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Scaling of non-Ohmic conduction in strongly correlated systems
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A new scaling formalism is used to analyze nonlinear I-V data in the vicinity of metal-insulator transitions (MIT)
in five manganite systems. An exponent, called the nonlinearity exponent, and an onset field for nonlinearity,
both characteristic of the system under study, are obtained from the analysis. The onset field is found to have an
anomalously low value corroborating the theoretically predicted electronically soft phases. The scaling functions
above and below the MIT of a polycrystalline sample are found to be the same but with different exponents
which are attributed to the distribution of the MIT temperatures. The applicability of the scaling in manganites
underlines the universal response of the disordered systems to electric field.
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I. INTRODUCTION

The non-Ohmic response to an applied electric field is
quite common in disordered phases or systems which include
recent systems of interest such as manganites and conducting
polymers. It has now assumed critical importance because
of increasing applied use of various low-dimensional nanos-
tructures. The conduction becomes non-Ohmic even at small
biases used in laboratories. In spite of considerable theoretical
efforts1 spent in the last several decades towards understanding
the mechanism of non-Ohmic hopping transport, the latter
still remains an open issue. It has been recently shown that
systems exhibiting variable range hopping (VRH) in three
dimensions such as conducting polymers and amorphous
semiconductors possess a single field scale leading to a simple
yet nontrivial scaling description2 of the field-dependent
conductivity σ (M,F ):

σ (M,F )

σ (M,0)
= �

(
F

Fo

)
. (1)

Here F is the applied dc electric field, � is a scaling function,
and M is a physical variable (e.g., temperature) or a group of
variables. The field scale Fo(M) is given by

Fo(M) ∼ σo
xM , (2)

where σo(M) = σ (M,0) is the zero-bias conductivity and xM

is called the nonlinearity exponent. Equation (2) is similar to
the power laws of critical phenomena in phase transitions. A
scaling relation exhibits model-independent properties which
are particularly useful in the absence of a definitive theory
as in the present case. For example, the above relations when
applied to VRH systems have led to several conclusions which
are very different from those in the current theories2 such
as the power-law, in contrast to the predicted exponential,
dependence of conductivities at large fields. The conductance
� here is simply defined as the ratio I/V .

A key issue concerns the scope of the scaling [Eq. (1)],
i.e., whether such a scaling is a universal property of the
disordered systems even in the presence of strong electronic
correlation as in manganites. This provided the present
motivation for studying manganites which are known to have
rich and complex disordered phases. Disorder, aside from

spin disorder, arises from random potential fluctuations due
to trivalent rare-earth and divalent alkaline-earth ion cores,
Jahn-Teller distortion, and local trapping in ferromagnetic
regions with noncollinear magnetic order.3 Some parts of these
phases are inhomogeneous—not chemically or structurally but
electronically—in ways that are different from, say, granular
composites or amorphous semiconductors which are usually
treated within one-electron formalism.4,5 In an intermediate
doped manganite a metal-insulator transition (MIT) usually
manifests itself in the form of a resistance peak at a temperature
TMI close to the Curie temperature Tc. The regime near
a MIT exhibits colossal magnetoresistance. The resistance
curve is rather asymmetric with a sharp drop on the lower
side of TMI , especially in single crystals. Spatial microscopy
experiments6,7 and theories8,9 attribute this to nanoscale phase
separation near the transition where the spin-sensitive transport
occurs through a percolative network of ferromagnetic metallic
(FM) and paramagnetic insulating (PI) domains. The intrinsic
inhomogeneity due to phase separation creates conditions
favorable for nonlinear (or non-Ohmic) transport due to
wide variations of local electric fields inside a sample.
Mosgnyaga et al.10 investigated the MIT by means of electric
third-harmonic resistance (R3w) and found that the latter is
drastically enhanced near the MIT. The electrical nonlinear
behavior was argued to arise from coupling of correlated
polarons to the electric field. Nonlinear conduction has been
earlier studied in manganites mostly in charge-ordered (CO)
regimes11 and also in materials without CO,12 and in orbital-
ordered samples.13 However, the analysis of the nonlinear data
so far has been devoid of any systematics.

In this paper, we present evidence that states around
a metal-insulator transition peak indeed obey the scaling
[Eq. (1)] thus providing evidence for universality of the scaling
in disordered systems. It holds true in both single-crystal and
polycrystalline samples of manganites, thus proving that the
origin of nonlinearity is intrinsic, and not due to extraneous
factors such as inelastic intergrain tunneling. The scaling
functions on both sides of a MIT in a polycrystalline sample
are found to be identical albeit with different nonlinearity
exponents xT . The electric field scale Fo is anomalously
found to be of the order of 1–10 V/cm, about three orders of
magnitude less than that in granular composites, corroborating
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FIG. 1. (Color online) Ohmic resistance Ro vs temperature T of
two SSCMO samples—one single crystal (with star) and another
polycrystalline. The symbols, circles and diamonds, correspond to
heating and cooling cycles, respectively. Peak temperatures TMI are
81 and 94 K, respectively.

the claim of electronically soft phases in manganites.14 A
variety of such results on the other hand suggest that the
field-dependent transport in manganites can be used also as
a probe of complexities in conduction mechanisms beyond
those revealed in zero-bias measurements. It is shown further
how the traditional method of probing nonlinear conduction
by measurement of third-harmonic voltage can be used as an
alternative way to extract the nonlinearity exponent.

II. EXPERIMENTAL

An important factor in choosing samples (first five rows
in Table I) for the present study was the requirement to
have resistance changes between the baseline and the peak
on either side of a MIT as large as possible to extract
reliably the nonlinearity exponent [see Eq. (2)]. Accordingly,
systems with Sm were chosen.15 La0.275Pr0.35Ca0.375MnO3 was
chosen for its robust phase separation property.6,16 A single
crystal of Sm0.55(Sr0.5Ca0.5)0.45MnO3 (SSCMO* in Table I)
was grown using the floating-zone technique.17 Four different
polycrystalline samples (the ones in Table I without the star
sign) were prepared by the usual solid-state reactions. Two
SSCMO samples have slightly different chemical composition.
Of all the samples, LMO is self-doped18 while rest are the
usual hole-doped. The values of TMI for different samples
analyzed in this work are shown in Table I. I-V measurements
were done in a Janis cryotip with bar-shaped samples placed
on sapphire substrates. Data were taken under constant-current
condition. Maximum current levels were kept low to minimize
Joule heating in the samples. Both four-probe and two-probe
contacts gave the same results. All measurements reported here
were done at zero magnetic field.

III. RESULTS

Figure 1 shows resistance-temperature (Ro-T) plots for two
SSCMO samples—one single crystal (with star) and another

FIG. 2. (Color online) (a) Conductance vs bias in the insulating
paramagnetic (PI) phase of a SSCMO single crystal at different
temperatures (T � TMI ) as indicated. (b) Scaling of the data in
panel (a). Inset shows bias scale Vo vs linear conductance �o for
two experimental paths. See text for details. The number represents
the slope of the linear fit to the data.

polycrystalline. The single crystal (SC) shows a first-order-like
sharp MIT transition for T � TMI whereas the transition to
FM state in the polycrystalline (PC) sample is rather gradual.
Such a behavior is believed to arise from a distribution of
TMI .19 The hysteresis between cooling and warming cycles is
also illustrative of first-order phase transition. Steady-state I-V
measurements at T � TMI were not feasible in the SC sample
as the sharp transition is metastable with huge relaxation times
(>5 hours). The same problem arises in PC samples during the
cooling cycle but is absent in the heating cycle. This makes PC
samples a sort of necessity in the present study if measurements
are to be carried out on both sides of the MIT. The �-V
characteristics of the SC in the warming cycle at different
temperatures ranging from 81 to 95 K (T � TMI ) are plotted
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TABLE I. Sample parameters and nonlinearity exponents. See text for definitions and clarification on errors. The last two rows are obtained
using data in Ref. 10.

System Abbreviation Type TMI (K) �T1/2(K) xFM
T xPI

T

Sm0.55(Sr0.5Ca0.5)0.45MnO3 SSCMO* Single crystal 81 0
Sm0.55Sr0.3375Ca0.1125MnO3 SSCMO Polycrystal 94 9 0.17 ± 0.01 0.09 ± 0.01
Sm0.55Sr0.45MnO3 SSMO Polycrystal 69.5 9.8 −0.23 ± 0.01 −0.14 ± 0.01
La0.275Pr0.35Ca0.375MnO3 LPCMO Polycrystal 113 10.4 −0.09 ± 0.01 0
La0.87(Mn2O3)0.13MnO3 LMO Polycrystal 155 93 −0.83 ± 0.01 −0.16 ± 0.01
La0.75Ca0.25MnO3 LCMO (C) Thin film 267 10 0.27 ± 0.04 0.27 ± 0.04
La0.75Ca0.25MnO3/BaTiO3 LCMO/BTO (CB) Multilayer film 210 30 −0.70 ± 0.01 −0.15 ± 0.03

on a log-log scale in Fig. 2(a). The nonlinear response of the
conductance to the application of bias V is quite apparent in
the figure. The onset bias Vo(T ) is the one at which conduc-
tance starts deviating from its linear value �o(T ) at temper-
ature T and is defined (arbitrarily) such that �(Vo) ≈ 1.1�o.
The plot of the normalized conductance �(T ,V )/�(T ,0) vs
the normalized bias V/Vo using the data of the PI phase of
Fig. 2(a) is shown in Fig. 2(b) which exhibits almost perfect
data collapse, thus validating Eq. (1). The bias scale Vo appears
to be independent of temperature and is shown in the inset of
Fig. 2(b) (circles) as a function of the Ohmic conductance.
The nonlinearity exponent xPI

T is thus zero in the PI phase of
the SSCMO single crystal. The experimental path in this case
corresponded to cooling the sample down to a temperature
far below TMI and then gradual heating. To check the effect
of possible hysteresis, the sample in another experiment was
first cooled from the room temperature to 85 K slightly above
TMI (i.e., still in the PI phase) where heating and cooling
cycle coincided (Fig. 1), and then heated. The exponent xPI

T in
this case turns out to be −0.31 ± 0.06 [squares in the inset of
Fig. 2(b)]. Such sensitivity of the exponent to the experimental
paths confirms the role of hysteresis.

Let us now turn to measurements in polycrystalline samples
(Table I). Since results in various samples are basically similar,
we consider only the results for the polycrystalline SSCMO
shown in Fig. 3 for the purpose of comparing results from the
single crystal of the same system discussed above. �-V plots
at various temperatures both below and above TMI are shown
in Figs. 3(a) and 3(b), respectively, such that in both cases
conductance increases from bottom to top. Curves in panels (a)
and (b) look qualitatively similar but exhibit a subtle difference
as described below. Both sets of data were found to follow the
same scaling as in Eq. (1) and actually collapse on the same
curve [Fig. 3(c)] [the scaled data in the FM phase (T < TMI )
have been shifted in the figure for the sake of clarity]. Vo

thus obtained are shown in log-log plots (open squares for the
FM phase and open circles for the PI phase) in the inset of
Fig. 3(c). The power-law fits to Eq. (2) yield exponents on
two sides of the MIT being different but positive and nonzero
in contrast to zero value in the single crystal. Moreover, Fo is
generally less in polycrystals than in the single crystal (Fig. 4).
This is contrary to what would be expected if the origin of
nonlinearity were primarily due to intergrain boundary effects.
Fo as a function of conductivity for all samples are shown
in Fig. 4.

Table I lists all the exponents extracted in this work. It may
be noted that the nonlinear I-V curves could also be caused
by Joule heating.20 A simple mean-field approach shows that
Vo ∼ �−0.5

o or xJoule ≈ −0.5.21 As none of the exponents
obtained is close to this value it can be concluded that the
non-Ohmic behavior is an intrinsic feature and not caused by
heating. If more current than used here is passed through the
samples one would encounter Joule regimes.22

FIG. 3. (Color online) The upper panels show plots of conduc-
tance vs bias in a SSCMO polycrystalline sample in the FM for
T < TMI (a) and PI phase for T > TMI (b) at temperatures as
indicated. The lower panel (c) shows the data collapse of the same
data of the upper panels. The scaled curve of the FM side is shifted for
clarity. Inset shows two log-log plots of Fo vs σo data corresponding
to PI (open circle) and FM sides (open square) respectively. The
solid lines are linear fits to the data with slopes xPI

T and xFM
T ,

respectively.
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FIG. 4. (Color online) Plots of onset field Fo vs Ohmic conductiv-
ity σo for different systems as marked. Circles and squares correspond
to PI and FM phases, respectively. Data of LMO and Pt-SiO2 were
shifted to right by the factors as indicated.

IV. DISCUSSION

Figures 2, 3, and 4 unambiguously show that the field-
dependent conductivities of various manganites indeed follow
the same scaling [Eqs. (1) and (2)] as followed by VRH
systems such as conducting polymers2 in spite of having very
different microscopic pictures. This leads to the significant
conclusion that the scaling of nonlinear conductivity like the
phenomena of electronic localization is a general property of
disordered systems and is independent of microscopic details.
The scaling however is yet to be theoretically anchored. A
critical phenomenon implies existence of a dominant length
scale. It is not yet clear how such a length scale emerges
out of the sea of disorder. The only model of disorder that is
known to possess an intrinsic length scale (i.e., the correlation
length ξ ) is that of percolation23 (see below). Moreover,
a two-component percolating system24 does obey a scaling
relation as in (1) for not too large current. The length scale
in a thermodynamic system is basically determined by the
distance from the critical temperature whereas the same in a
transport process, according to Eq. (2), is determined solely
by the Ohmic conductivity or conductance. This means that
the critical conductivity which is analogous to the critical
temperature is zero. It may be recalled that the scaling theory
of localization25 also assumes the Ohmic conductance as the
scaling variable. Apart from the fact that a thermodynamic
transition is an equilibrium process and a nonlinear transport
process is an nonequilibrium process, there is an important
difference between the former and the latter. The critical
exponents belonging to a given universality class are fixed. But
Table I reveals a plethora of exponent values belonging to the
same transport phenomena (i.e., MIT) in different manganite
samples. A variety of exponent values was also observed in
case of conducting polymers.2 In critical phenomena there
are quantities such as the proportionality constant in (2) or
the critical amplitude, which are essentially determined by the

system at hand. This of course requires an understanding of the
microscopic picture. Presently, a complete theory for nonlinear
transport in the vicinity of MIT in manganites is lacking. The
exponents and the field scales are further discussed below.

The most frequently discussed model used to describe
transport in various regimes of manganites, including that of
the MIT, invokes the idea of percolation.8,9,26 Coexistence of
domains of metallic FM phase and insulating PI phase6 with a
temperature-dependent metallic fraction p19 apparently finds
a ready analogy in the standard (i.e., classical) percolation
model.23 As the temperature T > TMI is decreased, the FM
phase starts growing and ultimately reaches the percolation
threshold at T = TMI . Gefen et al.27 have suggested two
theoretical models for onset of nonlinear conduction in a
binary mixture. One (NLRRN) assumes each conducting
bond to be nonlinear possibly due to joule heating and
predicts the exponent to be given by xp ≈ −0.03 (0.03) in
3D (2D).28 This is incompatible with the experiments with
real binary systems.24,27 The another (DRRN) ascribes the
onset of additional conduction due to hopping or tunneling
across insulating bonds under sufficiently strong field. In
this case the onset bias is given by Vo ∼ ξ−1 which leads
to xp � ν/t ≈ 0.45 (1) in 3D (2D) where ν and t are the
correlation and conductivity exponents, respectively. This
value is consistent with the experimental values.24,27 As
already noted,26 several fundamental disagreements between
manganites and standard percolation theory seem to exist: (i)
The conductivity exponents as high as about 7 required to
fit data in manganites are much higher than that (1.9 in 3D)
in the standard percolation model. (ii) The MIT can be first
order in manganites in contrast to being second order in the
percolation model. This work on nonlinear conduction now
throws up another couple of disagreements: (iii) The scaling
function in the PI phase does not match the one in a composite
below the percolation threshold. (iv) Instead of a single value
of an exponent in a thermodynamic transition, a multitude of
values (Table I) of the nonlinearity exponent is found. Even
then, it is seen that none of the exponents in the FM phase is
compatible with the value of 0.45.

Mosgnyaga et al.10 proposed a specific mechanism in-
volving correlated polarons for nonlinear transport around
the MIT in manganite samples. The resistance behavior with
temperature in the PI phase can be accounted by the correlated
polarons. The authors argued that the electric nonlinearity
resulted from the coupling of these polarons to the electric
fields. The sample resistance is expressed as

R ∼ 1

N − NCP + ANCP I 2
, (3)

where NCP and N ∼ 1/Ro are the concentrations of correlated
polarons and charge carriers respectively and A is a constant.
Note that the above equation upon incorporation of current is
a more consistent form of the equation originally considered
by the authors. Assuming NCP � N , one gets R = Ro − R3w

where

R3w ∼ R2
oNCP I 2. (4)

R3w, also known as the third-harmonic resistance, can be
related to the scaling in (1) in the next section where a
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new method of extracting the nonlinearity exponent is also
discussed.

A. Third-harmonic resistance, R3w

The third-harmonic method is based on the assumption that
voltage V of a nonlinear I-V curve can be written in odd powers
of current:

V = RoI + α3I
3 + · · · , (5)

where Ro = 1/�o is the linear resistance and α3 is a coeffi-
cient. For an ac I = Ia sin wt with the fundamental frequency
w, the first nonlinear term on the right-hand side of the
above equation gives rise to a third-harmonic term V3w(w) =
V3w sin 3wt with V3w = 1

4α3Ia
3. The third-harmonic resis-

tance is simply defined as R3w = V3w/Ia = 1
4α3Ia

2. The
nonlinear resistance R can be written as R(Ia) = 1/� =
Ro + 1

4α3Ia
2. A comparison with the scaling equation (1)

allows us to express the coefficient α3 in terms of the scaling
quantities. For this purpose it is convenient to rewrite Eq. (1)
in terms of R and I:

R(M,I )

Ro

= �I

(
I

Io

)
. (6)

Here �I is a new scaling function and

Io(M) = �oVo ∼ �o
1+xM . (7)

Expansion of �I in even powers of I yields �I = 1 +
b(I/Io)2 + · · · , where b, in contrast to α3, is a constant
independent of Ro. Using (7) in (6) we obtain R(M,I ) =
Ro + b′Ro

3+2xM I 2 where b′ is a constant. Comparison of the
two expressions for R yields R3w proportional to a power of
Ro with the exponent 3 + 2xM at a fixed current:

R3w(M) ∼ R3+2xM

o I 2. (8)

Note that this relation between R3w and Ro is a perfectly
general one, following directly from the scaling (6) and (7)
and the assumption of analyticity of the scaling function.
It is seen that Eq. (8) provides for an alternative means of
determining the nonlinearity exponent xM from the slope
of the log-log plot of R3w vs Ro. Moshnyaga et al.10 have
measured these resistances around the MIT in several epitaxial
thin films of La0.75Ca0.25MnO3 as functions of temperature
at a fixed current. Data from two such samples labeled C
and CB (see Fig. 3 of Ref. 10) are replotted in Fig. 5 using
log-log axes. The linearity of the plots indicates strong validity
of Eq. (8) and, consequently, scaling assumptions (6) and
(7). The exponents xT derived from the slopes are shown
in Table I. It would have been worthwhile to compare the
exponents thus obtained with ones determined from scaling
of I-V measurements as described earlier. It follows from (8)
and (4) that NCP ∼ R1+2xM

o . It would be interesting to obtain
an independent verification of this prediction possibly from
the neutron scattering data since the scattering intensity is
supposed to be proportional to NCP .

According to Eq. (8), the frequency dependence of R3w is
entirely determined by that of Ro. Since Ro(w) in disordered
regimes usually decreases with frequency,29 R3w is also
predicted to decrease with frequency. However, this seems
to be in contradiction with the data in Fig. 5 of Ref. 10

FIG. 5. (Color online) Plots of the third harmonic resistance R3w

vs the Ohmic resistance Ro in two systems as marked. Data are taken
from Fig. 3 of Ref. 10. Circles and squares correspond to PI and FM
phases, respectively. Slopes are as indicated.

where R3w increased with increasing frequency. Note that
owing to the one-parameter scaling the nonlinear resistance
Rpw corresponding to the term in (5) with a power p can be
expressed in terms of Ro:

Rpw(M) ∼ Ro(M)p+(p−1)xM Ip−1. (9)

p is tacitly assumed to be an integer. However, the above
relation still remains valid even when the powers may not be
integer. The possibility of such situations is discussed next.

B. Scaling function, �

One of the experimental features of the scaling functions
in manganites is that the maximum value of the normalized
conductance [Figs. 2(b) and 3(c)] hardly exceeded the factor
of two compared to several orders of magnitude in conducting
polymers.2 It makes drawing of any conclusion about its
asymptotic nature at large field rather uncertain. In order
to ascertain the nature of the scaling functions, scaled data
belonging to the PI phase of the single-crystalline and
polycrystalline SSCMO are superposed in Fig. 6. The scaling
functions are seen to diverge at higher fields. This may be
due to grain boundary effects in polycrystalline samples. Such
details along with effect of hysteresis on exponents illustrate
well capabilities of transport measurements in non-Ohmic
regimes as useful probes. Note that as explained before, the
data curves as well as other curves are drawn such that
each curve passes through the point (1,1.1) indicated as the
intersection of two perpendicular lines. The functional forms
for various possible nonlinear effects in manganites including
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FIG. 6. (Color online) Scaled data in PI phase of SSCMO single
crystal of Fig. 2 (noncentered symbols) and polycrystals of Fig. 4
(circles) are shown for comparison. The lines (except the solid one)
are plots of 1 + 0.1zq with q = 0.5 (dashed), 1 (dotted), and 4/3
(dash-dotted). The solid line is a fit to 1 + 0.1z4/3 + 0.0014z18/5 of
the scaled data of Pt-SiO2. See text for details.

one based on multistep tunneling (GM)30 have been discussed
in the literature.31 Accordingly, a functional �(z) = 1 + 0.1zq

is tried (z = V/Vo). Three curves corresponding to q = 0.5
(dashed), 1 (dotted), and 4/3 (dash-dotted) are shown in
Fig. 6. It is seen that the term z4/3 rises much faster than
the data in the single-crystal as well diverging from the data
in the polycrystalline sample, although less rapidly. The GM
model has been very successful in fitting the nonlinear data in
conducting polymers up to several orders of magnitude.2 But
this model seems quite inappropriate to describe the nonlinear
data in manganites even though the range of conductance in
this case is much smaller than in the conducting polymers.
In fact, it should be of no surprise that the GM model fails
since no basis for application of the model exists particularly
in the single crystal. Clearly, the first power in a series for �

must be less than 4/3. Thus, the scaling functions obtained in
this work are not analytic and are therefore incompatible with
the expansion like Eq. (5). The curve with q = 1 appears to
cross the single-crystal data at about z ∼ 1.7, varying slower
at lower values and somewhat faster at higher values. The term
with q = 0.5 is incompatible with the data at hand.

From the viewpoint of percolation theory the PI phase is
below the threshold since there is no FM cluster that spans
the entire sample. A PI phase at different temperature is
comparable to a nonpercolating granular sample with different
conducting fractions (p). We have analyzed such data at a
fixed temperature of three samples of Pt-SiO2 with different
metal fractions available in the literature.4 The scaled data
with �/�o being as high as 30 can be fitted very well to
a GM expression: 1 + 0.1z4/3 + 0.0014z18/5 (solid curve in
Fig. 6). Comparison with the manganite data shows that the
non-Ohmic conductivity in the latter increase much slower
than those in a binary composite. Interestingly, the observation
of the same scaling function above and below TMI in the
polycrystalline samples (Fig. 3) is not expected from the

simple percolation theory. In the FM phase which corresponds
to a percolating system above the percolation threshold, the
nonlinear conduction is thought to occur due to opening of new
conduction channels across thin insulating bridges connected
to the backbone.24,27 But in the PI phase an electron must tunnel
from one metallic cluster to another across insulating barriers
in the absence of any backbone. On the other hand, within the
scenario that assumes an existence of a distribution of TMI

19

in the PI phase, the presence of a fraction of PI clusters may
give rise to the same scaling functions on both sides of TMI as
observed.

C. Nonlinearity exponents, xT

At this stage due to lack of a proper theory, the exponents
cannot be related to the microscopic features. Nevertheless,
its sheer variety in signs and numbers in Table I reinforces
the potential utility of the non-Ohmic probe. We note the
followings:

(1) The exponent xp in a nonpercolating system such as
Pt-SiO2 (Fig. 4) is found to be nearly zero and hence consistent
with xPI

T in SSCMO*.
(2) The signs as well as the magnitudes of xFM

T are generally
different from ∼0.45 found in the three-dimensional binary
composites above the threshold.24 The NLRRN model predicts
a negative exponent but its magnitude is difficult to compare
with the array of experimental numbers.

(3) As observed in conducting polymers, the exponent value
may depend upon the experimental path in the variable space.
In the present case the path may be changed due to hysteresis
[Fig. 2(b)].

(4) xPI
T can be both positive and negative.

(5) xPI
T has the same sign as the corresponding xFM

T .
(6) |xPI

T | is generally less than |xFM
T | [the exponents may

be occasionally equal (within error) as in the sample C].
(7) The errors in exponents in Table I only refer to those

of least-squares fittings. It does not include uncertainties in
actual scaling procedures and/or digitization of data (e.g.,
from Ref. 10 in the present case), whenever applicable.
Such uncertainties can increase errors by another 10%–15%
depending upon the quality of data under consideration.

The different exponents on the two sides of the transition
in polycrystalline samples must be related to the subtle
differences in microstructures. It has been recognized that
the finite width of the R-T curve at T < TMI is due to a
distribution of TMI values belonging to various domains of
PI subjected to different degrees of disorder.19 Let us define
the width by �T1/2 = TMI − T1/2 as the difference between
TMI and the temperature T1/2 at which the resistance is half
of the peak value; i.e., Ro(T1/2) = Ro(TMI )/2 (see inset of
Fig. 7). This quantity for different samples are shown in Table I.
In the case of a single crystal, �T1/2 will be close to zero.
The absolute difference in exponents, �xT = |xPI

T − xFM
T |, is

plotted against �T1/2 in Fig. 7 and is seen to be an increasing
function of the width. The dashed line is an empirical fit
of the data to �xT = 0.7{1 − exp[−0.07(�T1/2 − �To)]} for
�T1/2 � �To, and 0 for �T1/2 � �To where �To ≈ 8 K.
Sharper is the fall of resistance on FM side, closer is |xFM

T | to
|xPI

T |. It may be noted that the width �T1/2 of course must be
ultimately related to the width of the distribution of TMI .
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FIG. 7. (Color online) Plot of �xT (= |xPI
T − xFM

T |) vs �T1/2(=
TMI − T1/2) for six samples in Table I. The dashed line is essentially
a guide to the eye. The inset illustrates using SSCMO data in Fig. 1
how the quantities in �T1/2 are defined. See text for details.

D. Field scale, Fo

Field scales determined according to the criterion (i.e.
σ (Fo) = 1.1σo) assumed in this work are displayed in Fig. 4
for all samples including SSCMO* and Pt-SiO2. It is seen that
the scale in SSCMO* is about three orders of magnitude less
than that in Pt-SiO2. This can be understood by noting that
a carrier moves from one metallic cluster to another which is
chemically and structurally the same but distinguished only by
spin or charge ordering. Hence, the energy barrier that a carrier
must overcome must be much less than that in a medium of
chemically dissimilar materials such as Pt and SiO2. On the
other hand, taking the separation distance in a manganite as
large as 100 nm6 a field of 10 V/cm (Fo in SSCMO*, Fig. 3)
corresponds to an anomalously low barrier height of about 1
K compared to about 300 K estimated from noise studies.32

This may corroborate the claim of electronically soft phases
in manganites.14

The issue of the field scale is really related to the issue of
existence of an intrinsic length scale in a disordered medium

as argued in the beginning of Sec. IV. However, its magnitude
like the nonlinearity exponent must be determined by the
microscopic details of the system at hand. A proper theoretical
framework is still to come. In fact, the straightforward
application of the prevalent theories4,5 using the one-electron
picture leads to inconsistent conclusions. The field scale Fo

is given by the condition that the field-activated conduction
becomes comparable to the temperature-activated one; i.e.,

eFow = kBT . (10)

Here w, a relevant length scale, may be the mean separation
length between two metallic clusters in a granular system4 or
the average hopping distance in a VRH system.5 The scale
Fo is decided by the behavior of w(T). In view of different
values of the exponents xT , it is difficult to see how a single
physical parameter can account this. It remains to be seen how
introduction of correlation among electrons as in manganites
will affect a relation like Eq. (10). It may be noted that the latter
is not compatible with Eq. (2) which is a typical power-law
relation in critical phenomena.

V. CONCLUSION

In summary, this work on scaling of non-Ohmic conduc-
tivity in manganites highlights the fact that an intrinsic length
scale, just as localization, is a general property of a disordered
medium. The length scale leads to the associated scaling
property. At the same time, this work also shows how studies
of the scaling quantities which depend on the microscopic
details could be a useful probe of complex systems such as
manganites. The phenomenology of the scaling now needs
to be supported by a proper theoretical analysis to explain,
among other things, the great variety of exponents found in
this work—a feature that distinguishes transport transitions
from thermodynamic ones. It is hoped that this work will
encourage systematic study of other disordered regimes such
as charge-ordered states from the perspective of scaling.
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Simon, G. André, P. Monod, and F. Fauth, J. Appl. Phys. 98, 023911
(2005).

21C. D. Mukherjee, K. K. Bardhan, and M. B. Heaney, Phys. Rev.
Lett. 83, 1215 (1999).

22M. Tokunaga, Y. Tokunaga, and T. Tamegai, Phys. Rev. Lett. 93,
037203 (2004).

23D. Stauffer and A. Aharony, Introduction to Percolation Theory,
2nd ed. (Taylor and Francis, London, 1992).

24K. K. Bardhan, Physica A 241, 267 (1997).
25E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
26P. Majumdar, in Quantum and Semiclassical Percolation and

Breakdown in Disordered Solids, Lecture Notes in Physics,
Vol. 762, edited by A. K. Sen, K. K. Bardhan, and B. K. Chakrabarti
(Springer, Berlin, 2009), p. 195.

27Y. Gefen, W.-H. Shih, R. B. Laibowitz, and J. M. Viggiano, Phys.
Rev. Lett. 57, 3097 (1986).

28A. Aharony, Phys. Rev. Lett. 58, 2726 (1987).
29S. Chaudhuri, R. C. Budhani, J. He, and Y. Zhu, Phys. Rev. B 76,

132402 (2007); R. K. Chakrabarty, K. K. Bardhan, and A. Basu,
ibid. 44, 6773 (1991).

30L. I. Glazman and K. A. Matveev, JETP 67, 1276 (1988).
31M. Paranjape, J. Mitra, A. K. Raychaudhuri, N. K. Todd,

N. D. Mathur, and M. G. Blamire, Phys. Rev. B 68, 144409
(2003).

32B. Raquet, A. Anane, S. Wirth, P. Xiong, and S. von Molnar, Phys.
Rev. Lett. 84, 4485 (2000).

165104-8

http://dx.doi.org/10.1103/PhysRevB.79.134413
http://dx.doi.org/10.1103/PhysRevB.62.R11941
http://dx.doi.org/10.1103/PhysRevB.62.R11941
http://dx.doi.org/10.1103/PhysRevB.70.134403
http://dx.doi.org/10.1103/PhysRevB.70.224403
http://dx.doi.org/10.1103/PhysRevB.64.224428
http://dx.doi.org/10.1103/PhysRevLett.88.027204
http://dx.doi.org/10.1103/PhysRevB.65.214428
http://dx.doi.org/10.1103/PhysRevB.65.214428
http://dx.doi.org/10.1103/PhysRevB.84.075111
http://dx.doi.org/10.1103/PhysRevB.84.075111
http://dx.doi.org/10.1038/nature03300
http://dx.doi.org/10.1038/nature03300
http://dx.doi.org/10.1088/0034-4885/69/3/R06
http://dx.doi.org/10.1103/PhysRevB.64.115113
http://dx.doi.org/10.1103/PhysRevB.79.144431
http://dx.doi.org/10.1103/PhysRevB.79.144431
http://dx.doi.org/10.1016/j.jmmm.2004.09.118
http://dx.doi.org/10.1103/PhysRevLett.96.117003
http://dx.doi.org/10.1103/PhysRevLett.96.117003
http://dx.doi.org/10.1063/1.1993750
http://dx.doi.org/10.1063/1.1993750
http://dx.doi.org/10.1103/PhysRevLett.83.1215
http://dx.doi.org/10.1103/PhysRevLett.83.1215
http://dx.doi.org/10.1103/PhysRevLett.93.037203
http://dx.doi.org/10.1103/PhysRevLett.93.037203
http://dx.doi.org/10.1016/S0378-4371(97)00094-0
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.57.3097
http://dx.doi.org/10.1103/PhysRevLett.57.3097
http://dx.doi.org/10.1103/PhysRevLett.58.2726
http://dx.doi.org/10.1103/PhysRevB.76.132402
http://dx.doi.org/10.1103/PhysRevB.76.132402
http://dx.doi.org/10.1103/PhysRevB.44.6773
http://dx.doi.org/10.1103/PhysRevB.68.144409
http://dx.doi.org/10.1103/PhysRevB.68.144409
http://dx.doi.org/10.1103/PhysRevLett.84.4485
http://dx.doi.org/10.1103/PhysRevLett.84.4485



