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Effect of mechanical resonance on Josephson dynamics
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We study theoretically dynamics in a Josephson junction coupled to a mechanical resonator looking at the
signatures of the resonance in dc electrical response of the junction. Such a system can be realized experimentally
as a suspended ultraclean carbon nanotube brought in contact with two superconducting leads. A nearby gate
electrode can be used to tune the junction parameters and to excite mechanical motion. We augment theoretical
estimations with the values of setup parameters measured in one of the samples fabricated. We show that charging
effects in the junction give rise to a mechanical force that depends on the superconducting phase difference and
can excite the resonant mode. We develop a model that encompasses the coupling of electrical and mechanical
dynamics. We compute the mechanical response (the effect of mechanical motion) in the regime of phase and dc
voltage bias. We thoroughly investigate the regime of combined ac and dc bias where Shapiro steps are developed
and reveal several distinct regimes characteristic for this effect. Our results can be immediately applied in the
context of experimental detection of the mechanical motion in realistic superconducting nanomechanical devices.
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I. INTRODUCTION

Nanoscale electromechanical systems (NEMS) convert
small amplitude mechanical motion into measurable electrical
currents.1 Devices based on NEMS have found applications
as sensitive detectors of mass,2 force,3 and electrical charge.4

Considerable research efforts have been dedicated to improv-
ing detection sensitivity by fabricating devices with higher
resonance frequencies, lower damping rates (high quality
factors), and larger coupling between electrical and mechanical
degrees of freedom.

The problem of detecting the quantum state of a macro-
scopic mechanical resonator gave rise to several measuring
schemes, proposed5,6 as well as realized.7 Improvements in
device fabrication have pushed the sensitivity threshold to
the quantum limit.7 In addition, new techniques for cooling
mechanical motion have been proposed.8,9 The use of super-
conducting devices, in particular, superconducting qubits to
detect and control the mechanical motion is in focus of modern
research.7,10 It gives rise to a growing interest in techniques of
coupling NEMS to superconducting circuits.

Superconducting nanodevices frequently use Coulomb
blockade that makes their transport properties sensitive to
the gate voltages. The same gate voltage can be used to
excite the mechanical motion that is detected from the
change of dc transport properties of the device.13–15 Without
superconductors, this scheme has been successfully realized
for a metallic single-electron transistor17 and for a Coulomb-
blockaded quantum dot in an ultra-clean carbon nanotube
(CNT).15 The results revealed high resonance frequencies,
reaching gigahertzs, and unprecedented quality factors of the
order of 105. These devices can be made superconducting
by connecting them to superconducting leads and providing
sufficiently large coupling between the states of the lead and
device. We have successfully realized Josephson junctions
based on ultraclean CNTs. The supercurrent observed demon-
strates a pronounced gate-voltage sensitivity that indicates a
well-developed Coulomb blockade.27

A very interesting proposal that combines Josephson
dynamics and mechanical resonator has been recently put

forward by Gothenburg collaboration.21 The authors consider
an ideal ballistic CNT between two superconducting leads
biased at voltage V . Owing to Josephson relation, the current
in the nanotube oscillates at frequency ωj = 2 eV/h̄. The
authors notice that in external magnetic field this gives rise
to an oscillating Lorentz force. If the frequency matches
the frequency of the mechanical resonator, the force excites
mechanical motion which rectifies the Josephson current
enabling the observation of the effect in dc electric response
of the junction. One would observe a narrow current peak
in I -V characteristics of the device. The same mechanism
is responsible for Fiske steps:25 the difference is that in Fiske
experiments the resonance is electrical rather than mechanical.

This provides us a motivation for the present theoretical
study. We address superconducting NEMS where a mechanical
resonator is integrated with a superconducting circuit element,
a Josephson junction. The details of the setup are given in
Sec. II. In this work, we (i) explore the coupled dynamics of the
oscillator displacement and superconducting phase difference
and (ii) describe the manifestations of mechanical motion in
superconducting current under various bias conditions. The
goal is to list experimentally observable effects. We investigate
in particular detail the effect of mechanical motion in the
context of Shapiro steps as the most promising one with respect
to experimental detection.

Part of our results are valid for any device combining
Josephson effect with mechanical resonance. However, we
mostly concentrate on a class of particularly successful NEMS
devices: suspended metallic CNT connected to supercon-
ducting leads. We have fabricated and studied such devices.
Since our research is theoretical we strive for generality
presenting thereby analytical and numerical estimations and
demonstrating reasonable values and ranges of the parameters
in use. Unfortunately, the mere choice of parameters to be
in the reasonable range does not immediately quantify the
values of the results obtained: they may vary significantly and
there is no simple scaling present. The same is true for the
experiments: the devices produced vary in length, in stress as
indicated by measured frequencies, and in the conductance
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that estimates the Josephson coupling. In this situation, we
supplement general estimations with calculations for a set of
concrete numerical values of the parameters in use. This set is
given in Sec. III F. This parameter choice is therefore rather
arbitrary, although it matches closely one of the devices made.

Studies of CNT Josephson junctions have shown that their
Josephson energy can be modulated by the gate-induced charge
on the CNT. Under these circumstances, the electrostatic
energy of the system requires a special consideration (see
Sec. III A). With this, we formulate the notion of Josephson
mechanical force (see Sec. III B). This is one of the main results
of our work since we reveal a mechanism of phase-dependent
mechanical driving which is different and generally more
important than that considered in Ref. 21. General equations of
motion including this force (see Sec. III D) need to be further
analyzed to reveal which of the three competing nonlinearities
is the most relevant one. The result of rather involved
analysis performed in Sec. III D shows that the most important
nonlinearity is the intrinsic mechanical nonlinearity, at least,
for CNT-based superconducting mechanical resonators.

In fact, the mechanical nonlinearity has been ignored in
Ref. 21. In their case, the resonant enhancement of oscillating
amplitude can only be stabilized by the feedback from nonlin-
ear Josephson dynamics. This brought the authors of Ref. 21
to the analysis of strong feedback between the displacement
and superconducting phase. Our results thus show that such
feedback, although interesting, can not be realized in practical
CNT devices since it is the mechanical nonlinearity that
stabilizes the resonant growth of the oscillation amplitude.

Neglecting phase and charge nonlinearities in comparison
with the mechanical one permitted us to simplify the equations
drastically. Final equations and the workflow to determine the
quantity of interest—the mechanical response current Im—
are given in Sec. III E. Throughout the Sec. III we provide
detailed estimations of the displacement, force and electrical
current scales involved. It is our conclusion that the mechanical
response in our devices should be small. For the parameter
choice made, the mechanical response is at the scale of 10−3

of the critical current.22 Further on, we apply the expressions
obtained for a variety of bias conditions.

In Sec. IV, we discuss the phase bias. We predict the phase-
dependent shift of the mechanical resonance frequency that is
an important signature of coupled dynamics. Our estimation
of the frequency shift shows that it can be easily observable,
being significantly larger than the resonance width. In addition,
we show that a dc mechanical response current develops upon
mechanical excitation of the device. We elaborate on the line
shape of the mechanical response current showing that for
weak driving conditions, it is an usual Lorentzian dependence,
while, in contrast, for strong driving conditions that induce
a nonlinear mechanical response, the line shape becomes
asymmetric, acquiring a Fano-type shape (see Sec. IV A).

Section V is devoted to dc voltage bias conditions. Resonant
mechanical driving occurs at Josephson frequency matching
the resonance frequency of the mechanical resonator, or an
integer fraction of this frequency by higher harmonics (see
Sec. V A). We study the resulting Fiske-type mechanical re-
sponse and give the estimations of the effect. For completeness,
we also shortly discuss the possibility of parametric excitation.
We show by estimation that the emergence of parametric

mechanical response requires a large Josephson energy, at
least, an order of magnitude larger than that achievable in
practical devices (see Sec. V A).

Sections VI and VII are devoted to the dynamics in the
presence of external ac drive, in the regime where the Joseph-
son junction gives rise to well-developed Shapiro steps.26 One
of the motivations of the use of Shapiro steps is the better
synchronization conditions in comparison with dc voltage
bias. This can be seen as follows. The big quality factor Q of
the nanomechanical resonance results in a narrow Fiske-type
current peak (discussed in Sec. V). Its width in voltage can
be estimated as δV � V/Q. The observation of such a narrow
feature imposes a severe limitation on voltage noise SV : to
resolve the peak one must achieve SV � (e/h̄)V/Q. This may
be challenging under realistic experimental circumstances.
There is a way out: the voltage can be synchronized with
the frequency of external irradiation. This happens at Shapiro
steps and effectively reduces the voltage noise.

In Sec. VI, we study the mechanical response at the Shapiro
steps in the regime where the ac driving frequency matches
the resonant frequency, and present the peculiarities of this
response. We derive explicit analytical expressions of the
mechanical response as a function of ac driving amplitude
and illustrate them with plots. We concentrate on the effect
seen in dc current measurement, that is, the modification of the
width and position of Shapiro steps. We show that the response
at the first Shapiro step (see Sec. VI A), which develops at
the position of the Fiske-type current peak, is qualitatively
different from that at the higher Shapiro steps (see Sec. VI B).
In Sec. VII, we present the same considerations for the case of
the nonresonant driving that in the regime of Shapiro steps can
efficiently excite the mechanical motion owing to Josephson
nonlinearities.

Our preliminary experimental results show corresponding
features. They will be presented elsewhere27 upon completion
of detailed analysis and comparison with our theoretical
findings. Our concluding remarks are presented in Sec. VIII.

II. THE SETUP

The setup under consideration is sketched in Fig. 1 where
we concentrate on a case where both the Josephson junction
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FIG. 1. (Color online) The setup. The sketch presents the mechan-
ical resonator realized as a CNT suspended over two superconducting
leads isolated from the back gate electrode. The CNT center is
displaced in the y direction by an electrostatic force produced by
the gate voltage. The superconducting leads are parts of an electrical
circuit characterized by an impedance Ze. The setup can be biased by
either voltage or current source.
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and the mechanical resonator are realized with the same single
CNT. Even in this case, the coupling between mechanical and
electrical degrees of freedom is relatively weak. This allows us
to describe the electrical and mechanical aspects of the setup
separately. We provide the description in this section, while in
the next section we concentrate on the coupling.

A. Electrical setup

We consider a conducting link between two superconduct-
ing leads (the CNT in Fig. 1). In general, the current flowing
in this junction is a complicated nonlinear and time-delayed
function of superconducting phase difference between the
leads. However, we assume that in the relevant frequency range
the current response of the junction is superconducting and
instant.

The junction is included into an external electric circuit and
the voltage drop at the junction is related to the time derivative
of Josephson phase, ϕ̇ = 2eV/h̄. In general, a circuit that
connects the leads can be described by a complex frequency-
dependent impedance Ze(ω) in series with a voltage source
Vb. We typically assume that Ze by far exceeds the typical
junction impedance at low frequencies while at frequency
scale of Josephson generation frequency ω � eV/h̄, Ze(ω)
is negligible in comparison with the junction response. In this
case, the junction is current biased at low frequencies with Ib =
Vb/Ze(0) and voltage biased at Josephson frequencies. While
this scheme looks different from the traditional resistively
shunted junction model (RSJ) where the external impedance
is connected in parallel and the junction is current biased,
it is equivalent to a generalized RSJ upon transforming the
impedance and the voltage source. For instance, the linear
part of possible quasiparticle response of the junction can be
incorporated into Ze(ω).

In addition, the junction is affected by the gate electrode
biased by voltage source Vg . The bias and gate circuits are
disconnected at zero frequency. At finite frequency, there is a
cross talk between the circuits, which is difficult to eliminate
or even characterize in realistic experimental circumstances.
We account for that by correlating ac parts of the voltage
sources Vb,g . For instance, if the gate voltage consists of
a dc part and a harmonic signal at frequency �, Vg(t) =
Vg0 + Ṽg cos(�t + χ ), the bias voltage source should also
oscillate at the same frequency, Vb(t) = Vb0 + Ṽb cos(�t). The
ratio of two ac amplitudes and their mutual phase shift χ is
determined by details of the crosstalk. We will show below that
the interference of these two ac signals may strongly affect the
dc currents in the junction.

The superconducting current is determined by the instant
phase difference, I (t) = I [ϕ(t)]. In this case, it is related to
the Josephson energy Ej of the junction,

I = (2e/h̄)∂Ej (ϕ)/∂ϕ. (1)

It is essential for us that the Josephson energy is not only
a function of phase difference but also depends on the gate
voltage through the charge q = CgVg induced in the resonator,
Ej = Ej (q,ϕ).

For a nanotube device, the origin of this charge sensitivity
is (weak) Coulomb blockade of electrons in the middle of the
nanotube. The nanotube can be viewed as two junctions in

series, those being formed at contact with metallic leads. If the
conductance of the junctions is smaller or comparable with
the conductance quantum GQ ≡ e2/(πh̄) ≈ 7.75 × 10−5 �−1

Coulomb interactions become important and set a quasiperi-
odic dependence of Josephson energy on q with a period 2e.
This corresponds to charge quantization in the middle of the
nanotube. We routinely observe the quasiperiodic modulation
of superconducting currents in fabricated nanotube devices.
The modulation can be tuned by changing the gate voltage at
scale of q � 10–100e from values of the order of one to several
percent. Big modulation and well-developed Coulomb block-
ade require big junction resistances, this strongly suppresses
the superconducting current. It is therefore advantageous to
have intermediate resistances R � G−1

Q . At R = 5 k�, we
typically observe 30% modulation.

The superconducting current is a periodic function of the
phase I (ϕ) = I (ϕ + 2π ) and therefore can be expanded in
harmonics as23

I (q,ϕ) = I1(q) sin(ϕ) +
∞∑

n=2

In(q) sin(nϕ), (2)

If one neglects all harmonics except the first one, I1 gives the
critical current of the Josephson junction. We will typically
assume this, and will mention the effect of higher harmonics
only if it is crucial.

B. Mechanical setup

Mechanical resonators can be realized in a variety of
ways.11 In many cases, the adequate description of the
resonator can be achieved with a minimum model that accounts
for excitations of a single resonator mode, neglecting coupling
to any other modes. The minimum model is given by the
following equation of motion for a displacement variable y:

ÿ + 	ẏ + ω2
0y − αy2 − βy3 = F (t)/M. (3)

Here, F (t) is the time-dependent driving force, M is the
effective mass corresponding to the mode, ω0 stands for the
resonant frequency, 	 � ω0 is the damping rate, and β is
the parameter describing the leading cubic nonlinearity.12 The
cubic nonlinearity provides the important restriction on the
magnitude of the displacement at resonant frequency as a
reaction on resonant force. We also keep the second-order
nonlinearity α. Although it is not important in analysis of the
reaction at resonant force, it describes the shift of the resonant
frequency due to constant force.

Our preferable realization of mechanical resonator is a
suspended ultraclean CNT13–15 that demonstrates best quality
factors observed so far(Q ≡ ω0/	 � 105). In this section,
we review the parameters of the minimal model for this
realization. In the setup shown in Fig. 1, the nanotube
displacement from equilibrium position and the driving force
are in the y direction towards the gate, that is, perpendicular
to the nanotube axis. The mechanical variable y(t) is the
displacement of the midpoint of the nanotube.

In the case of a CNT, the adequate model of mechanical
properties involves a suspended thin cylindrical rod clamped
at both ends where the nanotube touches the metal leads.
The parameters are the rod length L, the cylinder radius
r , and the tube cross section area S. In our experiments,
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L � 0.3–0.5 μm, r � 1–2 nm, and S � 2πra � 2.1–4.3 nm2

for a single-wall nanotube, a � 0.34 nm being the layer
spacing in graphite. The relevant elastomechanical material
constants, carbon Young’s modulus E and graphite density ρ

are estimated as E � 1012 J/m316 and ρ � 2.2 g/cm3. The
bending modes of the rod and their complete dynamics are
described by the Euler-Bernoulli equation of motion.19,20

We concentrate on the lowest-frequency bending mode that
has no nodes in the rod and therefore is easy to excite. The
resonant frequency can be tuned by “tightening” the tube, that
is, changing the elastic tension. This is achieved by applying a
sufficiently big dc gate voltage Vg0. The resulting electrostatic
force strives to elongate the nanotube, thus producing the
tension. In such a way, the resonant frequency can be increased
by a factor of three in comparison with that of the “loose”
nanotube. For estimations, we concentrate on the case of loose
rod. In this case, the resonance frequency corresponding to
the lowest CNT bending mode can be estimated in terms of
the bending spring constant and the carbon mass density ω0 �
22.4

√
EI/ρSL−2, where I � Sr2/2 is the moment of inertia18

of the CNT cross section I = ∫
x2dS, as introduced in Ref. 19.

In our devices of length L = 0.3–0.5 μm, the frequency is
ω0/2π � 0.30..0.84 GHz, similar to frequencies reported in
Ref. 15. The effective force is evaluated using the eigenfunc-
tion of the mode ξ (x) ≡ y(x,t)/y(t), F = ∫ L

0 dxf (x)ξ (x),
f (x) being the force per unit length. For electrostatic forces,
an ad hoc assumption is that the force distribution is
uniform, so the total force is Ft = f L. In this case, F �
0.53Ft . The effective mass is given by M = ρS

∫ L

0 dxξ 2(x),
M � 0.41ρSL � 4.1–6.8 × 10−22 kg. The cubic nonlinearity
originates from the tension produced by the nanotube dis-
placement, the corresponding parameter can be estimated as
β � 40 ES/ML3 � ω2

0/r2 � 1.8–5.5 GHz2 nm−2, assuming
uniform distribution of force along the length of the rod. The
second-order nonlinearity α vanishes for loose straight rod for
symmetry reasons. However, it becomes significant if the rod
is tightened such that its frequency change with respect to
the loose rod value ω0 is of the order of ω0. In this case, the
nonlinearity is obtained as α = 3βy0, y0 being the equilibrium
displacement induced by the tightening.

If F (t) oscillates at frequency ω close to the resonant
frequency, Eq. (3) can be solved in resonant approximation
for the complex amplitude ỹ:

ỹ = F̃

2Mω0

−1

ν + i	/2 + (β ′/2ω0)|ỹ|2 , (4)

with F̃ being the complex force amplitude. Here, we introduce
the detuning ν ≡ ω − ω0 implying that |ν| � ω0. We also
introduce the Duffing parameter β ′ = β + α2/ω2

0 � ω2
0/r2

corresponding to the amplitude-dependent frequency shift. In
our experiments, we estimate β ′ � 3.6–11 GHz2 nm−2.

We will rewrite Eq. (4) in dimensionless form introducing a
critical amplitude yc, yc = √

ω0	/β ′. At this amplitude scale,
the response of the resonator becomes a two-valued function
of detuning (see Fig. 2). For a CNT, it can be estimated
as y2

c � r2/Q, which corresponds for our experiments to
yc � 3.2–6.4 pm. The driving force corresponding to yc is
Fc = Mβ ′y3

c = Mω2
0yc/Q. We estimate it for a CNT Fc �

102 ES(r/L)3Q−3/2 � (1.2–2.4) × 10−18 N.
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FIG. 2. (Color online) (Left) Real part of the complex displace-
ment amplitude Re ỹ vs detuning. (Right) Imaginary part of the
complex displacement amplitude Im ỹ vs detuning. The three curves
in each panel correspond to |F̃ |/Fc = 0.5,1,2.

The dimensionless form of Eq. (4) is

ỹ

yc

= F̃

Fc

R

(
ν

	
,
F̃

Fc

)
; R(a,b) = −1

2a + |b|2|R(a,b)|2 + i
.

(5)

Here, we have introduced a dimensionless complex response
function R(ν,F̃ ). In the linear regime |F̃ | � Fc, its depen-
dence on F̃ can be neglected: R(a,b) = (2a + i)−1.

Figure 2 shows the real and imaginary parts of ỹ as a
function of detuning for three values of the driving force
amplitude that correspond to quasilinear, critical, and bistable
regimes.

III. COUPLING AND NONLINEARITIES

In this section, we analyze the coupling between mechanical
and electrical degrees of freedom. The coupling manifests as
two quantities: displacement-dependent current and phase-
dependent mechanical force. Both quantities emerge from
electrostatic effects, therefore we will start with a detailed
discussion of electrostatic energy in the setup, finding the
induced charge for a given mechanical displacement and
phase. We then use the induced charge to express the forces
and superconducting current. By doing so, we assume that
the typical time of charge equilibration is much shorter than
the typical time scale ω−1

0 of the mechanical motion. We
compare the electrostatic phase-dependent force with Lorentz
force proposed in Ref. 21. We derive the coupled equations
of motion governing the Josephson and mechanical dynamics
and identify the dominant source of nonlinear behavior.

A. Electrostatic energy

The junctions connecting the middle of the nanotube to
the leads have intermediate resistance, so that the middle of
the nanotube forms a Coulomb island that is neither isolated
from, nor ideally connected to the leads. While the case of
good isolation20 can be easily treated microscopically, the
situation of intermediate conductances is difficult to quantify
from a microscopic calculation. However, the situation can
be completely analyzed at the phenomenological level. At
this level, the analysis is a case of elementary nonlinear
electrostatics. In comparison with Ref. 20, the analysis adds
some important and less obvious details, so we choose to
outline it at a comprehensive level.
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To start with, let us assume that the capacitance to the
gate is vanishingly small while Vg is diverging such that the
charge induced to the Coulomb island by the gate q = CgVg

tends to a constant limit. A part of the ground-state energy of
the setup Ec(q) depends on q. General Coulomb-blockade
considerations24 imply that this part is a (quasi) periodic
function of q with a period of 2e. In the limit of full
isolation, for instance, this energy is piecewise parabolic,
Ec(q) = ECminN (N − q/2e)2, N being an integer number of
extra Cooper pairs stored in the island. In general, it is a smooth
function of q and may depend on the superconducting phase
difference ϕ and, in principle, on mechanical displacement y.
This energy results in a nonzero electrostatic potential differ-
ence between the island and the leads, V (q) = ∂Ec(q)/∂q.

Let us now turn to finite Cg and therefore finite Vg that is the
potential difference between the leads and the gate electrode.
Since this is not the potential difference between the island and
the gate anymore, the induced charge q is not equal to CgVg .
Rather, it is determined from the voltage division between two
capacitors: Cg and one between the island and the leads. The
total voltage difference Vg is the sum of the voltage drops at
the two capacitors,

Vg = q

Cg

+ V (q).

The charge is then found from this equation that can be
rewritten as

q = CgVg − Cg

∂Ec(q)

∂q
. (6)

We note that this is equivalent to the minimization of the total
electrostatic energy with respect to q,

E = minq

(
Ec(q) + q2

2Cg

− qVg

)
. (7)

Indeed, the condition of the energy minimum coincides with
Eq. (6).

There are two implicit dependencies in this equation that
distinguish it from pure electrostatics, and that we make
explicit now. First of all, the electrostatic energy depends
on the mechanical displacement of the nanotube. Geometric
considerations suggest that this dependence can be ascribed
to Cg: indeed, the modification of capacitance to the gate is
linear in y, Cg → Cg + (dCg/dy)y, while the modification of
Ec is expected to be ∝y2. Secondly, the electrostatic energy
depends on the superconducting phase difference: indeed,
the Josephson energy is just the phase-dependent part of
Ec, Ec(q,ϕ) = Ēc(q) + Ej (q,ϕ). The electrostatic charge q

depends both on displacement y and on superconducting
phase ϕ.

We note at this point that we can skip Ēc(q) from the total
energy and replace Ec(q,ϕ) with Ej (q,ϕ) even if Ej (q,ϕ) �
Ēc(q). The reason is that the phase independent term Ēc(q)
results only in a small offset of q from its value of CgVg . As far
as the offset does not depend on phase, we can disregard it. The
phase-dependent part, however, is important: it provides the
coupling between the mechanical and Josephson subsystems.

To single out these contributions, we assume that (i) the
voltage between the middle of the nanotube and the leads is
smaller than the gate voltage, ∂Ec/∂q � Vg , this is fulfilled

if the induced charge q � e, i.e., in any practical setup;
(ii) the mechanical displacement is small in comparison
with the distance to the gate, y � Cg( dCg

dy
)−1 � Lg (in our

experiments Lg � L � y). With this, we linearize Eq. (6) with
respect to the Josephson energy and mechanical displacement
to arrive at (q0 ≡ CgVg)

q = q0 + Vg

dCg

dy
y − Cg

∂Ej

∂q
(q,ϕ). (8)

The first term is the common expression for the gate-induced
charge while the second and the third are the corrections of
interest. At the moment, we keep q in the argument of Ej ,
although q ≈ q0. The point is that the Josephson energy is
sensitive to variations of q of the order of e, and (q − q0) can,
in principle, be of this order. Since y � Lg , we may disregard
the possible y dependence of dCg/dy.

B. Coupling quantities

It is thus the charge dependence of current and force
that gives rise to the coupling between the superconducting
and mechanical dynamics. This dependence is, in general,
complicated containing both linear and nonlinear terms. The
importance of nonlinear terms is determined by comparing
the resulting nonlinear feedback with intrinsic nonlinear terms
characterizing the Josephson and mechanical dynamics and
will be addressed in the next section. In this section, we antic-
ipate that the charge and phase nonlinearities are unimportant
and give the coupling terms linearizing the charge dependence.
We need to discuss (i) the displacement dependence of current
and (ii) the phase dependence of force.

(i) It is convenient to separate the superconducting current
I (q) into the static component I (q0) and the component that is
linear in charge variations (dI/dq)(q − q0). We are interested
in a (dc) current response on the mechanical motion, the
mechanical response. It arises due to the direct modulation
of charge by the mechanical displacement,

Ĩm(t) = ∂I

∂q

dCg

dy
Vg0 y(t), (9)

where we used Eq. (8) to express the displacement dependence
of charge.

We will mostly concentrate on the situation when the
displacement oscillates at the resonant frequency, while a dc
component of Ĩm is of interest. The dc signal then arises from
the rectification of y(t) by an oscillating part of ∂I (ϕ)/∂(q/e)
that we call the detecting current.

(ii) The mechanical resonator is affected by the electrostatic
force F = −∂E/∂y:

F = dCg

dy

q2

2C2
g

, (10)

where we have used the expression of E given in Eq. (7).
It is convenient to distinguish three separate contributions

to the total force: the static, the gate driving, and the phase-
dependent Josephson forces. The static force is produced
by the dc gate voltage. Its magnitude is given by Fst =
(dCg/dy)V 2

g0/2, corresponding to the first dominating term in
Eq. (8). The effect of the static force is to tighten the resonator,
thereby tuning its resonance frequency.15 Since it is stationary
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it does not excite the oscillations. The ac gate driving force
arises due to the ac modulation of the gate voltage and is given
by Fg = (dCg/dy)Vg0Ṽg � (q0/e)(eṼg/Lg).

The phase-dependent Josephson force, not discussed in
previous literature, comes about the product of the first and
third terms in Eq. (8):

Fj = −dCg

dy
Vg0

∂Ej (q,ϕ)

∂q
. (11)

In fact, it is similar to the gate driving force, with Ṽg replaced by
the phase-dependent voltage arising in the capacitive network,
∂Ej (q,ϕ)/∂q. In contrast to the gate driving force, the time
dependence of the Josephson force is determined by the phase
dynamics rather than the external modulation of the gate
voltage.

The scale of the Josephson force is F̄j � (q/e)(Ej/Lg),
where Ej is the charge-dependent part of the Josephson energy,
which for intermediate contact conductances �GQ represents
a fraction of �10–50% of the total Josephson energy. The
Josephson force scale can be compared to the scale of ac
gate driving force, Fj/Fg � Ej/eṼg . For sufficiently low ac
driving amplitude eṼg � Ej , the Josephson force dominates
Fg � Fj .

C. Lorentz force

The Josephson force explained above arises from the
combined effect of charge sensitivity of the Josephson cou-
pling and the capacitive coupling to the gate electrode. The
alternative mechanism of generating a ϕ-dependent force
was recently proposed by G. Sonne et al.21 This force is of
Lorentz type arising from the interaction of the ϕ-dependent
superconducting current with an external magnetic field �B
applied in the perpendicular direction (for the setup of Fig. 1,
along the z axis). This mechanism does not require the presence
of a gate.

Let us compare the Lorentz force and the electrostatic
Josephson force. The Lorentz force is in y direction, that
is, perpendicular to both �B and the superconducting current,
FB = L| �B|I . It is natural to express Fj in terms of the electric
field | �E| = (dCg/dy)Vg/Cg produced by the gate electrode.
For estimates, we assume L � Lg and (dCg/dy)L/Cg �
L/Lg � 1. This yields

FB

Fj

� c| �B|
| �E| α, (12)

where c � 3 × 108 m/s is the speed of light and α =
e2/4πε0h̄c � 1/137 is the fine structure constant.

Typical magnetic fields used in experiments are | �B| � 1 T.
They are limited from above by the critical fields of the
superconducting leads. The typical electric fields are | �E| �
107 V/m. This corresponds to a potential drop of Vg � 10 V
over a distance of Lg � 0.5 μm. For these values FB/Fj �
10α � 1 suggesting that the Josephson force dominates.
Therefore, in the rest of the paper, we will disregard the Lorentz
force.

If one imagines a ballistic nanotube, the Josephson coupling
is not affected by the induced charge. In this case, the Lorentz
force would be the only superconducting phase-dependent

driving mechanism. However, the ideally ballistic nanotubes
have not been realized experimentally.

D. Analysis of nonlinearities

Let us bring together three coupled equations governing the
dynamics of the setup:

Vb(ω)

Ze(ω)
+ i

h̄ω

2e

ϕ(ω)

Ze(ω)
= [I (q,ϕ)]ω, (13)

ÿ + 	ẏ + ω2
0y + αy2 − βy3 = M−1 dCg

dy

q2

2C2
g

, (14)

q0 + q0

Cg

dCg

dy
y − Cg

∂Ej

∂q
(q,ϕ) = q. (15)

The first equation describes the dynamics of superconducting
phase difference ϕ(t) and is obtained by applying Kirchhoff’s
laws to the circuit. The second equation is for the mechanical
displacement y(t) where we substitute the electrostatic force
given in Eq. (10). The induced charge q enters both equations,
and at the same time is defined by the third equation, that is,
its value depends both on ϕ and y. Therefore the equations are
coupled.

The equations of motion can be derived using a Lagrangian
or Hamiltonian method. This we present in Appendix. We
wish to simplify these equations under experimentally relevant
assumptions. For this, we shall analyze the relative importance
of different nonlinearities in the coupling. There are natural
nonlinearity scales for all three variables: ϕ � 2π , q � e,
and y � yc � √

ω0	/β ′. This could change if the coupling is
sufficiently strong. For instance, the displacement may cause
the variation of phase that is subject to Josephson nonlinearity.
The resulting variation of phase would produce the nonlinear
variation of q. This will result in nonlinear feedback on y

and could, in principle, give rise to a nonlinear scale of y

that would be smaller than yc. Therefore, first of all, we
shall quantify the coupling between electrical and mechanical
variables by comparing the nonlinear terms in the mechanical
force resulting from the coupling with those coming from the
intrinsic nonlinearities characterized by α and β.

The conclusion of this section is that the mechanical
nonlinearity is dominant. We prove this with a rather involved
reasoning given below.

For the estimations, it is convenient to introduce the
following dimensionless parameters:

Aj = Cg

∂2Ej

∂q2
� Ej

EC

, EC ≡ e2

Cg

,

Bj = 2e2Ze

h̄ω0

∂I

∂q
� GQZe

Ej

h̄ω0
.

For estimations, we assume that Aj andBj are either small or
of the order of 1. This assumption is valid for Aj ; it compares
the Josephson energy to the charging energy under conditions
of well-developed Coulomb blockade. The parameter Bj is
a coefficient of Josephson feedback at high frequency and
depends on the details of the external circuit via the impedance
Ze. Unless a special effort is made to increase the circuit
impedance at high frequency, Bj will not be big.

Let us estimate the linear responses of the charge, δq,
and the superconducting phase δϕ on a given displacement
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variation δy. We do this by expanding Eqs. (13) and (15) up
to linear terms in δq, δϕ, δy and expressing δq, δϕ in terms of
δy. This yields

δq(1 + Aj + AjBj ) = q0
1

Cg

dCg

dy
δy � q0

δy

Lg

, (16)

δϕ(1 + Aj + AjBj ) = Bj

q0

e

1

Cg

dCg

dy
δy � Bj

q0

e

δy

Lg

. (17)

Since in addition we assume that Aj ,Bj � 1, these linear
responses can be estimated as simple as

δq � q0
δy

Lg

, δϕ � Bj

q0

e

δy

Lg

.

We use this to find a scale y1 at which the responses of
charge and superconducting phase may become comparable
with the scales of their intrinsic nonlinearities δq � e and
δϕ � 2π . To do this, we substitute δq � e, δϕ � 2π , δy � y1.
Both equations lead to the same estimation y1 � Lg(e/q0).

We need to compare this scale with the scale yc � r/
√

Q

of the mechanical nonlinearity. This yields

y1

yc

� e

q0

Lg

r

√
Q. (18)

The two last factors in this expression are big, while the first
one can be small. We estimate the biggest q0 from the condition
that ω0 is changed significantly by applying the gate voltage,
that is, the resonator is tightened, which leads to the estimation
of the stationary displacement y0 � r . This yields

q0

e
� r2L1/2a3/2, (19)

a being atomic scale, q0/e � 100 for our devices. With this, we
estimate the first two factors as (e/q0)(L/r) � (aL/r2)2. This
is �10 for our geometries, and we conclude that y1/yc �
1 for any Q > 1. This implies that upon increasing the
magnitude of the oscillations δy we encounter the mechanical
nonlinearity first and can disregard other nonlinearities at this
magnitude scale. This proves that the dynamics of charge and
phase is linear in y provided our estimations of mechanical
nonlinearities α and β hold.

We still need to show that the coupling to Josephson
junction does not change these nonlinearities significantly. To
this end, we estimate the quadratic and cubic nonlinearities
of the mechanical force due to coupling. First, we find the
quadratic and cubic variations of the charge with respect to
displacement using Eq. (15):

δq(2) = Cg

∂3Ej

∂q3
(δq)2 � eAj

(
q0

e

δy

Lg

)2

, (20)

δq(3) = Cg

∂4Ej

∂q4
(δq)3 � eAj

(
q0

e

δy

Lg

)3

. (21)

We can now estimate the terms in the mechanical force that
are quadratic and cubic in δy:

δF (2) = dCg

dy

q2
0

2C2
g

[
2

(
δq

q0

)2

+ δq(2)

q0

]

� Fst

(
1 + Aj

q0

e

)(
δy

Lg

)2

, (22)

δF (3) = dCg

dy

q2
0

2C2
g

(
3
δq

q0

δq(2)

q0
+ δq(3)

q0

)

� FstAj

(
q0

e

)2(
δy

Lg

)3

. (23)

We compare these terms with the intrinsic nonlinearities.
The second-order term δF (2) needs to be compared with
the mechanical quadratic nonlinearity Mαδy2. Assuming the
static displacement of the order of CNT radius, y0 � r , we
estimate Mα � Mβ/r � Mω2

0/r:

δF (2)

Mαδy2
�

(
1 + Aj

q0

e

)
r2

L2
g

� 1. (24)

Here, we use the estimation (q0/e)(r/Lg) � 1,
(q0/e)(r/Lg) � 0.1 for typical CNT geometries [see
Eq. (19)]. The third-order term δF (3) needs to be compared
with the third-order nonlinearity Mβδy3. This yields

δF (3)

Mβδy3
� Aj

r3

L3
g

� 1. (25)

To summarize, we proved that the nonlinear scales corre-
spond to ϕ � 2π , q � e, y � yc � √

ω0	/β ′, and that for a
CNT resonator the intrinsic mechanical nonlinearities domi-
nate the nonlinearities arising from coupling. This permits a
simplification of the dynamical equations. We may linearize
the terms describing the coupling of mechanical displacement
and electricity, thus separating Josephson and mechanical
nonlinearities.

E. Workflow

This sets the following workflow: (1) at given ac and dc bias
and gate voltages, we solve for Josephson dynamics neglecting
the mechanical coupling and setting q = q0(t). We find I (t)
and ϕ(t). Using these, we compute the Josephson force Fj

given by Eq. (11). (2) We solve the nonlinear mechanical
equation

M(ÿ + 	ẏ + ω2
0y + αy2 − βy3) = Fst + Fg + Fj (26)

to find y(t). We are mostly interested in a part that oscillates
with frequency � ω0. This may be excited by both Fj and Fg .
(3) We calculate the mechanical response current defined in
Sec. III B,

Ĩm(t) = 2e

h̄

∂2Ej

∂ϕ∂q

dCg

dy
Vg0 y(t). (27)

(4) If we can neglect the feedback in Josephson dynamics, we
are done, since the response is given directly by Ĩm. In general,
there is such a feedback since change of the current results in
a corresponding change of phase. The condition to neglect the
feedback is the condition of phase bias at frequency � ω0, that
is, the inductive impedance of the junction � h̄ω0/(GQEj ) is
much bigger than the impedance Ze(ω0) of the external circuit.
This is the case for devices fabricated so far.

To account for the feedback, we linearize the Josephson
dynamics to determine the response of the superconducting
phase on the mechanical response current found, ϕm(t) :

ϕm(t) = h̄

2e

∫ t

dt ′dt ′′Z(t ′,t ′′)Ĩm(t ′′).
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Here, the kernel Z(t,t ′) represents the combined linear
impedance of the external circuit and the junction. It follows
from the discussion in Sec. III D that ϕm(t) � 2π .

(5) Taking this into account, we obtain the current response
sought:

Im = Ĩm + 2e

h̄

∂2Ej

∂ϕ2
ϕm. (28)

The first term is the direct modulation of the current by the
charge induced by the mechanical displacement while the
second one is the feedback of the Josephson junction by means
of ϕm.

The mechanical response is thus typically a small correction
to the maximum superconducting current. We can estimate it
at maximum taking

Im

Ic

� q0

e

yc

L
� q0r√

QeL
� 10−3.

[We remind that (q0/e)(r/L) � 0.1, Q � 105 for our devices.]
Perhaps unexpectedly, the typical response becomes smaller
upon increasing the quality factor. The reason for this is clear:
the maximum displacement becomes smaller. However, the
large Q results in sharp frequency dependence of the response
making it easier to identify. We thus concentrate on this
dependence.

F. Parameters

Let us specify a concrete choice of the values of parameters
we will use for numerical estimations. We choose these
values to match those of one of the devices fabricated. Yet
we shall stress that the choice made is rather arbitrary and
relatively small deviations in each parameter can accumulate
changing the estimations of the mechanical effect by orders of
magnitude.

Junction critical current, Ic : 1.0 × 10−8 A;

Total Josephson energy, Ej : 2.1 × 10−5 eV;

Static gate voltage, Vg0 : 1.0 V;

Static charge on the resonator, q0/e : 100;

Resonator length and distance to gate, L = Lg : 0.3 μm;

Resonator mass, M : 4.1 × 10−22 kg;

Resonance frequency, ω0/2π : 0.84 GHz; (29)

Quality factor, Q : 1.4 × 105;

Quadratic nonlinearity, α : 5.5 GHz2 nm−1;

Cubic nonlinearity, β : 5.5 GHz2 nm−2;

Scale of maximum displacement, yc : 6.3 pm;

Mechanical force scale, Fc : 2.3 × 10−18 N;

Josephson force, Fj : 1.1 × 10−15 N.

Two important dimensionless parameters are relative value
of the mechanical response current Im/Ic and the ratio of
maximum Josephson force to the mechanical force scale
Fj/Fc. As mentioned, the response is relatively small, Im/Ic �
10−3. In contrast to this, Fj/Fc is big, Fj/Fc � 500.

This means that the Josephson force can easily draw
the oscillator to very nonlinear regime. Let us note that

the charge-dependent part of Ej is only a fraction of the
total Josephson energy, say, 10%. This gives more realistic
estimation Fj/Fc � 50 that we will use in the plots. Besides,
the oscillatory dependence of Ej on q permits tuning Fj to
zero.

IV. PHASE BIAS

Let us start our considerations with the junction biased
with a time-independent phase ϕ: such bias condition can be
achieved by embedding the junction into a superconducting
loop. Unfortunately, our present experimental setup does not
allow measurements under these bias conditions. We present
the theoretical results in hope that they will be useful for future
experiments.

The simplest experimental signature of Josephson force
under phase bias conditions is the phase-dependent shift of
the resonant frequency. The mechanism of this shift in our
situation is the mechanical nonlinearity: the static Josephson
force tightens or looses the nanotube resulting in the frequency
change. The frequency response on the static force in our
model reads

dω0

dF
= α

Mω3
0

� ω0

Fst
. (30)

The phase-dependent frequency shift reads

�ω0(ϕ) = ∂ω0

∂F
Fj (ϕ)

= − α

Mω3
0

dCg

dy
Vg0

∂Ej (q,ϕ)

∂q

� ω0
Fj (ϕ)

Fst
� ω0

Ej

eVg0
cos(ϕ). (31)

The shift is clearly observable provided it exceeds the
broadening 	. The estimation gives

�ω0(ϕ)

	
� Q

Ej

eVg0
cos(ϕ). (32)

For the parameter set chosen, Eq. (29), the maximum value of
the frequency shift is[

�ω0(ϕ)

	

]
max

= 2.8 . (33)

Therefore the shift is clearly observable.
Let us consider an example of a mechanically induced

response under conditions of the phase bias. To excite
mechanical oscillations, we apply an additional ac voltage to
the gate that oscillates at the frequency � close to the resonant
frequency ω0:

Vg = Vg0 + Ṽg cos(�t). (34)

Assuming Ṽg to be sufficiently small to provide a linear
response of the displacement, we obtain the following ex-
pression for the resonant part of the displacement:

ỹ = Fg

2Mω0

−1

ν(ϕ) + i	/2
, Fg = dCg

dy
Vg0Ṽg, (35)

y(t) = 1

2
(ỹe−i�t + ỹ∗ei�t ), (36)
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ν/Γ

I 
 /
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m

a

FIG. 3. (Color online) The phase-dependent frequency shift for
the case of weak driving. The curves give the linear response of
dc current in units Ia = 2e(�ω0)max|ỹ|2(Mω0/h̄) as a function of
frequency detuning for a set of phase bias values: from the lowermost
to the uppermost curve the phase changes from ϕ = π/8 to ϕ =
15π/8, with interval π/8. The curves are offset for clarity. Dashed
lines give the positions of zero.

Here, ν(ϕ) = � − ω0 − �ω0(ϕ) � ω0 is the detuning that
includes the phase dependent shift of the resonance frequency
discussed above. Owing to the mechanical nonlinearity, the
oscillating displacement produces a stationary displacement
y = α|ỹ|2/ω2

0. This induces a stationary charge that affects
the dc superconducting current at constant phase bias. Rather
remarkably, this effect is related to the phase-dependent shift
discussed above. Indeed, both are proportional to charge-
dependent part of the Josephson energy and to the nonlinearity
coefficient α. The resulting current response reads

Im = −2e
∂

∂ϕ
[�ω0(ϕ)]|ỹ|2(Mω0/h̄), (37)

the contribution to the current being of the order of e�ω0 if the
displacement magnitude is of the scale of quantum fluctuations√

h̄/Mω0. The dependence on frequency of the ac modulation
is a Lorentzian one, as it is frequently expected (see Fig. 3),
the Lorentzian center being shifted with changing the phase.

A. Fano-type response

The above mechanism of response exploits the dominating
mechanical nonlinearity. It is proportional to ỹ2. Upon increase
of the ac amplitude Ṽg the oscillating displacement saturates
owing to the nonlinearities. In this case, the dominating dc
current signal can arise as a result of mixing of the oscillating
displacement ỹ and the oscillating charge ∝Ṽg . The resulting
current is thus proportional to Ṽgỹ and may exceed the
contribution ∝ỹ provided the latter saturates.

The expression for this contribution reads

Im = 2e

h̄

∂3Ej (q,ϕ)

∂q2∂ϕ
Cg

[
dCg

dy
Vg0Re(Ṽgỹ)

]
. (38)

Interestingly, it exemplifies a Fano-type dependence on the
detuning that is quite different from a Lorentzian. In the linear
regime,

Im(ν) ∼ 	

2

ν(ϕ)

ν(ϕ)2 + 	2/4
, (39)

FIG. 4. (Color online) An example of Fano-type frequency
dependence of the mechanical response (38). The curves correspond
to the driving force values |F̃ |/Fc = 0.2,0.6,1 (top) and |F̃ |/Fc =
2,6,10 (bottom). The current is in units of d2I1(q)

dq2
dCg

dy
q0Ṽgyc, which

assuming Ṽg/Vg0 � 10−2 amounts to � 10−3Ic for the parameter set
chosen.

so that the signal changes sign at the resonance point. Figure 4
illustrates the Fano-type dependence in the nonlinear regime.
Comparing expressions (37) and (39) we conclude that the
Fano-shaped Im dominates provided Ṽg/Vg0 � (q0/e)−3/2 �
10−3. The condition occurs deep in the nonlinear mechanical
response regime.

V. DIRECT CURRENT VOLTAGE BIAS

Let us turn to dc voltage bias. In this case, the supercon-
ducting phase is, in first approximation, a linear function of
time, ϕ = ωj t , ωj = 2eV/h̄ being the Josephson frequency
that corresponds to the voltage V across the junction. In
the same approximation, the current is a purely oscillatory
function of time. The time-dependent current can be expanded
into harmonics of the Josephson frequency,

I (t) = 2e

h̄

∂Ej

∂ϕ
(q,ϕ = ωj t) =

∑
n=1

In sin(nωj t). (40)

A dc current emerges from the feedback on Josephson dynam-
ics: oscillatory currents produce oscillatory corrections to the
phase. These are proportional to the impedance at frequencies
nωj . Taking this into account in the first approximation in
Z(ω), we arrive at

Idc =
∑

n

|In|2 ReZ(nωj )

V
. (41)

The above relation holds provided ReZ � V/Ic. Nonpertur-
bative treatment of Josephson dynamics is required otherwise.

Let us consider the mechanical effects. It is important to
note that under the dc voltage bias the Josephson force also

155448-9



C. PADURARIU, C. J. H. KEIJZERS, AND YU. V. NAZAROV PHYSICAL REVIEW B 86, 155448 (2012)

oscillates in time,

Fj (t) = −dCg

dy
Vg0

∂Ej (q,ϕ)

∂q

= −dCg

dy
Vg0

∞∑
n=1

∂Ej,n(q)

∂q
cos(nωj t), (42)

Ej,n being the harmonics of Josephson energy. Therefore
the force can efficiently excite the mechanical resonator
provided nωj � ω0. Let us first concentrate on the case where
the resonance frequency is matched by the first harmonics,
ωj � ω0. The detuning is defined as ν = ωj − ω0.

To start with, let us assume that the Josephson force is
sufficiently weak so that the mechanical response is linear and
thus, given by Eq. (35). The direct mechanical contribution to
the dc Josephson current is obtained by averaging Eq. (27),
and reads

Im = ∂I1

∂(q/e)

(
dCg

dy

Vg

e

)
Imỹ. (43)

This can be cast to the form similar to Eq. (41),

Im =
∣∣∣∣ ∂I1

∂(q/e)

∣∣∣∣
2 ReZm(ωj )

V
, (44)

where the current is replaced with detecting current ∂I/∂(q/e)
and the “mechanical impedance” Zm(ω) is defined as

Zm(ν) = ω0

−iν + 	/2
Z(0)

m , (45)

Z(0)
m ≡ h̄

e2

(
dCg

dy

Vg

e

)2
h̄

2Mω0
. (46)

(Here, ν ≡ ωj − ω0.)
This form of the mechanical response makes evident an

analogy with Fiske steps25 that are observed at voltages corre-
sponding to resonant frequencies of an electrical impedance.
This may be either an impedance of external circuit or an
effective impedance that is essentially contributed Josephson
inductance.

To comprehend the scale of the response, we note first
that for a sufficiently well-developed Coulomb blockade
I1 � ∂I1/∂(q/e). Therefore, to compare the current given by
Eq. (41) and the mechanical response, we need to compare
Zm and a typical environmental impedance. The latter can be
estimated as the impedance of free space Zf � 102 Ohm. The
typical mechanical impedance far from the resonance Z(0)

m

should be much smaller than that. Indeed, if we substitute
the parameter set [see Eq. (29) in Sec. III F] into Eq. (46),
we end up with Z(0)

m = 0.7 × 10−2 Ohm � Zf . However,
Zm is enhanced by a factor of Q at the resonant frequency.
With this, Zm > Zf and the current peak produced by the
mechanical response should exceed the background current
given by Eq. (41) and be clearly observable.

The voltage dependence of dc current response in linear
regime is determined by ReZm and thus takes a Lorentzian
shape with the half-width δV = V/Q. This assumes a noise-
less voltage source. It is known23 that the voltage noise
suppresses the coherence of Josephson generation. For white
noise spectrum of intensity SV , the resulting linewidth reads
δVn = (2e/h̄)2SV . Comparing the two, we conclude that the
mechanical response will be broadened by the noise and

FIG. 5. (Color online) (Top left) the charge-dependent part of
Josephson energy as a function of the gate-induced charge q = CgVg .
The crosses indicate the values of q that correspond to the values of
Josephson force used in other panels. The blue dotted line indicates
the value of Ej where Fj = Fc. (Top right) the mechanical response as
a function of detuning for relatively low values of the force Fj/Fc < 1
at which the response increases with increasing the force. (Bottom)
frequency dependence at the force values Fj/Fc = 3,5,7,10 (from
left to right ) where the response decreases with increasing the force.

essentially suppressed provided δVn > δV , this is, SV >

(2e/h̄)ωj/Q. Detection of the mechanical response requires
(2e/h̄)ωj/Q � SV , a condition that may be challenging to
meet in practical circumstances.

As mentioned, the Josephson force can be big enough to
exceed Fc, this makes it relevant to address the nonlinear
response as well. We illustrate the nonlinear response in Fig. 5.
In order to produce this figure, we took the charge-dependent
part of the Josephson energy to be of the form Ej (q,ϕ) =
E cos(ϕ) cos(πq/e). Tuning q with the dc gate voltage tunes
the magnitude of the Josephson force from 0 to a maximum
value π (q/e)(E/Lg). For illustration, we chose E such that
the maximum force π (q/e)(E/Lg) = 10Fc (E = 2.3 μeV for
the parameter set in use, corresponding to a 30% charge
modulation of the total Josephson energy) and compute the
response using Eqs. (5) and (43) at a set of the values of q, or,
equivalently, Fj . The response is Lorentzian at small forces,
increases and develops a jump characteristic for bistability.
It is interesting to note that the response slowly decreases
upon increasing Fj at Fj > 2Fc. This is because the response
is proportional to Imỹ that quickly decreases at big driving
forces. In this limit, Im ∝ F

−1/3
j .

A. Excitation by higher harmonics

If we take higher harmonics of current-phase characteristic
into account, we note that Josephson force emerges at a set of
frequencies that are integer multipliers of ωj [see Eq. (42)].
This implies that the resonant mechanical response can be
also observed in the vicinities of a set of discrete voltage
values satisfying ωj = ω0/n, this is, at lower voltages than
the resonance described above. The response is computed
along the same lines with replacing Ej,1 by Ej,n. In linear
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regime, the response reads

Im =
∣∣∣∣ ∂In

∂(q/e)

∣∣∣∣
2
nReZm(nωj )

V
(47)

[cf. Eq. (44), the factor n in the present expression is canceled
by lower voltage V = (h̄/2e)ω0/n]. The response scales with
the relative values of the harmonics and is, in principle,
of the same order of magnitude for several low harmonics.
Its dependence on voltage in the vicinity of the resonance
is similar to that discussed above and does not have to be
illustrated separately.

B. Parametric excitation

For the sake of completeness, let us mention the possi-
bility of the resonant mechanical response at higher voltages
by means of parametric excitation.12 Generally, parametric
resonance in a nonlinear oscillator is achieved by applying an
ac driving force with frequency about a double of the resonant
frequency, � � 2ω0.12 In our case, this is achieved by applying
a dc bias voltage with ωj � 2ω0, so that the Josephson force
oscillates at 2ω0 and integer multiples of this frequency and
thus provides the parametric driving required.

The response of at resonant frequency emerges provided
the parametric driving force exceeds a certain threshold value,
and, as in case of direct resonance, achieves values � yc.
The point is that this threshold driving force is parametrically
bigger than Fc, Ft � Fc

√
Q. For our devices at Q = 105, the

parametric excitation requires Josephson energies that by a
factor of 30 exceed the value from the parameter set and are
not practical. This is why we do not explore the regime of
parametric excitation in detail.

Besides, the manifestation of the oscillating amplitude is
not as straightforward as in the case of direct resonance.
The contribution of displacement at ω0 to the mechanical
current response (27) oscillates at the same frequency and
is not readily rectified to a dc current. Under our assumptions,
the dc mechanical response is dominated by the displacement
oscillating at 2ω0 and is by a factor of

√
Q smaller than the

typical responses studied in this paper.

VI. SHAPIRO STEPS AT RESONANT DRIVING

From now on, we turn to the situation where the setup is
ac driven at frequency �. As discussed in Sec. II A, in our
setup this gives rise to two ac signals Vg(t) = Ṽg cos(�t + χ ),
Vb(t) = Ṽb cos(�t). The effect of Ṽb is a formation of Shapiro
steps.26

A common approach to Shapiro steps takes into account
only the first harmonics of the current-phase relation and starts
with the assumption that the time-dependent superconducting
phase difference can be presented as a sum of three terms:

ϕ(t) = ϕ1 sin(�t) + ωj t + ϕ0. (48)

Here, the first term describes the ac driving ϕ1 > 0, ϕ1 =
|Ṽb|/(2e/h̄)�, the second term corresponds to a dc voltage
V = ωj/(2e/h̄), and the third term is a lock-in phase important
for further consideration. With this, sin(ϕ) can be presented as

a sum over harmonics:

sin(ϕ) =
∞∑

m=−∞
Jm(ϕ1) sin(�mt + ϕ0) (49)

with �m = m� + ωj . Here, Jm denotes the mth Bessel
function of the first kind.

Shapiro steps are formed at discrete values of dc voltage
|ωj | = m�. In this case, the time-dependent current I (t) =
Ic sin (ϕ(t)) has a dc component

Idc = −Icsgn(V )Jm(ϕ1) sin ϕ0. (50)

The simplest assumption is an ideal current bias at zero
frequency and an ideal voltage bias at frequencies � �. In
this case, the I-V curve of ac driven junction consists of a
series of separate pieces. At each piece (Shapiro step), the
voltage is locked to one of the discrete values. The current
within each piece may vary from minimum values I− to the
maximum value I+ provided the bias current fits this interval.
In this case, the actual value of the lock-in phase ϕ0 is set by
the bias current. The extremal values I± = ±Ic|Jm(ϕ1)| are
achieved at the lock-in phases given by

ϕ±
0 = ∓π/2 sgn[V Jm(ϕ1)]. (51)

We mostly follow this approach, while admitting extreme
simplifications it brings. The higher harmonics of current-
phase relation and/or nonideal voltage bias not only modify
the relation between the current and lock-in phase: they also
provide phase locking at fractional ratios of ωj/�28 and
formally at all rational values of this ratio. These fractional
Shapiro steps are, however, more sensitive to noise than the
integer ones and more likely to vanish. The I-V curves of our
devices do show well-developed steps at integer values of ωj

and only traces of phase-locking at intermediate values. For
this reason, we do not consider fractional Shapiro steps in this
paper and concentrate on integer ones where |ωj | = m�.

It is advantageous to look at the mechanical response at
Shapiro steps rather than at dc bias conditions. The external
ac driving synchronizes Josephson oscillations. The inductive
response present at Shapiro steps also reduces significantly the
voltage noise at low frequencies so that it does not broaden the
resonant lines. In this section, we will consider the mechanical
response in the simplest situation of resonant driving where the
driving frequency matches the resonant frequency, � � ω0.

A. First step

Let us first concentrate on the first Shapiro step, the one
at voltage 2eV/h̄ = ±�, that is the biggest in the limit of
small driving voltages ϕ1 � 1, and determine the dc part of
the response at the oscillating displacement ỹ. To represent
the results, we normalize ỹ to the nonlinearity scale yc and
introduce a convenient current scale:

Ī = ∂I1

∂q

dCg

dy
Vg0yc. (52)

For the values of our parameter set,

Ī � Ic(q0/e)(yc/Lg) = 2.1 × 10−3 Ic.
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Making use of Eqs. (27) and (49), we express the mechani-
cal response in terms of the amplitudes ỹ and Ī j at the resonant
frequency,

Im = Ī

yc

Re(j ∗ỹ), (53)

j = −i

{
(J2(ϕ1)eiϕ0 − J0(ϕ1)e−iϕ0 ) if V > 0,

(J0(ϕ1)eiϕ0 − J2(ϕ1)e−iϕ0 ) if V < 0.
(54)

This displacement is a response on the force at resonant
frequency, which is a sum of Josephson force and gate force.
The time-dependent Josephson force is expanded in harmonics
in the form

Fj (ϕ) = F̄j cos[ϕ(t)],

= F̄j

∞∑
m=−∞

Jm(ϕ1) cos(�mt + ϕ0),

F̄j = −dCg

dy
Vg0

∂E1,j (q)

∂q
� q0

e

Ej

Lg

. (55)

Its amplitude at resonant frequency is contributed by the terms
m = 0,2 and reads

F̃j = F̄ f, (56)

f =
{

(J2(ϕ1)eiϕ0 + J0(ϕ1)e−iϕ0 ) if V > 0,

(J0(ϕ1)eiϕ0 + J2(ϕ1)e−iϕ0 ) if V < 0.
(57)

Let us discuss first the relative scale of the gate force in
comparison with the Josephson force. It may seem there is
none, and varying the ac gate voltage Ṽg one can achieve
any ratio �Ṽg/EJ between the forces. However, we should
take into account the fact that in our setups ac driving also
induces an appreciable bias voltage Ṽb. If the oscillating phase
ϕ1 produced by this voltage becomes large Shapiro steps can
hardly be observed. It is, in general, reasonable to expect Ṽg �
Ṽb. In this case, ϕ1 � 1 corresponds to Fg/Fj � h̄ω0/Ej . The
latter ratio is typically 10−2 in our setups (for our parameter
set, it is h̄ω0/Ej = 2.7 × 10−2). This implies that typically
we can disregard ac gate force in comparison to the Josephson
force. We will analyze this case first and consider the effect of
the gate force in the end of the section.

With this, the mechanical response is given by

Im = Ī F̄

Fc

Re(j ∗f R)

= Ī F̄

Fc

{
sgnV

[
J 2

0 (ϕ1) − J 2
2 (ϕ1)

]
Im(R)

− J0(ϕ1)J2(ϕ1) sin(2ϕ0)Re(R)
}
. (58)

Here, R ≡ R(ν/(	/2),(Fj/Fc)|f |) defined by Eq. (5) gives the
nonlinear mechanical response. The expression is naturally
separated onto two terms. The first term is proportional to
Im(R) and therefore exhibits a Lorentz-like dependence on
frequency. It does not depend on the lock-in phase and can
be regarded as a shift in the current. Owing to the shift,
the maximum and minimum currents I± at the step are no
more opposite: the mechanical effect breaks the symmetry of
the Shapiro step. The shift is, however, opposite for opposite
voltages. The origin of the shift may be traced to the Fiske

response [see Eq. (44)] formed at ωj � ω0 in the absence
of the ac driving. Indeed, in the limit of vanishing ϕ1, the
first term in the mechanical response does not vanish: rather,
it approaches the expression (44). So it looks like the Fiske
response persists also for well-developed Shapiro steps and
contributes to the current at the step. This suggest perhaps the
easiest way to observe and identify the mechanical response:
measure maximal and minimal currents at a step as function
of the ac frequency. In the rest of the paper, we thus mainly
concentrate on the modification of extremum currents.

The second term in Eq. (58) cannot, however, be observed
in this way. In ideal current bias conditions at low frequency,
the second term in the current response fact amounts to a shift
of the lock-in phase. Indeed, since the current at the step as
a function of ϕ0 reads as I (ϕ) = −sgn(V )J1(ϕ1), the second
term can be seen as a modification of the lock-in phase at
constant bias current that does not depend on this current,

(�ϕ0)m = −sgn(V )
Ī F̄

IcFc

J0(ϕ1)J2(ϕ1)

J1(ϕ1)
Re(R). (59)

This response is of Fano type. Since such shift of the
phase does not modify the values of the current extrema,
the effect cannot be observed in the course of two-terminal
electrical measurement in our setup. The shift of the lock-in
phase can be however revealed if the Josephson junction
under consideration is a part of a superconducting quantum
interference device (SQUID), or with the aid of lock-in
measurement at nonresonant ac frequency.

With respect to this, we ought to mention yet another
effect of Josephson force manifesting itself in the mechanical
response considered. In fact, the situation at a Shapiro step is
similar to the phase bias conditions considered in Sec. IV,
with lock-in phase playing the role of ϕ. We thus expect
ϕ0-dependent shift of the resonance frequency. The static
Josephson force at a Shapiro step is given by

Fj = F̄ sgn(V )J1(ϕ) cos(ϕ0). (60)

The frequency shift caused by this force thus reads

�ω0(ϕ0) = sgn(V )(�ω0)maxJ1(ϕ) cos(ϕ0). (61)

Here, (�ω0)max is a maximum frequency shift in the absence of
the ac driving, given by Eq. (31). The frequency shift vanishes
at extremum points ϕ±

0 and therefore cannot be observed by
measuring the extrema of the current.

We illustrate the mechanical response in Fig. 6. In this figure
as well in all subsequent figures except Fig. 7, we concentrate
on the modification of the maximum current on the step.
Instead of presenting the (rather trivial Lorentz like) frequency
dependence of this modification, we give the extremum of
this modification over the frequency range and plot it versus
ϕ1. The extremum is proportional to the maximum of Im(R)
over the frequency. We shall note that the dependence of this
maximum on the force is rather specific one: it is a constant
until the bistability threshold F = 1.24Fc, has a cusp at this
value of force, and decreases monotonously at higher forces.
This accounts for rather strange appearance of the response
curves. If the Josephson force is smaller than the bistability
threshold, they coincide with the linear response given by the
dotted curves. Otherwise, the response is smaller than linear
one and exhibits kinks.

155448-12



EFFECT OF MECHANICAL RESONANCE ON JOSEPHSON . . . PHYSICAL REVIEW B 86, 155448 (2012)

FIG. 6. (Color online) The mechanical response at resonant
driving � � ω0 and at the first Shapiro step V0 = 2e�/h̄ vs the
oscillating phase ϕ1. The first (upper) plot gives the maximum current
at the step. The second and fourth plots give the mechanical response
defined as the extremum of the modification of this maximum current
over the frequencies near the resonance, at maximum Josephson
forces F̄ = Fc and F̄ = 50Fc, respectively. The actual amplitudes of
the resonant Josephson forces are given at the lower plots, respectively
third and fifth.

The so-defined maximum response is plotted in Fig. 6 for
two values of F̄ , those correspond to slightly and strongly
nonlinear regime, respectively. In both cases, the response
vanishes when the width of Shapiro step reaches maximum,
or becomes zero (except ϕ1 = 0). In slightly nonlinear regime,
the response reaches maximum value at ϕ0. Upon increasing
ϕ1, it exhibits Bessel-like oscillations. The envelop of these
oscillations shrinks with increasing ϕ1. This shrinking is much
faster than that for either step width or Josephson force. In
strongly nonlinear regime, the amplitude of the response is
determined by competition of two factors: it is increased by
the bigger value of the detecting current, and decreased owing
to smaller imaginary part of oscillating displacement at higher
Josephson forces.

FIG. 7. (Color online) The effect of gate force. For all plots,
the gate force is fixed to Fg = Fc. In the plots from top to bottom,
the maximum Josephson force F̄ assumes the values F̄ /Fc = −5,

−1,0,1,5. We choose χ = 0 and ϕ1 = 1. Dashed lines in the plots
for I− give values opposite to the corresponding I+, to stress the
symmetry or asymmetry of the response.
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Let us turn to the effect of the gate force. The Josephson
force of the kind considered can change sign and therefore
be tuned to zero by tuning q. In the vicinity of this particular
q, the gate force should compete with the Josephson one and
eventually dominate. The full amplitude of the force at the
resonant frequency then reads

F̃ = F̄ f + Fg exp (−iχ ), (62)

the frequency shift χ between the bias and the gate voltage
being a relevant parameter.

The mechanical response is given by Eq. (58) where R

depends on the full force plus an addition proportional to Fg ,

I (g)
m = ĪFg

Fc

Re[j ∗ exp(−iχ )R]

= Ī F̄

Fc

{−[J0(ϕ1) sin(ϕ0 + χ ) + J2(ϕ1) sin(ϕ0 − χ )]

× Re(R)[J0(ϕ1) cos(ϕ0 + χ ) − J2(ϕ1) cos(ϕ0 − χ )]

× Im(R)}. (63)

FIG. 8. (Color online) The maximum current at the Shapiro step,
the mechanical response and the force versus ϕ1 for F̄ = Fc and
F̄ = 50Fc at the second Shapiro step V0 = 4e�/h̄.

The last equation holds for V > 0. The expression for V < 0
is obtained by interchanging J0 and J2. Evaluating this at the
extremum points of lock-in phase, ϕ±

0 , we obtain

I (g)±
m = ∓sgn[V J1(ϕ1)]

ĪFg

Fc

× [J0(ϕ1) + J2(ϕ1)]Re[R exp(−iχ )]. (64)

Therefore the contribution of the gate force to extremum
currents is not like a shifts; rather, it modifies the width of
the step. These terms are even in voltage and display a mixture
of Fano-type and Lorentzian-type response as a function of
frequency, this being tuned by the phase χ .

To illustrate a rather complex interplay of Josephson and
Shapiro dynamics, we plot in Fig. 7 the frequency dependence
of the mechanical response for a constant Vg and a set of
values of Fj that pass zero. The plots show the modifica-
tions of extremum currents I±. These modifications are the
same for the Josephson force contribution and opposite for
the gate force contribution. Besides, the frequency dependence
is Fano like for the gate force contribution and Lorenz like

FIG. 9. (Color online) The same as in Fig. 8 at the fifth Shapiro
step V0 = 10e�/h̄.
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for the Josephson force contribution. In the central plot,
the Josephson force contribution is absent, the modifications
of I± are opposite, and the frequency dependence is Fano
like. Upon increasing the Josephson force, these features are
transformed into the opposite ones. The plots are symmetric
upon simultaneous change of signs of the current and the
Josephson force.

B. Higher steps

At the same conditions of the resonant driving, we ana-
lyze the mechanical response at other Shapiro steps m > 1,
those correspond to higher voltages |V | = mh̄ω0/2e. Both
the amplitudes of the detecting current and the Josephson force
display a complex dependence on the step number m and the
oscillating phase ϕ1. They are given by

j = −i(J−1+m̄eiϕ0 − J1+m̄e−iϕ0 ),

f = J−1+m̄eiϕ0 + J1+m̄e−iϕ0 ,

where the dependence on the sign of the voltage is incorporated
into m̄ ≡ −sgn(V )m. We consider only the situation when
Josephson force dominates. With this, we obtain a relation
similar to Eq. (58):

Im = Ī F̄

Fc

Re(j ∗f R)

= Ī F̄

Fc

{
sgnV

[
J 2

m−1(ϕ1) − J 2
m+1(ϕ1)

]
Im(R)

− Jm−1(ϕ1)Jm+1(ϕ1) sin(2ϕ0)Re(R)
}
. (65)

As in the first step, the response consists of two terms. The
first one gives a shift in the current, and gives a modification of
the maximum and minimum currents at the step, this is to be
measured. As in the previous case, the shift is odd in voltage.
However, its ϕ1 dependence is quite rather distinct.

The measuring of the mechanical response at higher steps
is important to check the consistency of results and thereby
unambiguously identify the mechanism of the response. The
characteristic dependencies on ϕ1 make the identification easy.

We illustrate the response for higher steps in Figs. 8 (second
step) and 9 (fifth step). In both cases, the response correlates
with the Shapiro step width given in the upper plots: it
vanishes when the width achieves a maximum or becomes
zero. In distinction from the first step, the responses vanish
at vanishing ϕ1. Their typical values are of the same order.
However, the envelopes of the responses decrease rather slow
with increasing ϕ1.

VII. SHAPIRO STEPS AT NONRESONANT DRIVING

In the previous section, we concentrate on the case when
the driving frequency � matches the resonant frequency of
the mechanical oscillator. It is not a necessary condition for
an efficient excitation of the resonant mode. The Josephson
dynamics at Shapiro steps is essentially nonlinear. As a
consequence, the spectrum of current oscillations contains
all higher harmonics n� of the driving frequency �. The
same pertains to the Josephson force. Therefore the resonator
can be efficiently excited for � = ω0/N , N > 1 being an
integer number. At any given N , the resonant conditions are
achieved for any Shapiro step number m, and thus for voltages
2eV/h̄ = ωj = (m/N )ω0.

These nonresonant driving conditions are advantageous for
observation of the Josephson force since the ac gate voltage
force is not in the resonance, does not cause any appreciable
displacement and therefore does not mask the effect of
the Josephson force. In this short section, we will thus
concentrate on the case of the nonresonant driving � = ω0/N .

The amplitudes of the detecting current and the Josephson
force depended not only on the step number m and the

FIG. 10. (Color online) The mechanical response at the nonresonant driving. Here, the ac driving frequency is � � ω0/2, corresponding
to N = 2. From left to right, the three columns correspond to Shapiro steps m = 1,2,3. Plotted are the maximum current at the Shapiro step,
the mechanical response and the amplitude of the force. The maximum of the Josephson force was set to F̄ = 50Fc for all plots.
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FIG. 11. (Color online) The mechanical response at the nonresonant driving for N = 3. Except this, all other parameters are the same as
in Fig. 10.

oscillating phase ϕ1, but also on N . They are given by

j = −i(J−N+m̄eiϕ0 − JN+m̄e−iϕ0 ),

f = J−N+m̄eiϕ0 + JN+m̄e−iϕ0 ,

where the dependence on the sign of the voltage is again
incorporated into m̄ ≡ −sgn(V )m.

Since the gate force is absent, the response is given by a
relation similar to Eq. (58) that contains the Josephson force
only:

Im = Ī F̄

Fc

Re(j ∗f R)

= Ī F̄

Fc

{
sgnV

[
J 2

m−N (ϕ1) − J 2
m+N (ϕ1)

]
Im(R)

− Jm−N (ϕ1)Jm+N (ϕ1) sin(2ϕ0)Re(R)
}
. (66)

It is again separated onto two terms discussed above, only
the first term being responsible for the modification of the
extremum currents of the Shapiro steps.

We illustrate the dependencies on ϕ1 in Figs. 10 (for
N = 2) and 11 (for N = 3) for the first three steps with
m = 1,2,3. The vertical arrangement of the plots is the same
as in the previous figures except we chose a single value of
the maximum Josephson force F̄ = 50Fc that brings us deep
into the nonlinear regime. In this regime, the response is of
the same order of magnitude for all steps and ratios N , while
retaining unique m,N specific dependence on ϕ that can be
used for identification of the effect and the characterization of
the Josephson force.

VIII. CONCLUSIONS

In conclusion, we have studied Josephson junction dy-
namics affected by excitation of a mechanical resonator.
We have demonstrated that the mechanical oscillations can
be rectified giving rise to an additional dc current that

can be used for detection. The mechanical response is
proportional to the oscillation amplitude, and is estimated
as Im � Ic(q0/e)(y/L) � 10−3Ic(y/yc). The resonator can be
driven by the ac voltage applied to the gate electrode as
well as an additional mechanical force, termed the Josephson
force, that depends on the superconducting phase difference
at the junction. We estimate the Josephson force as F̄j �
(q0/e)(Ej/Lg) and show that it is sufficiently strong to drive
the mechanical resonator into the nonlinear regime. We also
show that it is typically larger than magneto-induced force
proposed in Ref. 21.

We have presented a general and detailed analysis of the
coupling between electrical and mechanical degrees of free-
dom, discussing the competing nonlinearities. This analysis is
applied to a Josephson device with a suspended CNT resonator,
where we show that the intrinsic nonlinearity scales dominate
those arising from the coupling.

We have provided analytical formulas for the response
of the device to mechanical excitations in a wide interval
of the excitation strengths and for various biasing schemes.
We discuss distinct frequency dependencies, Lorentz and
Fano-like, of the mechanical response both for linear and
nonlinear regimes and show how these arise based on the
nature of the resonant mechanical force. In the case of a
phase biased junction, we show that the resonant frequency of
the mechanical mode acquires a measurable phase-dependent
shift (see Fig. 3).

We have discussed conditions of detecting the enhanced
mechanical response arising when the Josephson frequency
matches the resonance frequency of the mechanical mode. We
reasoned that the regime of Shapiro steps is advantageous,
since the fluctuations of the voltage drop over the junction
are suppressed. We provided expressions for the mechanical
response in the regime of Shapiro steps and demonstrated
that it manifests as modifications of the extrema of the steps.
We show that the mechanical mode can be efficiently excited

155448-16



EFFECT OF MECHANICAL RESONANCE ON JOSEPHSON . . . PHYSICAL REVIEW B 86, 155448 (2012)

not only by resonant ac signals, but also by ac signals with
frequencies close to an integer fraction of the mechanical
resonance frequency. Our preliminary experimental results
confirm this behavior; these will be reported elsewhere.
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APPENDIX: LAGRANGIAN FORMALISM

Here, we present a derivation of the equations of motion
using the Langrangian of our junction model, describing the
dynamics of the three variables y, q, and ϕ, treated here as
generalized degrees of freedom. To account for effects of
dissipation, we introduce generalized friction forces for each
degree of freedom and treat these as external forces.

The kinetic energy of the system is that of the mechanical
resonator:

T = 1
2Mẏ2. (A1)

The inertial effects associated with variations of ϕ, in the main
text, we have conveniently treated those using the external
impedance Ze, which describes both inertial effects as well
as dissipation. We do the same here treating both effects as a
generalized external force proportional to Ze.

The potential energy includes contributions from the
mechanical, electrostatic, and Josephson energies U = Um +
Ue + Ej :

Um = 1

2
Mω2

0y
2 − M

α

3
y3 − M

β

4
y4, (A2)

Ue = Ēc(q) + q2

2Cg(y)
− qVg. (A3)

The system Lagrangian is given by L = T − U . Equations
of motion are obtained using

d

dt

(
∂T

∂ẋ

)
− ∂T

∂x
= −∂U

∂x
+ Fx, (A4)

where x = y,g,ϕ denotes a generalized degree of freedom
and Fx is the corresponding generalized friction force. The
mechanical friction force is modeled typically as linear in
variation of displacement Fy = −M	ẏ.

Dissipative effects associated to charging of the gate
capacitance are important on timescale RgCg , where Rg is
the negligible resistance of wires grounding the gate and
source-drain electrodes. We assume that RgCg � ω−1

0 , such
that the effect of gate charging on the dynamics of y and ϕ can
be safely neglected Fq = 0.

The generalized friction force describing fluctuations of the
phase corresponds to the current passing through the circuit
impedance Ze, that is

Fϕ = h̄2

4e2

∫ t

−∞
dt ′dt ′′Z−1

e (t ′,t ′′)[Vb − ϕ̇(t ′′)]. (A5)

With this, the equations of motion are

Mÿ = −∂U

∂y
− M	ẏ, (A6)

0 = −∂U

∂q
, (A7)

0 = −∂Ej

∂ϕ
+ h̄2

4e2

∫ t

−∞
dt ′dt ′′Z−1

e (t ′,t ′′)[Vb − ϕ̇(t ′′)] (A8)

equivalent to those presented in the main text.
The equivalent Hamiltonian is

H = T (p) + U, T (p) = p2/2M,

where p is the momentum of the resonator p = Mẏ. There is
no generalized momentum associated to ϕ and q, since their
inertial effects are not included in the Lagrangian.

Using the Hamiltonian, we obtain the same equations of
motion using

ṗ = −∂H
∂y

+ Fy, (A9)

0 = −∂H
∂q

, (A10)

0 = −∂H
∂ϕ

+ Fϕ. (A11)
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