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Electrical control of the Kondo effect in a helical edge liquid
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Magnetic impurities affect the transport properties of the helical edge states of quantum spin Hall insulators by
causing single-electron backscattering. We study such a system in the presence of a Rashba spin-orbit interaction
induced by an external electric field, showing that this can be used to control the Kondo temperature, as well as
the correction to the conductance due to the impurity. Surprisingly, for a strongly anisotropic electron-impurity
spin exchange, Kondo screening may get obstructed by the presence of a noncollinear spin interaction mediated
by the Rashba coupling. This challenges the expectation that the Kondo effect is stable against time-reversal
invariant perturbations.
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Introduction. The discovery that HgTe quantum wells
support a quantum spin Hall (QSH) state1 has set off an
avalanche of studies addressing the properties of this novel
phase of matter.2 A key issue has been to determine the
conditions for stability of the current-carrying states at the edge
of the sample as this is the feature that most directly impacts
prospects for future applications in electronics and spintronics.
In the simplest picture of a QSH system the edge states are
helical, with counterpropagating electrons carrying opposite
spins. By time-reversal invariance electron transport then
becomes ballistic, provided that the electron-electron (e-e)
interaction is sufficiently well screened so that higher-order
scattering processes do not come into play.3,4

The picture gets an added twist when including effects from
magnetic impurities, contributed by dopant ions or electrons
trapped by potential inhomogeneities. Since an edge electron
can backscatter from an impurity via spin exchange, time-
reversal invariance no longer protects the helical states from
mixing. In addition, correlated two-electron5 and inelastic
single-electron processes6,7 must now also be accounted for.
As a result, at high temperatures T electron scattering off the
impurity leads to a ln(T ) correction8 of the conductance at
low frequencies ω, which, however, vanishes9 in the dc limit
ω → 0. At low T , for weak e-e interactions, the quantized
edge conductance G0 = e2/h is restored as T → 0 with power
laws distinctive of a helical edge liquid. For strong interactions
the edge liquid freezes into an insulator at T = 0, with
thermally induced transport via tunneling of fractionalized
charge excitations through the impurity.8

A more complete description of edge transport in a QSH
system must include also the presence of a Rashba spin-orbit
interaction. This interaction, which can be tuned by an external
gate voltage, is a built-in feature of a quantum well.10 In
fact, HgTe quantum wells exhibit some of the largest known
Rashba couplings of any semiconductor heterostructures.11 As
a consequence, spin is no longer conserved, contrary to what is
assumed in the minimal model of a QSH system.12 However,
since the Rashba interaction preserves time-reversal invari-
ance, Kramers’ theorem guarantees that the edge states are
still connected via a time-reversal transformation (“Kramers
pair”).13 Provided that the Rashba interaction is spatially
uniform and the e-e interaction is not too strong, this ensures
the robustness of the helical edge liquid.14

What is the physics with both Kondo and Rashba inter-
actions present? In this Rapid Communication we address
this question with a renormalization group (RG) analysis
as well as a linear-response and rate-equation approach.
Specifically, we predict that the Kondo temperature TK—
which sets the scale below which the electrons screen the
impurity—can be controlled by varying the strength of the
Rashba interaction. Surprisingly, for a strongly anisotropic
Kondo exchange, a noncollinear spin interaction mediated by
the Rashba coupling becomes relevant (in the sense of RG)
and competes with the Kondo screening. This challenges the
expectation that the Kondo effect is stable against time-reversal
invariant perturbations.15 Moreover, we show that the impurity
contribution to the dc conductance at temperatures T > TK

can be switched on and off by adjusting the Rashba coupling.
With the Rashba coupling being tunable by a gate voltage, this
suggests an inroad to control charge transport at the edge of a
QSH device.

Model. To model the edge electrons, we introduce the
two-spinors �T = (ψ↑,ψ↓), where ψ↑ (ψ↓) annihilates a
right-moving (left-moving) electron with spin up (spin down)
along the growth direction of the quantum well. Neglecting
e-e interactions, the edge Hamiltonian can then be written as

H = vF

∫
dx �†(x)[−iσ z∂x]�(x)

+α

∫
dx �†(x)[−iσ y∂x]�(x)

+�†(0)[Jxσ
xSx + Jyσ

ySy + Jzσ
zSz]�(0), (1)

with vF the Fermi velocity parametrizing the linear kinetic
energy. The second term encodes the Rashba interaction of
strength α, with the third term being an antiferromagnetic
Kondo interaction between electrons (with Pauli matrices
σ i,i = x,y,z) and a spin-1/2 magnetic impurity (with Pauli
matrices Si,i = x,y,z) at x = 0. The spin-orbit induced mag-
netic anisotropy for an impurity at a quantum well interface16

implies that17 Jx = Jy �= Jz. Unless otherwise stated, we use
h̄ = kB ≡ 1.

The Rashba term in Eq. (1) can be absorbed into the
kinetic term by a spinor rotation18 � ′ = e−iσ xθ/2�. By rotating
also the impurity spin, S′ = e−iSxθ/2 SeiSxθ/2, one obtains
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H = H ′
0 + H ′

K , with

H ′
0 = vα

∫
dx � ′†(x)[−iσ z′

∂x]� ′(x), (2)

H ′
K = � ′†(0)[Jxσ

xSx + J ′
yσ

y ′
Sy ′ + J ′

zσ
z′
Sz′

+ JE(σy ′
Sz′ + σ z′

Sy ′
)]� ′(0), (3)

where J ′
y = Jy cos2 θ + Jz sin2 θ , J ′

z = Jz cos2 θ + Jy sin2 θ ,
and JE = (Jy − Jz) cos θ sin θ . The Rashba rotation angle θ

is determined through cos θ = vF /vα , sin θ = α/vα , and vα =√
v2

F + α2. Note that the spin in the rotated basis is quantized
along the z′ direction which forms an angle θ with the z axis.
Also note that the Kondo interaction in this basis not only
becomes spin nonconserving, but also picks up a noncollinear
term for Jy �= Jz.

Including e-e interactions, and assuming a band filling
incommensurate with the lattice,2 time-reversal invariance
constrains the possible scattering channels in the rotated basis
to dispersive (∼gd ) and forward (∼gf ) scattering, in addition
to correlated two-particle backscattering3,4 (∼gbs) and inelas-
tic single-particle backscattering6,7,19 (∼gie) at the impurity
site. Adding the corresponding interaction terms to H ′

0 and
H ′

K in (2) and (3), and employing standard bosonization,20 the
full Hamiltonian for the edge liquid can now be expressed as
a free boson model, (v/2)

∫
dx[(∂xϕ)2 + (∂xϑ)2], with three

local terms added at x = 0:

H ′
K = A

κ
cos(

√
4πKϕ) + B

κ
sin(

√
4πKϕ) + C√

K
∂xϑ,

(4)

H ′
bs = gbs

2(πκ)2
cos(

√
16πKϕ), (5)

H ′
ie = gie

2π2
√

K
:
(
∂2
xϑ

)
cos(

√
4πKϕ) : . (6)

Here ϕ is a nonchiral Bose field with ϑ its dual, v∂xϑ = ∂tϕ

with v = [(vα + gf /π )2 − (gd/π )2]1/2, K = [(πvα + gf −
gd )/(πvα + gf + gd )]1/2, and κ ≈ vF /D is the edge state
penetration depth acting as short-distance cutoff with D the
bandwidth, and : · · · : denotes normal ordering. In H ′

K we
have defined A = JxS

x/π , B = (J ′
yS

y ′ + JESz′
)/π , and C =

(J ′
zS

z′ + JESy ′
)/π . The presence of H ′

ie requires breaking of
the U(1) spin symmetry, as brought about by the Rashba
interaction.

Kondo temperature. The bosonized theory is tailor made for
a perturbative RG analysis, allowing us to determine the tem-
perature scale below which the edge electrons couple strongly
to the impurity. We first note that the backscattering term in
(5) is that of the well-known boundary-sine Gordon model.
For K < 2/3 it dominates over the inelastic backscattering in
(6), and turns relevant for K < 1/4 with a weak to strong-
coupling crossover at a temperature21 Tbs ≈ Dg

1/(1−4K)
bs . As

a consequence, the enhancement of backscattering as T → 0
results in a zero-temperature insulating state when K < 1/4.

Turning to the Rashba-rotated Kondo interaction H ′
K in

Eq. (4), we obtain for its one-loop RG equations

∂lJ̃x = (1 − K)J̃x + νK(J̃ ′
y J̃

′
z − J̃E1J̃E2),

∂l J̃
′
y = (1 − K)J̃ ′

y + νKJ̃xJ̃
′
z, ∂l J̃

′
z = νKJ̃xJ̃

′
y, (7)

∂lJ̃E1 = (1 − K)J̃E1 − νKJ̃xJ̃E2, ∂l J̃E2 = −νKJ̃xJ̃E1,

with the “tilde” indicating that the couplings depend on the
renormalization length l, and where ν ≡ 1/(πv). The two
terms proportional to JE in Eq. (4) flow individually under RG,
with the corresponding renormalized coupling constants here
denoted J̃E1 and J̃E2. In deriving Eqs. (7) we have used that
higher-order contributions involving an intermediate process
governed by H ′

bs or H ′
ie are suppressed, since these transfer

spin or energy incompatible with H ′
K . In a recent work,22

Kondo scattering without Rashba interaction was studied,
and different physics in the regime νJz � 2K was found,
not accessible perturbatively in νJz. Since its realization in
an HgTe quantum well requires anomalously weak screen-
ing of the e-e interaction we do not consider this regime
here.

The role of the Rashba rotation in Eqs. (7) is both to
determine the bare values J̃ ′

y,z(l = 0) ≡ J ′
y,z and to introduce

the noncollinear couplings J̃E1,E2. To explore the outcome, we
first examine the case of a strongly screened e-e interaction,
K ≈ 1. For this case, the first-order terms of Eq. (7) can be
neglected and J̃E1 = J̃E2 = J̃E , since their scaling equations
will be identical. In this limit, J̃E quickly flows to zero. We take
the Kondo temperature TK to be the value of T = D exp(−l),
where one of the couplings in Eq. (7) first grows past 1/(νK),
making the renormalized H ′

K in Eq. (4) dominate the free
theory. For K ≈ 1 we then see that

TK ≈ D exp

(
− 1

νJx

arcsinh(ζ )

ζ

)
, (8)

where ζ =
√

(Jz/Jx)2 − 1 is an anisotropy parameter.8 Here
the θ dependence lies predominantly in ν. Note that Kondo
temperatures modified by spin-orbit couplings, as in (8), or by
spin-dependent hopping, have been proposed recently also for
ordinary conduction electrons.23–27

In the opposite limit of a strong e-e interaction, the second-
order terms of the scaling equations can be neglected, as long as
1 − K � J̃ νK , for all J̃ = J̃x,J̃

′
y,J̃E1. The scaling equations

in this limit reduce to ∂lJ̃ = (1 − K)J̃ , with solutions J̃ =
Je(1−K)l . With l = ln(D/T ), one can now use the J̃ = 1/(νK)
criterion to find the Kondo temperature

TK ≈ D(JmaxνK)1/(1−K), (9)

where Jmax = max[Jx,J
′
y,JE].

In Fig. 1 we exhibit TK for both “easy-plane” and “easy-
axis” Kondo interaction. To isolate the effect of the Rashba
interaction from that of the e-e interaction we choose to
plot TK as a function of θ and K0, with K0 ≡ K(θ=0)
the ordinary Luttinger parameter. For |JE| > |Jx |,|J ′

y |, the
noncollinear term ∼σy ′

Sz′
in Eq. (3) dominates the RG flow

for values of K in the shaded “dome” (the size of which is set
by the ratio Jz/Jx,y). As this term disfavors a spin singlet,
Kondo screening will be obstructed in the corresponding
interval of Rashba couplings.28 This runs contrary to the
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FIG. 1. (Color online) The Kondo temperature TK as a function of
the Rashba angle θ and the ordinary Luttinger parameter K0. The TK

scale is logarithmic and red and blue colors indicate high and low TK ,
respectively. Top: Jx = Jy � Jz (here, Jx/a0 = Jz/a0 = 10 meV);
bottom: Jx = Jy < Jz (here, Jx/a0 = 5 meV and Jz/a0 = 50 meV).
In the shaded area, J̃E1 dominates the perturbative RG flow, hence
obstructing singlet formation.

expectation that a spin-orbit interaction does not impair the
Kondo effect.15,29 However, this expectation is rooted in a
noninteracting quasiparticle picture which breaks down in
one dimension. Instead a Luttinger liquid is formed, with
strongly correlated electron scattering.20 As suggested by our
RG analysis, when this scattering gets enhanced with lower
values of K , it boosts the effect of the noncollinear spin
interaction that works against the Kondo screening.

Conductance at low temperatures. Away from the “dome”
in Fig. 1, the Rashba-rotated Kondo interaction easily sustains
a Kondo temperature TK below which the impurity gets
screened. When K > 1/4 and two-particle backscattering is
RG irrelevant, there is no correction δG to the conductance
at zero temperature: As explained by Maciejko et al.,8 the
topological nature of the QSH state implies a “healing” of
the edge after the impurity has been effectively removed
by the Kondo screening. For finite T � TK , the leading
correction δG is generated by either H ′

bs or H ′
ie, whatever op-

erator has the lowest scaling dimension: For 1/4 < K < 2/3
(K > 2/3) H ′

bs(H
′
ie) dominates, with6–8 δGbs ∼ (T/TK )8K−2

[δGie ∼ (T/TK )2K+2]. Thus, in the noninteracting limit K ≈
1, the presence of a Rashba interaction is revealed by a T 4

scaling of the conductance, rather than the expected T 6 scaling
as in the minimal model with U(1) spin symmetry.8 The
picture changes dramatically for K < 1/4. Now Hbs turns RG
relevant, with gbs entering a strong-coupling regime below
the crossover temperature Tbs, implying zero conductance
at T = 0. At finite T � Tbs, instanton processes restore its
finite value, with8 G ∼ (T/Tbs)2(1/4K−1). To leading order this
regime is blind to the Rashba interaction.

Conductance and currents at high temperatures. When
T > max(TK,Tbs), scattering from H ′

K as well as from H ′
bs and

H ′
ie remains weak, and transport properties can be obtained

perturbatively. We here focus on the correction δG to the
conductance due to H ′

K , noting that the contributions from
H ′

bs and H ′
ie decouple and are insensitive to the strength of the

Rashba interaction.

The current operator Î takes the form Î = (e/2)∂t

(cos θ� ′†σ z′
� ′ − sin θ� ′†σy ′

� ′) in the rotated basis. After
the unitary transformation U = ei

√
πλϕ(0)Sz′

, which removes
the J ′

z term when λ = J ′
z/πv

√
K , the bosonized part δÎ of the

current operator due to H ′
K is

δÎ = ie

2πκ

[ ∑
j=±

Aje
i
√

π(2
√

K−jλ)ϕSj + iA0e
i
√

4πKϕSz

− iJx√
πK

sin θ : ∂xϑe−i
√

πλϕ : S+
]

+ H.c., (10)

where A± = (1/2)(Jx ± Jy) cos θ , A0 = (JE/2) cos θ . Using
the Kubo formula to calculate the conductance correction
δG(ω) at a frequency ω in the limit J 2 � ω � T , with
J 2 = J 2

x ,J ′2
y ,J 2

E , we then find to O(J 2)

δG = −e2

h̄

+1∑
j=−1

Fj · [Aj (T )]2 − e2

h̄
μJ 2

x sin2 θ, (11)

which, in this limit, is independent of ω. Here Aj (T ) =
Aj · (2πT/D)(

√
K−jλ/2)2−1. The constant Fj ≡ F (2

√
K − jλ)

with F (x) = [�(x2/4)]2/[4π (h̄v)2�(x2/2)], while μ = (1 +
λ2/2) sin(πλ2/4)/(πh̄v

√
K)2. At zero Rashba coupling, θ =

0, Eq. (11) reproduces the finding in Refs. 8 and 9. By
replacing the bare couplings with renormalized ones, the result
in Eq. (11) can be RG improved to numerically obtain δG to all
orders in perturbation theory in a leading-log approximation.
At θ = 0 this gives δG ∼ ln(T ), in agreement with Ref. 8.

As stressed in Ref. 9, the use of the Kubo formula rests on
a perturbation expansion (in our case assuming that J 2 � ω)
which breaks down as ω → 0. To study the scaling of δG in
the dc limit we will instead fall back on a semiclassical rate
equation approximation where we assign classical probabili-
ties to the states. The details of this calculation are provided in
the Supplemental Material,30 and we here only give the main
results. In the dc limit, i.e., ω � J 2 � T , the conductance
correction becomes

δG = −e2 cos2 θ

2T

[
4γ0γ

′
0 + (γ0 + γ ′

0)
(
γ E

0 + γ̃ E
0

) + γ̃ E
0 γ E

0

γ0 + γ ′
0 + γ̃ E

0

]
,

with γ0 ∼ (Jx + J ′
y)2T 2(

√
K−λ/2)2−1,γ ′

0 ∼ (Jx − J ′
y)2

T 2(
√

K+λ/2)2−1,γ E
0 ∼ J 2

ET 2K−1, and γ̃ E
0 ∼ J 2

ET , where, for
brevity, we have omitted various K-dependent prefactors.
Note that with Jx = Jy , the vanishing δG becomes nonzero
when turning on the Rashba interaction by an electric field.
This suggests a means to manipulate the edge current by
varying the bias of an external gate.

To explore this possibility we have calculated the δI -V
characteristics, exploiting that in the rotated basis H ′

K can
be treated as a tunneling Hamiltonian31 and the part of δI

corresponding to this tunneling current is then obtained as in
Ref. 32. When J 2 � ω � T ,eV we find

δI ≈ −e

+1∑
j=−1

Im{B(Kj + ieV ′/2πT,Kj − ieV ′/2πT )

×Cj (T/D)2Kj −1 sin[π (Kj − ieV ′/2πT )]/ cos(πKj )}
(12)
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FIG. 2. (Color online) The RG-improved current correction (12)
at T = 30 mK as a function of applied voltage, for different values
of K0 and θ . The dashed lines represent θ ≈ 0.27, corresponding to
h̄α = 10−10 eV m. Other parameters are defined in the text. The QSH
edge current G0V is plotted as a reference.

for δI ≡ I − G0V , with Kj ≡ (
√

K − jλ/2)2, B the beta
function, and V ′ ≡ V cos θ . Here C±1 = c±(Jx ± J ′

y)2 and
C0 = c0J

2
E , with c±,0 constants depending on K , λ, and θ .

In Fig. 2 we plot this for parameter values given below.
Experimental realization. Given our result in Eq. (12), is

the Rashba dependence of δI large enough to be seen in an
experiment? As a case study, let us consider an Mn2+ ion
implanted close to the edge of an HgTe quantum well.33

Mn2+ has spin S = 5/2, but, due to the large and positive
single-ion anisotropy ∝(Sz)2 at the quantum well interface,
the higher spin components freeze out in the sub-Kelvin
range, leaving behind a spin-1/2 doublet.16 Moreover, the
single-ion anisotropy implies that the Kondo interaction with
this effective spin-1/2 impurity is anisotropic, with Jx =
Jy = 3Jz = 3JI , where JI is the isotropic bulk spin-exchange
coupling.17 Its value can be assessed from the sp-d exchange
integrals for the bulk conduction electrons34 in Hg1−xMnxTe.
Close to the � point of the Brillouin zone these integrals
produce an antiferromagnetic exchange, JI > 0. With the
Mn2+ ion located within the penetration depth κ from the edge,
a rough estimate yields an expected value of JI /a0 ≈ 10 meV,
with a0 the lattice constant. Turning to the Rashba coupling α,
gate controls have been demonstrated35 in the laboratory with

h̄α for an HgTe quantum well device running from 5 × 10−11

to 1 × 10−10 eV m as the bias of a top gate is varied from
2 to −2 V. As for the value of the interaction parameter K0

in an HgTe quantum well, estimates8,14,36–38 range between
0.5 and 1, and depend on the geometry and composition of
the heterostructure. Collecting the numbers, and putting1,39

a0 ≈ 0.5 nm, vF ≈ 5.0 × 105 m/s, and D ≈ 300 meV, we can
use Eq. (12) to numerically plot the δI -V characteristics for
different values40 of α and K0, choosing T = 30 mK (>TK )
(see Fig. 2). As revealed by the graphs, the Rashba dependence
of δI is appreciable, and should allow for an experimental
test.41

Concluding remarks. We have studied the combined effect
of a Kondo and a Rashba interaction at the edge of a quantum
spin Hall system. The interplay between an anisotropic
Kondo exchange and the Rashba interaction is found to
result in a noncollinear electron-impurity spin interaction. A
perturbative RG analysis indicates that this interaction may
block the Kondo effect when the electron-electron interaction
is weakly screened. We conjecture that this surprising result—
challenging a time-honored expectation that the Kondo effect
is blind to time-reversal invariant perturbations15—is due to
the breakdown of single-particle physics in one dimension.
It remains a challenge to unravel the microscopic scenario
behind this intriguing phenomenon. In the second part of our
work we derived expressions showing how charge transport
at the edge is influenced by the simultaneous presence of a
magnetic impurity and a Rashba interaction. A case study
suggests that the predicted current-voltage characteristics
should indeed be accessible in an experiment. Most interest-
ingly, its manifest dependence on the gate-controllable Rashba
coupling breaks a path for charge control in a helical electron
system.
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