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Hyperfine-induced decoherence in triangular spin-cluster qubits
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We theoretically investigate hyperfine-induced decoherence in a triangular spin cluster for different qubit
encodings. Electrically controllable eigenstates of spin chirality (Cz) show no appreciable decoherence up to
102 μs, while a complete decoherence is estimated for the eigenstates of the total-spin projection (Sz) and of the
partial spin sum (S12) after 10 μs. The robustness of chirality is due to its decoupling from both the total- and
individual-spin components in the cluster. This results in a suppression of the effective interaction between Cz

and the nuclear-spin bath. We finally estimate the reduction of the decoherence time scale for Cz, resulting from
possible hyperfine contact terms or from the misalignment of the magnetic field.
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Introduction. Molecular nanomagnets represent a varied
class of spin clusters, whose physical properties can be
extensively engineered by chemical synthesis.1 This makes
them a potential alternative to other spin systems2 for the
implementation of spin-cluster qubits.3–5 While most of the
attention has been so far focused on the use of the total-spin
projection (Sz) as a computational degree of freedom (DOF),
it has been recently realized that alternative encodings would
enable the use of electric—rather than magnetic—fields for the
qubit manipulation.6 In particular, transitions between states
of opposite spin chirality [Cz = (4/

√
3)s1 · s2 × s3] can be

induced in antiferromagnetic triangles with Dzyaloshinskii-
Moriya interaction. Spin-electric coupling constants compat-
ible with ns gating times τg have been predicted by effective
models6,7 and microscopic ab initio calculations,8 and might
be possibly enhanced by suitable chemical substitutions.9

In order to assess the suitability of spin chirality for
applications in quantum-information processing, its τg has to
be contrasted with a characteristic decoherence time τd . At low
temperatures, quantum coherence in molecular nanomagnets
is limited by the coupling to the nuclear-spin environment,
with typical values of τd in the microsecond range.10–12 All
the existing literature is, however, concerned with linear su-
perpositions of different Sz eigenstates. Here we theoretically
investigate the dependence of hyperfine-induced decoherence
on the qubit encoding within a prototypical spin-cluster qubit,
consisting of an antiferromagnetic spin triangle. In particular,
we consider three different DOFs, namely, Sz, Cz, and the
partial spin sum S12 (S12 = s1 + s2), whose value—as that of
Cz—can be controlled through spin-electric coupling. Since
the optimal candidate system has not been identified yet,
we refer here to a prototypical molecular spin-cluster qubit,
with a typical electron-spin Hamiltonian13 and bath of nuclear
spins.14

Qubit encodings in the spin triangle. We consider a triangle
of 1/2 spins, with a dominant antiferromagnetic coupling and
Zeeman interaction:

H0 = J

3∑

i=1

si · si+1 + gμBB · S. (1)

An additional term H1 determines the expression of the lowest
eigenstates |0〉 and |1〉, belonging to the ground state S = 1/2

quadruplet. As discussed in the following, the robustness of
the spin-cluster qubit with respect to hyperfine-induced deco-
herence strongly depends on the distinguishability between |0〉
and |1〉 in terms not only of total-spin orientation, but also of
spin texture. Hereafter, we thus discuss these features in some
detail in two relevant cases:

H
Cz

1 = �√
3

ẑ ·
3∑

i=1

si × si+1, (2)

H
S12
1 = (J12 − J )s1 · s2. (3)

The term H
Cz

1 accounts for the Dzyaloshinskii-Moriya
interaction.13 For an electron-spin Hamiltonian He =
H0 + H

Cz

1 , the four lowest eigenstates can be labeled after the
value of the spin chirality Cz, and the Dzyaloshinskii-Moriya
term can be rephrased as H

Cz

1 = �CzSz.6 If the magnetic field
is oriented parallel to the principal axis (z) of the molecule,
the eigenstates |Cz,Sz〉 read |±1, + 1/2〉 = (|↓↑↑〉 +
e±i2π/3|↑↓↑〉 + e∓i2π/3|↑↑↓〉 )/

√
3 and |±1,−1/2〉 =

σ 1
x σ 2

x σ 3
x |±1,+1/2〉, where σ i

x is the Pauli operator acting on si .
Both Sz and Cz commute with He, which makes them suitable
as computational DOFs. In the first case, the logical states are

|0〉Sz
= |Sz = −1/2; Cz = +1〉,

|1〉Sz
= |Sz = +1/2; Cz = +1〉,

with spin expectation values [Fig. 1(a)]

〈1|sz,i |1〉Sz
= −〈0|sz,i |0〉Sz

= 1/6. (4)

If the computational DOF is identified with spin chirality, the
logical states are instead

|0〉Cz
= |Cz = +1; Sz = −1/2〉,

|1〉Cz
= |Cz = −1; Sz = −1/2〉,

and the expectation values of the three spins are independent
on the qubit state [Fig. 1(a)],

〈1|sz,i |1〉Cz
= 〈0|sz,i |0〉Cz

= −1/6. (5)

As a result, |0〉Cz
and |1〉Cz

are indistinguishable in terms
of total-spin projection and spin texture: They thus span an
approximately decoherence-free subspace15–17 (see below).
Such a condition is, however, not general. In fact, if the
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FIG. 1. (Color online) (a) Schematics of the local spin projections
〈sz,i〉 in the spin triangle, corresponding to the |0〉 (red) and |1〉 (blue)
states in the three considered qubit encodings. The logical states of the
chirality qubit (Cz, left) have identical expectation values 〈sz,i〉; this
is not the case for the other two encodings (S12 and Sz). (b) Angle αk

between the vector 〈S〉 and ẑ for the eigenstates |0〉θ
Cz

(blue) and |1〉θ
Cz

(green), for �/gμB = 0.5 (solid lines) and 2.0 (dotted). (c) Statistical
distribution of the distances den between the Ne = 3 electron and the
Nn = 200 nuclear spins with randomly generated positions.

applied magnetic field is tilted with respect to the z axis,
B = B(sin θ x̂ + cos θ ẑ), 〈k|si |k〉θCz

(with k = 0,1) are oriented
along B′

k = (Bx,0,Bz ± �/gμB). Eigenstates of opposite
chirality are thus characterized by different orientations of
the spin expectation values [see Fig. 1(b)],

〈k|sx,i |k〉θCz
= sin αk/6, 〈k|sz,i |k〉θCz

= cos αk/6, (6)

where αk = arctan[ χB sin θ

B cos θ+(−1)k�/gμB
] + π , 0 � arctan � π ,

and χ = ±1 for � ≷ BgμB .
If no Dzyaloshinskii-Moriya interaction is present and one

exchange coupling differs from the other two, the term H
Cz

1

is replaced by H
S12
1 [Eq. (3)]. For He = H0 + H

S12
1 , the four

lowest eigenstates can be labeled after the partial sum of the
first two spins, rather than the spin chirality, |S12,Sz〉, where
S12 = 0,1. Their expressions read |0,+ 1/2〉= (|↑↓↑〉−
|↓↑↑〉)/√2, |1,+ 1/2〉= (|↑↓↑〉+ |↓↑↑〉− 2|↑↑↓〉)/√6,
while |S12,− 1/2〉= σ 1

x σ 2
x σ 3

x |S12,+ 1/2〉. Choosing S12 as
the computational DOF, one has

|0〉S12 = |S12 = 0; Sz = −1/2〉,
|1〉S12 = |S12 = 1; Sz = −1/2〉.

As far as the spin expectation values are concerned, S12

represents an intermediate case between Sz and Cz. The
qubit states have in fact identical values for the total spin,
〈0|S|0〉S12 = 〈1|S|1〉S12 , as Cz, but they strongly differ in terms
of spin texture, as Sz [Fig. 1(a)]:

〈0|sz,i=1,2|0〉S12 = 0, 〈0|sz,3|0〉S12 = −1/2, (7a)

〈1|sz,i=1,2|1〉S12 = −1/3, 〈1|sz,3|1〉S12 = 1/6. (7b)

Nuclear spin and hyperfine interactions. The decoherence
of the spin-cluster qubit is investigated by simulating the

coupled dynamics of electron and nuclear spins. The qubit
and the nuclear environment are initialized respectively in
the linear superposition |ψe(0)〉 = 1√

2
(|0〉 + |1〉) and in the

mixed state ρn(0) = ∑
I PI |I〉〈I|. Here, the expressions of

|0〉 and |1〉 depend on H1, while |I〉 = |mI
1 , . . . ,mI

Nn
〉 and

mI
i are the projections along the magnetic field direction of

the Nn nuclear spins. In the pure-dephasing regime, each
state |�I (0)〉 = 1√

2
(|0〉 + |1〉) ⊗ |I〉 evolves into |�I (t)〉 =

1√
2
(|0,I0〉 + |1,I1〉), where |I0〉 (|I1〉) can be regarded as the

state of the nuclear bath conditioned upon the qubit being in the
|0〉 (|1〉) state. The degree of coherence in the reduced density
matrix of the qubit, ρe = Trn{

∑
I PI |�I (t)〉〈�I (t)|}, is given

by the so-called decoherence factor r(t) = ∑
I PIrI (t), with

rI (t) = 〈I1(t)|I0(t)〉 and 〈0|ρe|1〉 = rI/2.
The nuclear-spin bath we consider consists of Nn =

200 hydrogens (I = 1/2), whose positions rn
p are ran-

domly generated so as to reproduce typical values of
the spin density and the electron-nuclear distances den =
|re

i − rn
p|, where re

i are the positions of electron spins
[Fig. 1(c)].18 The nuclear-spin Hamiltonian Hn includes
Zeeman and dipole-dipole terms, Hn = B̂ · ∑

p ωpIp +
Dnn

∑
p<q[Ip · Iq − 3(Ip · r̂pq)(Iq · r̂pq)]/r3

pq , where Dnn =
(μ0/4π )μ2

nγ
2
I and rpq = rn

p − rn
q . Electron and nuclear

spins are coupled by dipole-dipole and contact interac-
tions, Hen = Den

∑
i

∑
p[si · Ip − 3(si · r̂ip)(Ip · r̂ip)]/r3

ip +∑
i aisi · Iq(i), where Den = (μ0/4π )μnμeγI γe and rip =

re
i − rn

q . The contact terms ai , whose effect will be considered
in the final part of this Rapid Communication, couples electron
and nuclear spins belonging to the same magnetic center.

The dephasing arises from the qubit-state dependent
dynamics of the nuclear bath, generated by an effective
Hamiltonian H. We use a two-step procedure19,20 to derive H
from the Hamiltonian H = He + Hn + Hen. We first replace in
H the single-electron-spin operators sα,i with their projection
onto the S = 1/2 subspace, sα

p → ∑3
i,j=0〈i|sα

p |j 〉σij , where
σij = |i〉〈j | and |i〉 are the eigenstates of He. We then apply a
Schrieffer-Wolff transformation to the projected Hamiltonian
H that removes from the Hamiltonian the terms that are
off diagonal in the basis of electron-spin eigenstates |i〉,21,22

and finally neglect energy nonconserving terms (secular
approximation). The resulting Hamiltonian reads H = Hi +
(|0〉〈0| − |1〉〈1|) ⊗ He, where

Hχ=i,e =
Nn∑

p=1

ωχ
pI z′

p +
∑

p �=q

(
Aχ

pqI
z′
p I z′

q + Bχ
pqI

+
p I−

q

)
(8)

and ẑ′ ≡ B/B. Two-spin terms in the intrinsic Hamiltonian
Hi come from dipolar interactions between the nuclei.
Those in the extrinsic Hamiltonian He are mediated by
virtual transitions between eigenstates of the electron-spin
Hamiltonian: They thus depend quadratically on the hyperfine
couplings Den, while the dependence of ωe

p is linear. The time
evolution of the nuclear states |Ik〉 is computed within the
pair-correlation approximation, where the nuclear dynamics is
traced back to independent flip-flop transitions between pairs
of nuclear spins.21,23,24

Hyperfine-induced decoherence. The fastest contribu-
tion to dephasing in the spin-cluster qubit is related to
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FIG. 2. (Color online) Time dependence of the decoherence
factor r for the three qubit encodings: Sz (black), S12 (red), and
Cz (green for θ = 0 and blue for θ = π/8). The curves are averaged
over NI = 5 × 104 randomly generated initial states |I〉 of the nuclear
bath. Inset: Statistical distribution (squares) of the parameter δI , and
corresponding Gaussian fits (solid lines).

inhomogeneous broadening, and typically takes place on time
scales that are much shorter than those characterizing the
dynamics of the nuclear bath (τn ∼ h̄/|Bk

pq | ∼ 102 μs). Such
a contribution results from the following renormalization of
the energy gap between the states |0〉 and |1〉 induced by
the hyperfine interaction: δI = ∑

k=0,1(−1)k〈k,I|H|k,I〉 �∑
p ωe

pmI
p. Being the nuclear spin bath initially in a mixture

of states |I〉, the decoherence factor evolves as r(t � τn) �
e−i(E0−E1)t ∑

I PIe
−iδI t , while |Ik(t � τn)〉 � |I〉. In first

order in Hen, δI can be regarded as a function of the Overhauser
field at the electron-spin sites,

δI � μBg
∑

i

BI
hf(r

e
i ) · [〈0|si |0〉 − 〈1|si |1〉], (9)

where BI
hf(r

e
i ) = Den

∑
p mI

p[ẑ′ − 3(ẑ′·r̂ip)r̂ip]/r3
ip. In the case

of the Sz qubit [see Eq. (4)], δ
Sz

I � −(μBg/3)
∑

i B
I
hf,z′ (re

i ).

The statistical distribution N (δSz

I ) is reported in the inset
of Fig. 2 (black squares) for 5 × 104 initial nuclear states
|I〉, randomly generated from a flat probability distribution
PI = 1/2Nn . N (δSz

I ) is well fitted by a Gaussian function
(solid line), with σSz

= 9.0 neV. Correspondingly, the decay of
|r(t)| (black line in Fig. 2) is approximately Gaussian, and its
characteristic time scale is 102 ns. In the case of the S12 qubit,
the three electron spins are no longer equivalent, and δ

S12
I �

− (μBg/3)[2BI
hf,z′ (re

3) − BI
hf,z′ (re

1) − BI
hf,z′ (re

2)]. However, the

statistical distribution of δ
S12
I strongly resembles that of Sz

(see the red squares in the figure inset, and the Gaussian
fit with σS12 = 9.4 neV), and so does the time evolution of
the decoherence factor (red curve in the main panel). In fact,
since the distances dee between electron spins are larger than
the smallest den [see Fig. 1(c)],18 the spatial fluctuations of the
Overhauser field within the spin triangle are comparable to its
average value. In spin clusters with larger den/dee ratios (not
shown here), spatial fluctuations of Bhf(r) are relatively small.

FIG. 3. (Color online) Time evolution of the decoherence factor
rm in the cases of the Sz (black) and S12 (red) DOFs. The case of
chirality is displayed for small tilting angles θ = 2πk/100, with k

ranging from 0 (upper green curve) to 11 (lower green curves). All
curves are averaged over 102 randomly generated initial conditions
|I〉; the spin Hamiltonian parameters are � = 1 K, B = 1 T.

As a result, δ
S12
I � δ

Sz

I , and the S12 qubit is less affected by
inhomogeneous broadening than Sz.

In the case of the Cz qubit and for B ‖ ẑ, the Overhauser
field does not renormalize the energy difference between the
states |0〉 and |1〉 that have identical expectation values for
all single-spin projections [Eqs. (5) and (9)]. The leading
contribution to δ

Cz

I is given by terms that are second order
in the hyperfine Hamiltonian, δ

Cz

I = ∑
p �=q Ae

pqm
I
pmI

q , and its
modulus is here five orders of magnitude smaller than that of
δ

Sz

I and δ
S12
I . Correspondingly, no inhomogeneous broadening

occurs in the considered time scale (green curve). For a
tilted magnetic field (θ �= 0), states of opposite chirality have
different expectation values 〈si〉 [see Eq. (6)], and thus couple
differently to the Overhauser field. The leading contribution to
the renormalization of the energy difference reads δ

Cz

I (θ ) �
(μBg/6)

∑1
k=0(−1)k(sin αkB

I
hf,x ′ + cos αkB

I
hf,z′ ), where x′ ⊥

z′ and lies in the xz plane. The statistical distribution of
δ

Cz

I (θ = π/8) and the resulting qubit dephasing are reported
in Fig. 2 (σCz

= 4.5 neV, blue curve).
The nuclear-spin dynamics contributes to decoherence by

correlating electron and nuclear spins. In order to single out this
contribution, we compute the function rm(t) = ∑

I PI |rI (t)|.
In the case of the Sz qubit, electron-nuclear correlations
result in a decay of rm in the μs time scale (Fig. 3, black
curve). The decay is induced by the interplay of the dipolar
interactions between the nuclei and of the term

∑
p ωe

pI z
p,

whose expectation value gives δ
Sz

I . A similar time dependence
for rm is obtained in the case of the S12 qubit (red curve). Here,
the same terms in the effective Hamiltonian H dominate, and
have similar expectation values, δ

Sz

I � δ
S12
I (see the inset of

Fig. 2). This quantity (δCz

I ) is about five orders of magnitude
smaller for the Cz qubit, if B ‖ ẑ. As a result, the dynamics
of the nuclear bath is largely independent on the qubit state
and no appreciable decoherence takes place for t � 102 μs
(upper green curve): On such a time scale the |0〉 and |1〉 states
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FIG. 4. (Color online) Time dependence of the decoherence
factor in the presence of three additional nuclear spins (Nn = 203)
localized at the electron-spin positions re

i and coupled to the
respective electron spins with a contact coupling (a) ap = 10 mK or
(b) ap = 1 mK. The solid curves correspond to the cases Sz (black),
S12 (red), and Cz (figure insets). The dotted lines represent the time
dependence of rm in the absence of the three nuclei with contact
couplings.

thus define a decoherence-free subspace. However, δCz

I (θ ) and
the decoherence rate rapidly increase for finite values of the
tilting angle θ (lower green curves); for θ = 3π/8 (blue), r(t)
approaches the curve corresponding to S12 and Sz.

We finally investigate the possible contribution to deco-
herence of the contact terms, resulting from the relatively
strong coupling with the electron spins of few (Nc

n ∼ Ne �
Nn) nuclei. Here, the Nc

n = Ne = 3 additional nuclear spins

are localized at the electron-spin sites re
i , and are assumed

for simplicity identical to the remaining 200 nuclei. The
inequivalence between the Nc

n and Nd
n nuclear spins, resulting

from strong coupling of the former ones with the electron spins,
warrants the factorization of the decoherence factor, r(t) =
rc(t) rd (t). The time evolution of rc(t) is reported in Fig. 4, for
ap = 1 and 10 mK [Figs. 4(a) and 4(b), respectively]. In the
case of Sz (black curve) and S12 (red), rc is responsible for the
fast oscillations, while the decay is due to rd (dotted lines). In
the case of Cz, oscillations of the decoherence factor take place
on a time scale which is much longer than that of Sz and S12, but
much shorter than the one that characterizes the contribution
of the dipolar interactions (figure inset). The chirality qubit
also presents a different dependence on the contact coupling
constant ai with respect to Sz and S12. A comparison between
the two panels shows in fact that the characteristic time
scale of the oscillations in rc is τ c

d ∼ h̄/ap for Sz and S12,
and τ c

d ∼ h̄ δij /a
2
p for Cz, where δij ∼ min{�,gμBB} is the

smallest difference between eigenvalues of He. The leading
contributions of contact interaction to H are thus quadratic in
the hyperfine Hamiltonian for Cz, and linear for the other two
DOFs.

In conclusion, we have shown that the nuclear-induced
decoherence in a prototypical spin triangle strongly depends on
the qubit encoding. In particular, no appreciable decoherence
is found for the chirality qubit up to 102 μs, due to the
decoupling of Cz from both the total-spin orientation and the
spin texture. The eigenstates of S12 are instead characterized
by decoherence times comparable to those of the total-spin
projection Sz, unless the distance between electron spins
is strongly reduced with respect to the size of the nuclear
bath.

We acknowledge financial support by PRIN of the Italian
MIUR, by the Swiss NF, and by FP7-ICT project “ELFOS.”
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