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Nearly flat Andreev bound states in superconductor-topological insulator hybrid structures
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Exotic excitations arise at the interface between a three-dimensional topological insulator (TI) and
superconductors. For example, Majorana fermions with a linear dispersion E ∼ k exist in a short π Josephson
junction on the TI surface. We show that in these systems, the Andreev bound state spectrum becomes nearly
flat at zero energy when the chemical potential is sufficiently away from the Dirac point. The flat dispersion is
well approximated by E ∼ kN , where N scales with the chemical potential. A similar evolution from linear to
flat dispersion also occurs for the subgap spectrum of a periodic superconducting proximity structure, such as a
TI surface in contact with a stripe superconductor.
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Moving at “the speed of light” vF , massless Dirac electrons
on the surface of a three-dimensional Z2 topological insulator
(TI) cannot be localized by scattering from nonmagnetic
impurities,1,2 nor can they be easily confined by electrostatic
potentials due to Klein tunneling.3 Proximity coupling to
ferromagnetic or superconducting order can, however, open up
a gap in the spectrum, thus rendering excitations massive.1,2 An
intriguing possibility is to engineer new massless excitations
by confining and coherently mixing Dirac electrons and
holes using two or more superconductors with a definite
phase difference.4 For example, Fu and Kane showed that a
Josephson junction on the surface of a TI with a phase bias of
π is a one-dimensional quantum wire for Majorana fermions,
which can be further manipulated by using trijunctions.4

Signatures of Majorana fermions in such structures have been
reported in recent experiments.5,6

In this Rapid Communication, we demonstrate a different
regime for the same, albeit slightly more general, Josephson
structures considered by Fu and Kane. This regime features
massless zero energy excitations that are almost dispersionless,
i.e., with vanishing group velocity (∂E/∂k � 0). We elucidate
the scattering kinematics behind the nearly flat dispersion at
zero energy using simple models, and verify the results with
self-consistent calculations. We find it striking that in such
simple structures, which are now available in experiments,
the low energy excitation can be easily tuned all the way from
E ∼ k to E ∼ kN , where N is large, by increasing the chemical
potential. By extending such junctions into a class of periodic
superconductor-TI proximity structures, we further show that
these states become a flat band near zero energy.

The Josephson junction is schematically shown in Fig. 1(a).
Two s-wave superconductors are patterned on the TI surface.
Due to the proximity effect, the S-TI interface becomes a two-
dimensional (2D) superconductor (S). The S-TI-S junction
can be well described by the following Bogoliubov-Dirac
Hamiltonian introduced in Ref. 4,

H = h̄vF (σxky + iτzσy∂x) + τzμ(x) + τyσy�(x). (1)

Here τi (σi) are the Pauli matrices in the particle-hole (spin)
space. The system is translationally invariant in the y direction,
and ky is the momentum along y. In the TI region of length
w, the superconducting order parameter �(x) = 0, while it
is constant � deep into the superconductor. The chemical

potential μ can be tuned by applying a gate voltage. In general,
its value can differ in the TI and S region, but for simplicity,
we assume it is uniform in all regions. Also, we will focus on
the case of phase difference of π across the junction.

We first give a heuristic argument for the existence of two
regimes. A Dirac electron in the TI region incident on S will
be Andreev reflected into a hole if its energy is below the
superconducting gap (E < �). In the context of graphene,7,8

Beenakker pointed out that, in addition to the familiar Andreev
retroreflection where the reflected hole has a group velocity
opposite to the incident electron when E < μ, there is also the
case of specular Andreev reflection where the reflected hole’s
group velocity is in the specular direction for E > μ. Typical
scattering trajectories in these two regimes are contrasted
in Figs. 1(b) and 1(c). For μ = 0 as considered in Ref. 4,
the Majorana fermion excitation with linear dispersion is
associated with the specular Andreev reflections in Fig. 1(b).
For large μ, as in the case of as grown Bi2Se3 crystals,
one expects very different behaviors at low energies. For the
E < μ case, it can be shown analytically that the phase of the
retroreflected hole is equal to the incident angle of an incoming
electron at zero energy, θ = arcsin(h̄vF ky/μ). This is unique
to TIs because the wave function of a Dirac electron (or hole),
(1, ±eiθ ,0,0) [(0,0,1, ±eiθ )], is determined by the angle θ , or
ky . The resultant hole incident on the opposite S with phase of
π retroreflects into an electron. This electron has exactly the
same phase as it started with, thus forming an Andreev bound
state.

The remaining key question is whether there will be any
states at or near zero energy when μ is finite. We can answer
the question by solving Eq. (1) for an idealized, step function
profile of �(x),

�(x) = �[θ (−x) − θ (x − w)]. (2)

The dark lines in Fig. 1(d) shows the zero energy solution
in the (μ,ky) plane, with fixed � and the junction length
w = 10h̄vF /�. In general, there exist multiple zero energy
bound states at discrete ky values {ki

y} for finite μ. For
increasing μ and w, these solutions become increasingly close
packed. This nontrivial result has important implications for
experiments. The Majorana quantum wire is only ideal in the
limit of μ,w → 0. As μ is tuned away from the Dirac point, the
single zero energy state at k = 0 will be replaced by multiple
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FIG. 1. (Color online) (a) Schematic of a Josephson junction on
the surface of a topological insulator (TI). The two superconducting
leads (S) have a phase difference π . � is the superconducting gap, and
w is the junction width (not to scale). (b) Specular Andreev reflection
in the regime E > μ. (c) Retroreflection for E < μ. (d) Dark lines
show the (ky,μ) values for the zero energy Andreev bound states for
w = 10 h̄vF /� and L → ∞. ky is in a unit of �/h̄vF .

zero energy solutions along the ky axis, and eventually a nearly
flat dispersion at zero energy.

To unambiguously establish this claim, we solve the dif-
ferential equation H(x,ky)ψ(x,ky) = Eψ(x,ky) numerically
for a finite size system, x ∈ [0,L], as shown in Fig. 1(a), with
open boundary conditions at x = 0,L.9 Here the quasiparticle
wave function ψ = (u↑,u↓,v↑,v↓)T , with the label (x,ky)
omitted. To fully describe the proximity effect including the
induced superconducting correlations in the TI region and the
suppression of superconductivity near the TI-S boundary, we
determine the order parameter profile �(x) self-consistently
through the gap equation

�(x) = g(x)
∑

εn<ωD

∫
dkyun,↑(x,ky)v∗

n,↓(x,ky). (3)

Here n labels the eigenstates with energy εn, g is the
effective attractive interaction, and ωD is the Debye frequency.
We assume g is zero in the TI region and constant inside S.
We expand ψ(x,ky) and �(x) in Fourier series and convert the
differential equation into an algebraic equation.10,11 Starting
with an initial guess of �(x) which features phase difference
π , the iterative procedure is repeated until desired convergence
is achieved. Note that the phase difference π is self-maintained
throughout and not fixed by hand after every iteration. Then,
the local spectral function,

Aσ (E,ky,x) =
∑

n

δ(E − εn)|unσ (x,ky)|2, (4)

and the local density of states (LDOS),

N (E,x) =
∫

dky

∑
n,σ

δ(E − εn)|unσ (x,ky)|2, (5)

can be computed for σ = ↑,↓. The calculation is checked to
reproduce known results, e.g., the linearly dispersing Majorana
spectrum at μ = 0 predicted in Ref. 4.

The upper panel of Fig. 2 shows the spectral function at the
center of the junction, A↑(E,ky,x = 0.5L) (A↓ is the same for
this value of x), with μ = 20 meV, � = 5.5 meV, w = 0.04L,
L = 2576 nm, h̄vF = 4.1 Å eV, and the Fermi momentum
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FIG. 2. (Color online) The local spectral function A↑(E,ky,x)
(upper panel) and local density of states N (E,x) (lower panel, red
solid line) at the center of the junction, x = 0.5L. One sees “flat”
Andreev bound states near zero energy for −kF < ky < kF , and
correspondingly a pronounced peak at zero energy in the LDOS in
the lower panel. The lower panel also shows different LDOS away
from the center, for x from 0.52L to 0.58L.

kF = μ/(h̄vF ). In contrast to the E ∼ h̄vF ky mode for μ = 0,
we see Andreev bound states (ABSs) near zero energy within a
wide region −kF < ky < kF , where the slope h̄vy = ∂E/∂ky

approaches zero. The appearance of numerous crossings at
exact zero energy for finite ky also agrees with the model
calculation above in Fig. 1(d). Beyond this range, e.g. for ky >

kF , the spectrum is reminiscent of the particle-hole folded
dispersion of the helical metal, E ∼ ±h̄vF (ky − kF ).

As an approximate ansatz to describe the almost flat
dispersion, we introduce the following phenomenological
model for the ABSs for large μ 
 �,

E/� = c(k/kF )N, (6)

where c is a constant and N is a large number. To fix N ,
we demand that the slope of the dispersion at energy E ∼ �

coincides with that of the bare dispersion, i.e., ∂E/∂ky |E=� =
h̄vF . This gives an estimate of N ,

N � μ/�. (7)

Note that we are only concerned with the ABS dispersion
near zero energy and its continuation beyond kF . For wider
junctions, additional subgap ABSs appear at finite energies,
and they are not described by Eq. (6). Our ansatz is inspired
by the mathematical theory of Dirac points with multiple
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topological charge N , as found in multilayered system dis-
cussed in Ref. 12.

The flat dispersion implies a peak at zero energy in the local
density of states. The lower panel of Fig. 2 shows the LDOS
at the center of the junction, at the S-TI boundary, and slightly
into the superconductor for the same junction parameters given
above. While the zero energy peak becomes less pronounced
when away from the junction center, it remains clearly visible
and persists even into the superconductor. Thus, the predicted
flat ABS has a clear experimental signature in the tunneling
conductance measurements.

The existence of two regimes including the flat Andreev
bound states near zero energy is a general feature. We have
carried out systematic, self-consistent simulations for the
general case of an inhomogeneous chemical potential, e.g.,
μ(x) = μTI within the TI region and μ(x) = μS �= μTI inside
the superconductors. The movie in the Supplemental Material
shows the evolution of a typical spectrum for fixed μS with
μTI gradually being increased from zero to μS.13 We see the
linear Majorana mode changing into the flat ABS.

Having established the existence of nearly flat ABSs around
zero energy, now we systematically trace the evolution from
the infinitesimal μ, linear dispersing (Majorana) regime to the
large μ flat ABS regime. Also we would like to understand
the details of ABSs within its narrow “bandwidth.” To this
end, we will consider a simple model which generalizes the
π Josephson junction to periodic systems. Namely, in Eq. (1),
the order parameter modulates sinusoidally in the x direction
with period 2a as schematically shown in the upper panel of
Fig. 3,

�(x) = � sin(πx/a). (8)

The sign of the order parameter alternates. Thus the structure is
effectively a periodic array of the π junctions discussed above
in the limit w → 0. One also recognizes that �(x) describes
a stripe or Larkin-Ovchinnikov superconductor.14 While such
superconductors are hard to find, one may imagine bringing
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FIG. 3. (Color online) Upper panel: Schematic of the periodic
proximity structure with �(x) = � sin(πx/a). The wave function
|u(x)| for the zero energy states are peaked at the domain wall bound-
aries, x = ma. Lower panel: Energy spectrum for a = 24h̄vF /� and
μ = 4� is flat at zero energy, which has fine structures upon closer
inspection.

them in contact with a TI to realize the model consider here.
Now the HamiltonianH has discrete translational symmetry in
the x direction, H(x) = H(x + 2a). We can apply the Bloch-
Floquet theorem and introduce quasimomentum kx living in
the Brillouin zone of (−π/2a,π/2a). For the prescribed �(x),
the energy spectrum E(kx,ky) can be obtained by diagonalizing
H in k space. Note that the TI (nonsuperconducting) region is
shrunk to a point, and only the homogenous μ is left as the
tuning parameter.

The lower panel of Fig. 3 shows the spectrum E(kx =
0,ky) for a = 24h̄vF /�, μ = 4�. These flat ABSs at zero
energy do not show significant variation with kx . We have
checked that the wave function of these zero energy states
are localized at the domain wall boundaries of the order
parameter field, i.e., at x = ma (red curve in the upper panel
of Fig. 3). For example, the wave function of the ky = 0,
kx = 0, E ≈ 0 mode can be fit well with periodic Gaussians
|u(x)| ∝ exp[−1.85(πx/

√
2a)2]. Since a is large in this case,

these results agree well with the single junction result before.
The dispersion, for example, can be fit well using the ansatz in
Eq. (6). The vanishing bandwidth is, of course, only valid on
coarse scales. Closer inspection, by blowing up the spectrum
near zero as illustrated in Fig. 4, reveals the busy life of
the ABSs with Nc crossings at zero energy, where Nc scales
linearly with μ, in agreement with Fig. 1(d). Remarkably, all
these fine details are compressed within a small energy range.

Figure 4 illustrates the evolution of the ABSs at low energies
for the periodic structure as μ is increased from zero. For a
small value of μ = 0.83�, the linear Majorana dispersion
splits into two, each developing a curvature, as the zero
energy crossings move to finite ky values. Further increasing
μ, these two crossings are stretched further outwards, while
the dispersion within ky ∈ (−kF ,kF ) begins being bent and
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FIG. 4. Fine structures in the energy spectrum of the periodic
proximity structure with fixed a = 12h̄vF /� and increasing μ. The
linearly dispersing Majorana spectrum at μ = 0 splits and develops
curvature to eventually become nearly flat within (−kF ,kF ). The
number of zero energy crossings increases with μ.
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stretched to form the precursor of the flat band. At the same
time, the addition of new crossings introduces more twists. The
number of crossing scales with Nc ∼ μ/�. The “spaghetti”
now becomes a rope, and looking from afar, it appears as a
thin thread.

Flat bands are more novelties than the norm in condensed
matter.15 Recently, several authors have demonstrated that
surface Andreev bound states with flat dispersion arise in
certain topological superconductors, for example, CuxBi2Se3

(Ref. 16) and noncentrosymmetric superconductors.17,18 Their
existence can be traced back to the nontrivial topology
associated with the gapped bulk, and thus are topologically
protected. This mechanism giving rise to flat bands, via the
bulk-boundary correspondence, differs from what is consid-
ered here. For example, in Ref. 16, a robust crossing at k = 0
is a crucial point in the argument, and the total number of
zero energy crossings is guaranteed an odd number. In our
case, states at ky = 0 are gapped for finite size systems (or
finite period 2a). Despite these differences, the zero modes
share the common trait that they are associated with the sign
change of the order parameter when electrons are reflected at
the surface or interface.

Several groups have successfully fabricated Josephson
structures on Bi2Se3 of various length using a variety of
superconducting materials, including Al, Al/Ti, W, Nb, and Pb,
etc.19–23 A gate tunable supercurrent has been observed and
argued to be due to the TI surface state.19 Superconducting
quantum interference devices based on such junctions have
also been demonstrated.22,24 Thus the flat Andreev bound
states at zero energy, and the zero bias conductance peak
in the local density of states, predicted here should be
experimentally accessible. Future work will explore control
of these slowly dispersing Andreev levels working as qubits25

when confinement in the y direction is also introduced. Our
work also suggests the ac dynamics of the S-TI-S junctions
will likely to be very complex featuring different regimes. The
flat ABSs at zero energy predicted for periodic junction arrays
may potentially find technological applications. For example,
a diverging density of states at the midgap may be used to
generate microwave resonances.
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