference of the positions of the split lines. The mean values in the ordered phase are indicated by black dots. The zero
frequency marks the resonance frequency of 29Si nuclear spins in a standard reference sample such as Si(CH3)4.38
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b axis, the NMR line shifts towards higher frequencies (by
approximately 30 kHz) upon lowering the temperature. A
much smaller shift is observed when H ‖ a and, likewise, the
line splitting for T < TN is considerably reduced. The signal
width, instead, is approximately the same in both cases and is
essentially unaffected across the entire temperature range in
the paramagnetic regime.

The monotonic decrease of the resonance frequency
with increasing temperature in the paramagnetic phase [see
Fig. 2(b)] is quite surprising. A spin-1/2 Heisenberg chain
is expected to display a broad maximum in the magnetic
susceptibility χ (T ) at Tmax 	 0.64J .39 This maximum, also
known as the Bonner-Fisher peak,40 should be located at
Tmax 	 180 K for BaCu2Si2O7 (J = 24.1 meV). This was
indeed reported in previous works31 and confirmed by our
low-field magnetization data [see Fig. 5(c)]. Since the NMR
line shift and the magnetic susceptibility are generally propor-
tional, the absence of any maximum in Fig. 2(b) for T > TN is a
striking feature, indicating a fundamental difference between
the microscopically probed local field (via NMR) and that
reflected in the macroscopic susceptibility.

Once the lineshape maxima in the 3D ordered regime
(T < TN) were identified [see Fig. 2(b)], the differences
between the peak positions, �ν, were evaluated. The
corresponding values for the two different orientations are
shown in Fig. 2(c). We recall that �ν is ultimately proportional
to the order parameter of the phase transition and hence it
can be used to monitor the transition. The resulting increase
in frequency splitting between 10 and 5 K can be fitted by
a power law A(TN − T )β . Although the chosen temperature
range is too broad to really reflect a truly critical regime,
the exponent β = 0.263 ± 0.004 is very close to β = 0.25,
the value obtained from zero-field neutron diffraction data.13

Figure 2(c) clearly confirms that the monotonic increase of
the order parameter for T < TN does not depend on field.
Indeed, for H ‖ b, practically the same ordered moment at
saturation is found for μ0H = 3.98 and 7 T.

The postulated collinear antiferromagnetic order for
T < TN is known to have a zero-field saturation moment
of 0.15μB and an easy axis which coincides with the c

direction.13,30 As shown in Fig. 2, the line positions reflect
the NMR response to a magnetic field oriented along the a

or b direction, respectively, i.e., perpendicular to the easy
axis c. A standard collinear antiferromagnet with the field
applied perpendicular to the easy axis exhibits a constant
magnetization in the ordered phase. The NMR lines are thus
supposed to split symmetrically with respect to their common
relative shift,41 clearly at variance with our observation. In fact,
the average positions of the two maxima, indicated in Fig. 2(b)
by full black dots, contrary to expectations, are observed to
decrease with decreasing temperature for T < TN. Spin-wave
corrections to the constant magnetic susceptibility below TN

for antiferromagnets ordered collinearly along a direction
perpendicular to the applied field show at most an increase of
the longitudinal magnetization with decreasing temperature.
This is due to zero-point spin fluctuations affecting the
ordered moment.42 However, according to the data presented
in Fig. 5(c), this correction is modest in BaCu2Si2O7.

The 29Si NMR resonances of BaCu2Si2O7 depend
strongly on sample orientation, a trend which is particularly
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FIG. 3. (Color online) Angular dependence of the NMR lines at
20 and 200 K. The orientation of the external field μ0H = 7.02 T
varies within the crystalline ab plane.

conspicuous in the ordered phase, where the positions and
shapes of the NMR lines are sensitive to even a small
degree of misalignment. In order to avoid problems with data
interpretation due to misorientation, a study to establish the
orientation dependence of the NMR lines was carried out by
mounting the sample on a two-axis goniometer, suitable for
NMR experiments at cryogenic temperatures.43 The results
for two temperatures above TN, 20 and 200 K, are reported in
Fig. 3. Once the a and b axes were identified, the sample was
rotated such that the direction of the externally applied field
was kept in the ab plane of the crystal lattice.

IV. DATA ANALYSIS

After considering the origin of the transverse staggered
field (TSF) in Sec. IV A, we discuss the influence of the
TSF on the static magnetization by using results of unbiased
density-matrix renormalization group (DMRG) calculations
in Sec. IV B. The modeling of the NMR lines is described
in Sec. IV C, including the calculation of the line shifts in
the paramagnetic regime. Experiments and calculations are
compared in Sec. IV D. The link to the magnetically-ordered
regime is made in Sec. IV E, where we use a Ginzburg-Landau
type of analysis to model competing spin structures.

A. Origin of the staggered field in BaCu2Si2O7

As already mentioned in Sec. I, the zigzag geometry
of the Cu2+ spin chains in BaCu2Si2O7 provokes electron
anisotropies that may strongly affect the physics of the chain
system in case of an externally applied magnetic field. Two
dominant contributions to the anisotropy originate either in off-
diagonal components of the gyromagnetic tensor g (alternating
in sign along the chain direction) and/or in spin-orbit effects in
the Cu-O-Cu superexchange path along the chain. The latter is
also known as the Dzyaloshinskii-Moriya (DM) interaction.44

To compare the LTSF model of Eq. (1) with experimental
data, an estimate of these two contributions to anisotropy has
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to be made. A gap in the spin-wave excitation spectrum in the
ordered phase was observed in zero-field INS measurements
and attributed to two-ion anisotropy effects with an energy
scale of ∼0.4 meV,13 while an additional mode at a lower
energy of ∼0.17 meV was observed by ESR.33 Based on
the local symmetry of the intrachain Cu-O-Cu bond, a DM
D vector lying almost in the ab plane, with unit vector
components [0.86, 0.51, 0.07] was suggested.31

By making use of the crystal symmetry, we apply general
space-group operations {Rα,τα} to a pair ij of copper sites
interacting via oxygen superexchange along the c axis.
Rotations Rα and affine transformations τα are related to the
symmetry operation α. The original pair is transformed into
a new set and the local environment transforms accordingly.
The configuration of the various D vectors in the unit cell can
be established from the transformation rule:41

{Rα,τα}Di,j = D{Rα,τα}i,{Rα,τα}j , (2)

where D transforms as an axial vector under the application of
the rotation Rα . With this rule the full pattern of alternating D
vectors, depicted as black arrows, halfway between the relevant
Cu sites in the upper panel of Fig. 4, can be derived. We note
that the a and b components of the D vector have alternating
signs when moving along a given chain in the c direction, or
when moving between different chains in the a direction.45

FIG. 4. (Color online) (Top) Pattern of the field-induced LTSF in
BaCu2Si2O7. Red (blue) lines correspond to the case of a longitudinal
field applied along the b(a) axis. The LTSF orientation of sites 3,4,7
and 8 is not affected by the change of field orientation. Black arrows
show the direction of the DM vector according to the symmetry rule in
Eq. (2) (see text). (Bottom) Local magnetization pattern of the order
parameter in the magnetically ordered phase at T < TN and H = 0.
The same kind of structure is realized with a moderate external field
in the ab plane.

The effect of the DM interactions between sites i and j , if not
forbidden by crystal symmetry, can be taken into account via
the following spin Hamiltonian:44

HDM = Di,j · (Si × Sj ). (3)

This contribution can be mapped onto a local transverse
staggered field Hi

⊥ via a rotation in spin space.23 For small
|D|/J ratios, as is the case for BaCu2Si2O7, the local transverse
field at site i can be approximated by

H⊥i 	 1

2J
Dj,i × gu

i H, (4)

where gu
i is the uniform (diagonal) part of the local g tensor

valid at site i and H is the externally applied field. The term
in Eq. (4) represents the second type of the LTSF components
outlined above.

In addition, strongly orientation-dependent, high-
temperature magnetization data were interpreted as indicating
a strong anisotropy of the local g tensor.31 A direct
measurement of the g-tensor components is, in general,
possible via ESR experiments. In the case of BaCu2Si2O7,
however, this is hampered by the broadening and the loss of
intensity of the ESR absorption in the paramagnetic phase,
providing at best an estimation of g factor gb = 2.11 ± 0.07
and gc = 2.0 ± 0.1.33 The evaluation of the local g tensor
is additionally complicated by the strong in-chain exchange
interaction, leading to the exchange (or motional) narrowing
of the resonance line.46 Consequently, differences in the
g factor cannot be resolved as long as the corresponding
Zeeman splittings are smaller than the exchange energy.
Since J/kB 	 200 K, this is clearly the case here, even in
very strong fields. As a working hypothesis we assume that
the g-factor anisotropy is mostly determined by single-ion
effects, which reflect the local configuration of oxygen atoms.
Figure 1 shows that each copper ion is located at the center
of a tetrahedrally distorted CuO4 square. Because of this
distortion, the oxygen-to-oxygen distances of opposite O
atoms differ by about 2%. If we neglect this detail, the local
point group of the CuO4 unit is D2d . An arbitrary g tensor is
then invariant under all the symmetry operations of the point
group D2d . In the local reference frame of a CuO4 unit, the
tensor adopts a uniaxial form gμ,ν = diag(g̃1, g̃1, g̃9), with
two of the principal axes oriented along the two directions at
45◦ from the square’s diagonals and the third axis parallel to
their cross product. Examples of the transformation matrix
and of the resulting parameters ci = Hi

⊥/H are given in
Appendix A.

The configurations of the LTSF, resulting from the orienta-
tion of an external field along the crystalline b (a) direction,
are indicated by red (blue) arrows in the top of Fig. 4.
These patterns are the key for understanding the NMR results.
The terms ci , examples are given in Eq. (A2), are to be
inserted in Eq. (1). The two resulting patterns are found to
be equivalent to the L1c and L2c irreducible representations
of the magnetic-structure space, as previously established in
Ref. 47. They consist of the following linear combinations:

L1c = S1c − S2c − S3c + S4c + S5c − S6c − S7c + S8c,
(5)

L2c = S1c − S2c + S3c − S4c + S5c − S6c + S7c − S8c,
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with Sic the component of the local magnetization at the
i site along the c axis. Note that the products L1cHb and
L2cHa are symmetry invariants,48 i.e., they are combinations
of the irreducible representations (IR) of the magnetic structure
that transform according to the trivial representation (the 1D
representation consisting of 1 × 1 matrices containing the
entry 1) of the little group of the propagation vector k.49

B. Static magnetization of a spin-1/2 chain in a transverse
staggered field

As mentioned above the local magnetization at a copper
site i, denoted as Si , is given by a uniform and a transverse
component, such that Si = Si

u + Si
⊥, locally induced by an

external uniform field Hu = gu
i H and a staggered field Hi

⊥. In
the following, we fix the convention that Si has a saturation
value of 1/2. In order to recall the general results already
known for Si

u and Si
⊥ and to present our new results, it is

useful to introduce the following reduced units:

h∗
u = guμBH

J
, χ∗

u = ∂〈Su〉
∂h∗

u

,

(6)

h∗
⊥,i = μBHi

⊥
J

, χ∗
⊥,i = ∂〈Si

⊥〉
∂h∗

⊥,i

, T ∗ = T

J
.

It has been shown50,51 that by using this notation and setting
both h∗

⊥,i and h∗
u = 0, the susceptibility χ∗

u has a peak at T ∗ 	
0.64 and a zero-temperature limit of 1/π2. In Fig. 5(a), we re-
produce the temperature dependence of χ∗

u , calculated and tab-
ulated by A. Klümper in Ref. 51. The transverse field h∗

⊥ opens
a gap in the excitation spectrum which, for h∗

⊥ � 1, scales as52

�

J
= 1.78(h∗

⊥)
2
3 (− ln1/6 h∗

⊥). (7)

For small fields and �/J � T ∗ � 1, analytic field-theoretical
results for χ∗

⊥ are available.23 In the chosen reduced units, it
reads

χ∗
⊥ = 0.2779 ln1/2(T ∗−1)

T ∗ . (8)

The high h∗
⊥ limit has been treated by previous DMRG

calculations.52 No complete and unbiased numerical result
is yet available for the susceptibility at small magnetic fields
across an extended range of T ∗. In Figs. 5(a) and 5(b), we fill
this gap with results of DMRG calculations53–55 for chains
with 100 and 200 spin sites, respectively, and compare them
with the analytical result of Eq. (8), including or omitting the
logarithmic correction. We recall that logarithmic corrections
are expected to be effective only at really low temperatures (but
still above �/J ), otherwise they can be safely neglected.23

In our figure, the subscript α stands for u or ⊥, respectively.
Without the logarithmic term, the main difference between
the analytical and the numerical results is, as expected, at
low temperatures. The saturation at low temperatures of the
DMRG curves in Fig. 5(b) is due to finite-size effects. In order
to see how much a transverse field affects the longitudinal
uniform magnetization, we followed Affleck’s approach23 and
computed numerically the total derivative −dF/dh∗

u = mu of
the free energy of the system obtaining

mu = 〈Su〉 + ci〈Si
⊥〉, (9)
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FIG. 5. (Color online) (a) Results of finite temperature DMRG
calculations across an extended range of T ∗ based on Hamiltonian (1)
and valid in the small h∗

⊥ limit, in comparison with known analytical
and tabulated results (see text for details). (b) Comparison of the
calculated χ∗

⊥ as obtained analytically or via DMRG at T ∗ < 0.4.
(c) SQUID-magnetometry data measured at 1 T with the field applied
along the a and b crystalline axes, respectively. Solid lines are fits
using Eq. (9), dashed lines are predictions for an isotropic uniform
chain with no LTSF.
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with the parameters ci as given in Eq. (A2). Two separate
DMRG runs were employed to calculate the uniform and
staggered susceptibilities independently. Subsequently,
Eq. (9) was used to obtain the value of mu. The possibility to
compute the two quantities 〈Su〉 and 〈Si

⊥〉 separately, allowed
us to make use of symmetries to reduce the Hilbert space in
the DMRG simulations.

In order to compare our simulation results with the
data for BaCu2Si2O7, the temperature dependence of the
magnetization gumu was measured along the a and b axes of
the crystal. The data, measured with a SQUID magnetometer,
are displayed in Fig. 5(c). Because of the small moment,
particular care was taken in the choice of the sample-holder
material that would cause at most a small magnetic background
signal. With the model given by Eq. (9), we obtain good
agreement with the experimental data down to approximately
20 K. The departure of the solid lines from the points is
most likely due to approaching the onset of magnetic order.
As previous authors,31 we also tried a fit by imposing the
value ci = 0 (dashed lines). The resulting discrepancies are
obvious. From the high-temperature tails of mu(T ), we extract
values between 2.19 and 2 for g1,1 and g2,2, respectively.
The latter differ considerably, but are more realistic than the
corresponding values between 2.5 and 2.2 quoted in Refs. 30
and 31. Useful information can be extracted from the fit
parameters ci . For the macroscopic uniform magnetization
mu, the sign change of ci [see Eq. (A2)] is irrelevant. Thus,
in Fig. 5(c), ca and cb are the corresponding parameters for
fields H along the a or b direction, respectively. First of all,
we consider the field-induced and angle-dependent spin gap
in Eq. (7). We obtain �a = 0.61 meV and �b = 0.78 meV.
These gaps, when expressed in �/kB units, are both of
the order of 10 K, i.e., close to the temperature where the
magnetic order sets in. This explains why an activated behavior
of the spin-lattice relaxation time has not been observed in
our previous NMR work.56 A proper estimate for the DM
parameters Da,b can be obtained by solving Eq. (A2) with
g

μ,ν

1 from Eq. (A1) and the fitted ca,b. We obtain the values
Da 	 0.94 meV and Db 	 −1.2 meV. Remarkably, the ratio
Da/Db 	 1.25 is close to 1.68, the value obtained from purely
geometrical considerations.31 Experimentally it turns out that
the NMR response at low temperatures is dominated by the
transverse magnetization 〈S⊥

i 〉, i.e., the diverging susceptibility
χ∗

⊥ emerging from the DMRG calculation in Fig. 5(b). The
study of this quantity via NMR and its fate below TN is the
main topic of the rest of this paper.

C. Modeling the NMR lines

Having established the contributions to the local magnetic
field at the Cu sites, we now proceed to study their influence on
the 29Si NMR-line data. In our case, the local magnetization
experienced by the silicon nuclei is dominated by the externally
applied field, and the contribution due to the sample’s
magnetization is only of second order. For this reason,
the resonance frequency 29ωk of the 29Si nucleus k

(k = 1, . . . ,8—see Fig. 1 for the notation) can be written as57

29ωk 	 γ
H
|H| ·

[
(1 + σk) · H +

∞∑
i=1

Ti
k · Si +

NN∑
i=1

Ai
k · Si

]
,

(10)

where γ is the 29Si nuclear gyromagnetic ratio, σk is the
orbital shift tensor, Ti

k is the dipolar tensor that couples
the silicon nucleus k to the copper atom i, and Ai

k is the
relevant transferred hyperfine interaction. The dipolar sum in
Eq. (10) can be calculated directly. This was done by fixing the
Cu-spin arrangement resulting from the LTSF configuration
shown in Fig. 4 and by including the contributions from
the copper atoms within 50 Å from the considered silicon
site. The sum of hyperfine interactions runs over the four
nearest-neighbor (NN) copper sites.56 Given Ai

k and Ti
k for

the silicon nucleus k, the relevant tensors for the other silicon
sites can be obtained by allowed symmetry transformations,
meaning that tensors referring to the various silicon nuclei
are not mutually independent. If a symmetry operation of the
space group {Rα,τα}, applied to the silicon site rk , brings it to
{Rα,τα}rk = rk′ (and consequently the copper site ri to ri ′), the
hyperfine tensors are given by Ai ′

k′ = RT
α · Ai

k · Rα . Details of
the calculation of the hyperfine fields are given in Appendix B.

Next we discuss the two principal results of this section.
The first concerns the prediction for the angular-, temperature-
and field-dependent relative NMR line shift �ω in the param-
agnetic (T > TN) regime due to the transferred-hyperfine and
orbital interactions:

29�ω1/2 = γ

{
m

2gu

[
Y1g

11
1 +Y5g

22
1 +(

Y5g
22
1 − Y1g

11
1

)
cos 2θ

± (
Y2g

22
1 + Y4g

11
1

)
sin 2θ

]
+m3/5(G3 sin θ ± G6 cos θ )

+ 1

2
[σ1+σ5+(σ5 − σ1) cos 2θ ± 2σ2 sin 2θ ]

}
,

(11)

where a symmetric orbital-shift tensor σ has been introduced.
The consequences of Eq. (11) are discussed in the following
section. The model behind Eq. (11) is ultimately independent
of the exact geometry of the hyperfine couplings; the qualita-
tive result does not change even if, for instance, the parameters
cμ and dμ were zero.

Now we focus on the situation in the ordered regime,
below TN. Here, due to the second-order phase transition,
the symmetry of the system is spontaneously broken. The
adopted order reflects one of the irreducible representations
of the magnetic structure. Its product with the applied field
is, however, not necessarily an invariant upon symmetry
transformations. Consequently, in the ordered regime, the
lines are expected to split, even when the field is applied
along the main crystallographic axes. From previous zero-field
diffraction studies13 and following the conventions in Ref. 47,
it is known that the representation chosen by the spin system
is L6, collinear with the c axis (see the lower panel of Fig. 4).
By calculating the local field employing Eq. (B5), the NMR
lines split below TN according to

h
hf

1/2,⊥ = m
3/5
T <TN

(G̃3 sin θ ± G̃6 cos θ ). (12)

Since in the L6 representation, m3 = −m5 is always valid,
Eq. (12) suggests that the lines should coincide if θ = 0. This
is not the case, however, if all the possible silicon sites are
considered. In the ordered phase, the local field at the sites
k = 1,2,4,7 is the same. Also the sites k = 3,5,6,8 experience
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the same field, but the latter differs slightly from the former.
This explains the line splitting shown in Fig. 2 for both field
orientations with respect to the crystal axes a and b.

The parameters G̃3/6 = a3/6 − b3/6 − c3/6 + d3/6 �= G3/6

are not directly accessible by experiment. Nevertheless,
Eq. (12) offers the possibility to average out the L6 contribution
to the NMR shift below TN, thus providing a direct access to
the components m and mi of the local magnetization in the
ordered regime.

D. Comparison between theory and experiment

As just explained at the end of the previous section, the
average NMR line positions at T < TN [shown as black dots
in Fig. 2(b)] are independent of the contribution of the L6

representation and reflect the influence of the LTSF and the
uniform magnetization. This holds true even if a dipolar term

is added to Eq. (11), since the average NMR line position
is not affected by the expected symmetrical dipolar splitting
below TN.

With the external field in the ab plane, the LTSF is
always collinear with the c axis. For T > TN the transverse
magnetization induced by the LTSF contributes to mu in
the form of Eq. (9). For T < TN, both m and mi are still
present. Since however m [in Fig. 5(c)] is weakly temperature
dependent, the strong variation of the average NMR shift for
H ‖ b at T < TN [see Fig. 6(c)] is dominated by a contribution
related to the L1(T ) representation. Thus, below TN, NMR
allows us to reveal the effects of the interaction between
the representations L1 and L6. We return to this issue after
considering first the T > TN regime.

The relative shift captured in Eq. (11) includes the
anisotropic orbital-shift tensor. Its components along the
main crystal axes are usually determined via the so-called
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FIG. 6. (Color online) Detailed comparison of the microscopic model captured in Eq. (11) with the experimental 29Si NMR line positions
for T > TN. In each panel, the green, black, and blue lines represent individual contributions to the fit related to the orbital shift, the transverse
staggered, and the uniform longitudinal magnetizations, respectively. (a) and (b) Angular dependence of the positions of the line maxima with
H in the ab plane, measured at 20 and 200 K (b axis corresponds to θ = 0). (c) and (d) Temperature dependence of the NMR shifts measured
with the field applied along the b (left) or a (right) axis. The zero frequency marks the undisturbed resonance frequency of 29Si nuclear spins.
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Clogston-Jaccarino plot, where the NMR line shift is plotted
versus the corresponding susceptibility.25,58 This approach
requires a sufficiently broad temperature range, in which the
NMR shift mimics the sample’s magnetization. Because of the
large Cu-O exchange coupling in the BaCu2Si2O7 chains and
the weak 29Si NMR signal at elevated temperatures, a reliable
estimate of the orbital-shift components was not possible in
this way. By assuming this tensor to be symmetric and tem-
perature independent, we released the parameters σ1, σ2, and
σ5 and the hyperfine couplings. In this way, the whole data set
could be fitted with a single set of parameters. The quantitative
temperature dependences of m and mi were established by
using the calculations described in Sec. IV B, inserting the
values of the LTSF as obtained from the fits in Fig. 5(c).

In Figs. 6(a)–6(d), we display the result of the fits as well
as the individual contributions to the local magnetization, as
a function of the angle θ and of temperature. In these figures,
the individual contributions to the total shift (red curve) of
the NMR lines caused by the local longitudinal and transverse
magnetizations and by the orbital shift are highlighted as blue,
black, and green curves, respectively. For μ0H = 3.98 T, only
the global fit is presented. Also shown are the temperature
independent contributions of the orbital shift [broken lines
in Figs. 6(c) and 6(d)]. It may be seen that the temperature
dependence of the shift due to the longitudinal magnetization
is weak. The transverse component |m⊥| is small at 200 K but
it grows significantly at low temperatures. The data were fitted
in the range 20 to 230 K. The relative shift of the NMR lines
(at very low fields with respect to saturation) scales linearly as
a function of field.

The fit parameters we obtain are Y1 	 0.014 T/μB, Y5 	
−0.16 T/μB, G3 = −0.0752 T/μB, and G6 = 0.1286 T/μB.
Since the fit parameters Y2 and Y4 are not linearly indepen-
dent, we could fit only their combination Y2g

2,2 + Y4g
1,1 =

0.53 T/μB. The computed dipolar tensor components, to be
inserted in Eq. (11), are of the order of 0.02–0.04 T/μB. The or-
bital shift values displayed in Fig. 6 are of the order of 150 ppm.

E. Competing spin structures

Employing the same classification of representations as
introduced in Ref. 47, the antiferromagnetically ordered phase
in zero magnetic field is related to the L6 representation and
the corresponding order parameter. In the previous section,
we provided evidence for an enhanced transverse magnetic
susceptibility even in the ordered regime. This enhancement is
characteristic of quasi-1D chains in an LTSF and we argue that
it is the reason for the unusual spin-reorientation transitions
that are observed in BaCu2Si2O7. The microscopic approach
requires considering the effects of the 1D-to-3D dimensional
crossover in specific features of the magnetic properties. In
case of chains with no LTSF, this was done with a combined
mean-field and random-phase approximation approach.59 A
mean-field treatment of the case of weakly coupled chains in a
transverse field can be found in Ref. 60, but it lacks a detailed
comparison with experiment.

Here, we tackle the problem with a Ginzburg-Landau (GL)
expansion61 of the free energy φ̄ close to TN. Although this
phenomenological approach neglects fluctuation effects, it has
the advantage of retaining the exchange-energy contributions

to the susceptibility of the ordered phase and includes interac-
tions between different, possibly coexisting, order parameters.

We start by constructing symmetry invariants of the little
group of the k vector.48 In BaCu2Si2O7, even if exposed to
an applied field, a commensurate antiferromagnetic structure
with k = 0 is realized, leading to a little point group that
coincides with D2h. We call Lβμ the μ component of Lβμ,
with Lβ the β-IR; clearly the product βμ = 3N (with N = 8
as the number of equivalent copper sites in the unit cell). In
terms of a GL free-energy expansion over all possible order
parameters, a phase transition will occur whenever one of
the coefficients Aβ of the quadratic term AβL2

βμ changes
sign. Since the L6c representation is the one realized in the
magnetically ordered regime in zero field, we can write that
A6 = ε6(T − TN) (ε6 > 0). All the IRs Lβμ of the magnetic
structures in BaCu2Si2O7 are one dimensional.47 It is therefore
easy to construct invariant combinations of the Lβμ since the
representations of the powers of these terms, which have to
transform according to the trivial representation, remain one
dimensional. The expansion in Eq. (13) is based on the physics
discussed in the previous sections of this paper. Retained are
the terms containing L6μ, related to the zero-field magnetic
order, L1μ representing the LTSF, and H the external magnetic
field. We will limit our considerations here to the case of an
LTSF pattern L1c which is realized for H ‖ b. A more complete
analysis will be published separately.62 The relevant expansion
in powers of L6μ, L1μ, and Hμ reads

φ̄ = φ0 + A6L2
6 + A1L2

1 + B6L4
6 + B16L2

6L2
1

+B ′
16(L6 · L1)2 + D(H · L6)2 + D′H2L2

6 + aaL
2
6a

+ abL
2
6b + αbL1cHb + αcL1bHc − 1

2
χpH2 − 1

2
γaH

2
a

− 1

2
γbH

2
b − H2

8π
, (13)

with φ0 as the value of the free energy in the paramagnetic
phase in zero field.

The A1 coefficient is positive above the Néel temperature,
reflecting the absence of a spontaneous symmetry breaking
related with the L1 representation. On the other hand, we
assume A1 to be small in the vicinity of TN since, as
indicated in Fig. 4, L1c differs from the lowest energy-state
configuration L6c only by the mutual orientation of the spins
in the neighboring chains, which are relatively weakly coupled.
The temperature dependence of A1 is assumed to be linear in
the vicinity of TN: A1 = A

(0)
1 [1 + εrel

1 (T − TN)].
The fourth-order term for L6c fixes the magnitude of the

main order parameter below the transition; as required, B6 > 0.
The terms with prefactors B16 and B ′

16 are crucial in our
discussion, because they describe the exchange competition
of the field-induced TSF L1 and the spontaneous order L6.
Microscopically, these terms arise from the simple idea that
both the main order parameter and the induced order parameter
involve the same local spins, eventually along the same
crystallographic direction. The B16 coefficient is expected to be
positive in order to enhance the energy cost for the coexistence
of these two magnetic structures. Finally, the term related to
B ′

16 defines the preferred mutual orientation of the two spin
patterns by means of the scalar product between them. From
the expansion in Eq. (13) alone, it is not possible to predict
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whether a collinear (B ′
16 < 0) or a transverse (B ′

16 > 0) spin
configuration is realized.

The terms related to D and D′ describe interactions
between the longitudinal magnetization and L6. The terms
with prefactors aμ describe the orientation of the zero-field
order parameter. Reported results of neutron diffraction32 and
antiferromagnetic resonance33 imply that aa > ab > 0. The
term αb is responsible for the fact that the magnetic structure
L1c is induced by an external field applied along the b axis. The
powers of H completing the expansion in Eq. (13) provide a
full description of the effects of the g-tensor anisotropy on the
longitudinal magnetization. This may be seen by recalling that

∂φ̄

∂H
= − H

4π
− M. (14)

Minimizing over the components of L1 for H ‖ b and
assuming a zero-field collinear antiferromagnetism L6c, we
get L1a = L1b = 0 and

L1c = −αbHb

2A1(T )
[
1 + B16+B ′

16
A1(T ) L2

6c(T )
] . (15)

With a similar reasoning we obtain the longitudinal magnetiza-
tion Mb along the b axis, in the former notation denoted as mu:

Mb =−2D(H · L6)L6c − 2D′L2
6Hb − αbL1c + (χp + γb)Hb.

(16)

The last two equations deserve some discussion.
Equation (15) captures the temperature dependence of

the transverse staggered magnetization. Microscopically, the
increase of L1c upon cooling above TN (L6c = 0) is due to the
divergent transverse susceptibility of a 1D spin-1/2 quantum
Heisenberg chain in an LTSF. This situation is modeled by
the decrease of A1(T ) on cooling (i.e., with εrel

1 > 0). It also
predicts a decrease of L1 upon the growth of L6 at T < TN,
as observed in the NMR data. Microscopically, the change
of regime upon decreasing temperature, from a divergent
transverse susceptibility (characteristic of a spin chain) to a
progressive competition between the field-induced magnetiza-
tion pattern and the zero-field order parameter, is argued to be
a direct consequence of the dimensional crossover from 1D to
3D of a chain in an LTSF. The clear experimental identification
of how 1D physics affects the static magnetization properties
even below TN is the new result emerging from the present
study. Below we address the question of how these anomalous
properties for T < TN can explain certain spin reorientation
transitions observed in BaCu2Si2O7.

By analyzing Eq. (16), we note that the first term is
zero for an easy axis (c axis in our case) orthogonal to the
direction of the applied field (along the b direction). The
second term, instead, provides corrections to the constant
magnetization predicted by the standard mean-field theory
below TN. Microscopically, it can be related to a semiclassical
contribution of spin-waves.42 From the magnetization data in
Fig. 5(c), it may be concluded that D′ < 0. Next, we single
out a constant paramagnetic contribution, with prefactors
χp and γb, which is related to the magnetization of the
ideal spin-1/2 Heisenberg chain at the Néel temperature. We
note that also in this case a contribution from the staggered
transverse susceptibility affects the longitudinal magnetization

data, M(T ). While L1c scales as αbHb, the contribution
to Mb scales as α2

bHb, in full qualitative agreement with
the microscopic approach. In magnetization measurements
along either the a or the b axis, the contribution of the
staggered magnetization matters, but it is not as outstanding
as in NMR measurements, where both Mb and Lc1 are
revealed.

The enhanced transverse susceptibility accounts very well
for the observed spin reorientations. For example, with the
applied field along the b axis, such a transition occurs at
Hsr 	 7.8 T.36 It is caused by a sudden change of the easy
axis from the c to the a direction. Below TN the quasi-one
dimensionality extends itself in the form of a field-induced
transverse susceptibility. It favors a field-induced spin align-
ment L1c that competes with the zero-field order parameter
L6c. The higher the field, the larger is the energy cost to
sustain this arrangement [captured by the term B16 of Eq. (13)].
Substituting Eq. (15) into (13) yields an expression that
depends on L6 only. A spin reorientation is then expected as
the result of the competition of the field-dependent anisotropic
corrections with the conventional anisotropy of the order
parameter at a field:

Hsr = 2A1

αb

√
aa

B ′
16

. (17)

It can be shown that, for B ′
16 > 0, Eq. (13) also accounts for

two spin-reorientation transitions when H ‖ c. The inclusion
of the staggered field pattern described by the representation
L2c [see Eq. (5)] could similarly account for the phase
transition at H ‖ a.62 Based on formulas (15) and (16), we
now attempt a comparison with the experimental data in the
temperature range T < 20 K, where the microscopic 1D model
does not properly describe our results. Using the transferred
hyperfine parameters determined in Sec. IV D, we compare
the 29Si NMR line shift monitored for a field Hsr = 7.02 T
oriented along the b axis with the GL approach, postulating
L6c = [(TN − T )/TN]β and β = 0.5 (we arbitrarily set the
zero-temperature limit of L6c to unity). This is shown in Fig. 7.
To obtain tentative estimates of the GL-model parameter,
we first fitted Mb of Fig. 5(c) in the vicinity of TN to
Eq. (16) and obtained the parameters χp + γb ≈ 7.05 × 10−4

emu/mol Cu, D′ = −7.6 × 10−5 emu/mol Cu and the ratio
α2

b/(2A
(0)
1 ) ≈ 1.05 × 10−4 emu/mol Cu. Considering the

decrease of L1c with increasing temperature as computed by
DMRG above TN, we obtain εrel

1 = 0.051 K−1. Next, with
the fixed α2

b/(2A
(0)
1 ) ratio we could fit the relative NMR

peak positions, as shown in Fig. 7, and hence determine
the parameters A

(0)
1 and B16 + B ′

16. The fit shown in Fig. 7
was obtained with A

(0)
1 ≈ 3.01 × 107 emu/mol Cu and

B16 + B ′
16 ≈ 7.3 × 107 emu/mol Cu. With the present

parameters, inserted into the GL model we can obtain, by
extrapolation, the value L′

1c(TN) = 0.15μBαbHb/(2A
(0)
1 ) ≈

0.035μB for the transverse staggered magnetization at
7.02 T. Notice that in the last relation, we have considered
a prefactor 0.15 in the numerator of Eq. (15), corresponding
to the experimentally reported zero-temperature limit
of L6c expressed in Bohr magnetons, and introduced
the indentity L′

1c(TN) = 0.15L1c(TN), whereas L′
1c is
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FIG. 7. (Color online) Data representing relative 29Si NMR line
shifts in the vicinity of the ordering temperature, compared with the
classical predictions of Eqs. (15) and (16). Although fully classical,
the GL type approach grasps the competition between the spin
structures described by L1c and L6. The hyperfine parameters and
the orbital shift are taken from the analysis for T > TN (see text). The
average NMR frequency is shown below the transition temperature.
Black, blue, and green line show single components of the fits due to
L1c, Mb, and σ , respectively.

expressed in absolute and L1c in normalized Bohr magneton
units.

Finally, it is instructive to briefly consider the
situation encountered in BaCu2Ge2O7. Previously obtained
magnetization data in low magnetic fields were interpreted as
revealing weak ferromagnetism below 8.8 K for H ‖ b.63 It
was argued that in the ordered state the interchain coupling
along the a axis is of AFM-type and not, as in BaCu2Si2O7,
of FM-type.29 This implies, however, that the emerging phase
below TN is consistent with the representation L1c and not
L6c as in BaCu2Si2O7. Consequently, there is no competition
between the temperature- and field-induced spin structures,
therefore allowing the transverse magnetization L1c to grow in
magnitude even below TN and removing the spin-reorientation
transitions for H ‖ b.63 Since for the same field orientation
the spin structures above and below the transition temperature
coincide, the phase transition in that case is replaced by

a simple crossover, characteristic of a ferromagnet in an
external field.

V. SUMMARY AND CONCLUSIONS

A detailed analysis of 29Si NMR data obtained by probing
single-crystalline BaCu2Si2O7 revealed the influence of 1D
physics into the regime of 3D magnetic order at temperatures
below 10 K. In this way, the problem of weakly interacting
nearest-neighbor chains, described in the noninteracting limit
by the model in Eq. (1), could be addressed. Based on a
classical Ginzburg-Landau analysis, it is shown that in this type
of compounds complicated (H , T ) magnetic phase diagrams
emerge. They are caused by the interaction of the transverse
staggered local magnetization, originating from magnetic
anisotropies in spin-1/2 Heisenberg chains, with the effective
magnetic field due to the weakly ordered spin moments on
neighboring chains. We argue that the previously established
spin-reorientation transitions in BaCu2Si2O7 reflect this situ-
ation and can, therefore, be understood in this framework. In
the case of BaCu2Ge2O7, the lack of competition between
field- and temperature-induced spin structures for H ‖ b,
also quenches the spin reorientations and changes the phase
transition into a crossover phenomenon.

ACKNOWLEDGMENTS
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Zürich that provided precious opportunities to discuss progress
of this project.

APPENDIX A: THE g-TENSOR AND THE LTSF PATTERN

Choosing the copper atom 1 in Fig. 1, the transformation
matrix relating a CuO4 unit to the crystallographic unit cell is

g
μ,ν

1 =

⎡
⎢⎣

0.23g̃1 + 0.7g̃9 0.31(g̃1 − g̃9) 0.33(g̃1 − g̃9)

0.31(g̃1 − g̃9) 0.86g̃1 + 0.14g̃9 0.15(g̃9 − g̃1)

0.33(g̃1 − g̃9) 0.15(g̃9 − g̃1) 0.84g̃1 + 0.15g̃9

⎤
⎥⎦, (A1)

where the subscript i of g
μ,ν

i refers to the site index. Since
the eight copper sites are equivalent under the allowed
symmetry operations, we can obtain the tensor gμ,ν for
each of them. The matrix in Eq. (A1) reveals that the
components g

2,2
i and g

3,3
i are roughly equal (in qualitative

agreement with ESR experiments), reflecting the coinciding
high-temperature magnetization tails, measured with a field

along the b and c direction, respectively. The qualitative
behavior of the magnetization is also shown in Fig. 1 of
Ref. 31.

By considering the g tensor for each site i in the unit cell,
and by using Eq. (4) for the DM contribution to the local field,
the expected LTSF pattern for an external field applied along
the a or b axis can be established. In our case, whenever the
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external field lies in the ab plane, the LTSF Hi
⊥ is found to

be parallel to the c direction (see Fig. 4). In order to exploit
this favorable configuration, the field orientation H ‖ c has not
been addressed in the present work. With the external field
in the ab plane and forming an angle θ with the b axis, we
can calculate the ratio Hi

⊥/H . For instance, by considering the
copper sites 3 and 5, we obtain

c3 = H 3
⊥

H
= (−g

3,2
1 cos θ + g

3,1
1 sin θ

)
+ 1

2J

(−Dag
2,2
1 cos θ − Dbg

1,1
1 sin θ

)
,

(A2)

c5 = H 5
⊥

H
= (

g
3,2
1 cos θ + g

3,1
1 sin θ

)
+ 1

2J

(
Dag

2,2
1 cos θ − Dbg

1,1
1 sin θ

)
.

APPENDIX B: CALCULATION
OF THE HYPERFINE FIELDS

An example of a hyperfine tensor is

A3
1 =

⎛
⎝a1 a2 a3

a4 a5 a6

a7 a8 a9

⎞
⎠ → A5

2 =
⎛
⎝ a1 −a2 a3

−a4 a5 −a6

a7 −a8 a9

⎞
⎠ .

(B1)

The four NN copper atoms surrounding the silicon atom
located at site k = 1 are i = 3,4,7,8 (see Fig. 1). Contrary
to dipolar interactions, the components of the transferred-
hyperfine tensor are a priori unknown. For calculating directly
the θ -dependent component h

hf

k,u of the uniform local field
at site k = 1 or 2, parallel to guH, we define A3

1 = aμ,
A4

1 = bμ, A7
1 = cμ and A8

1 = dμ, and we denote m = gumu and
mi = g3,3〈S⊥

i 〉. By using the notation of Eq. (B1), we obtain

h
hf

k,u = (sin θ cos θ )

[(
a1 ±a2

±a4 a5

)
+

(
b1 ±b2

±b4 b5

)
+

(
c1 ±c2

±c4 c5

)
+

(
d1 ±d2

±d4 d5

)]
m

gu

(
g11

1 sin θ

g22
1 cos θ

)

= m

2gu

[
Y1g

11
1 + Y5g

22
1 + (

Y5g
22
1 − Y1g

11
1

)
cos 2θ ± (

Y2g
22
1 + Y4g

11
1

)
sin 2θ

]
, (B2)

where the plus (minus) sign refers to k = 1 (2). In Eq. (B2), we take into account that the sample’s uniform longitudinal
magnetization and the externally applied field may not be collinear due to a possible g tensor anisotropy. By definition,
g2

u = (g1,1
1 sin θ )2 + (g2,2

1 cos θ )2 and Yμ = aμ + bμ + cμ + dμ. The reason for picking the Si sites k = 1,2 for describing the
relevant NMR line shapes is evident from the contribution of the transverse field h

hf

k,⊥ to the resonance frequency. We get

h
hf

1/2,⊥ = (sin θ, cos θ )

[
m3/5

(
a3

±a6

)
+ m4/6

(
b3

±b6

)
+ m7/1

(
c3

±c6

)
+ m8/2

(
d3

±d6

)]
. (B3)

In the paramagnetic phase, the following relations always hold by symmetry:

m6 = −m5, m1 = m5, m2 = −m5, m4 = −m3, m7 = m3, m8 = −m3. (B4)

By denoting G3/6 = a3/6 − b3/6 + c3/6 − d3/6, we obtain for the transverse local field in the paramagnetic phase:

h
hf

1/2,⊥ = m3/5(G3 sin θ ± G6 cos θ ). (B5)

It turns out that by considering any other of the silicon sites, the only two possible orthogonal local fields are those given by
Eq. (B5). For an applied field along the a or the b axis, these two local fields coincide. From Eq. (A2), it follows that if θ = 0◦
(field along b), m3 = −m5. The same is true if θ = 90◦ (field along a) (see Fig. 4). A single narrow line is thus expected for
θ = 0◦ and 90◦, while two lines are expected in an intermediate angular range and at temperatures exceeding TN. This is indeed
the case, as already shown in Fig. 3.
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